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Abstract

Mild cognitive impairment (MCI) is often considered the precursor of Alzheimer’s disease. However, MCI is associated with
substantially variable progression rates, which are not well understood. Attempts to identify the mechanisms that underlie
MCI progression have often focused on the hippocampus but have mostly overlooked its intricate structure and
subdivisions. Here, we utilized deep learning to delineate the contribution of hippocampal subfields to MCI progression. We
propose a dense convolutional neural network architecture that differentiates stable and progressive MCI based on
hippocampal morphometry with an accuracy of 75.85%. A novel implementation of occlusion analysis revealed marked
differences in the contribution of hippocampal subfields to the performance of the model, with presubiculum, CA1,
subiculum, and molecular layer showing the most central role. Moreover, the analysis reveals that 10.5% of the volume of
the hippocampus was redundant in the differentiation between stable and progressive MCI.
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Introduction
A certain degree of cognitive decline is common and considered
a part of the normal aging process. Mild cognitive impairment
(MCI) occurs when cognitive decline exceeds what is expected
given an individual’s age and education level (Gauthier et al.
2006). MCI can be considered a transitional phase in between

age-related cognitive decline and Alzheimer’s disease (AD) or
other dementias (Gauthier et al. 2006). However, MCI is associ-
ated with marked etiological heterogeneity (DeCarli 2003) and
variable progression rates (Roberts and Knopman 2013). Namely,
up to 33% of individuals with MCI convert to AD over 5 years
(Ward et al. 2013), with annual conversion rates of about 7%

https://academic.oup.com/
https://doi.org/10.1093/cercor/bhab223
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


468 Cerebral Cortex, 2022, Vol. 32, No. 3

(Mitchell and Shiri-Feshki 2009), but others may remain stable or
even revert to normal or near-normal cognition levels (Koepsell
and Monsell 2012). Identifying prognostic markers that can pre-
dict eventual conversion from MCI to AD is of profound clinical
interest (Karakaya et al. 2013). However, such markers are not
available to date. Fundamentally, despite increased interest in
recent years (Thung et al. 2016; Liu et al. 2018; Cheng et al. 2019),
a mechanistic framework for understanding progression and
stability in MCI remains missing.

The neuropathological profile of MCI is complex and
multifaceted (Stephan et al. 2012). As MCI is commonly seen
as a precursor to AD, many studies have focused on alterations
in structures known to be affected by this disease. The most
widely studied target in AD is the hippocampus (Jack et al. 1992;
Fox et al. 1996), and indeed, multiple studies have reported
hippocampal volume loss in MCI relative to controls (Jack
et al. 1999). Studies have also implicated the hippocampus
in the progression of MCI (Douaud et al. 2013). Of particular
interest, a series of recent studies have utilized deep learning
to differentiate progressive and stable MCI (Huang et al. 2019;
Li and Liu 2019) or predict individual subjects’ progression
from MCI to AD (Li et al. 2019) based on whole hippocampus
structural features. However, rather than being a homogeneous
structure, the hippocampus is complex and heterogeneous
(Duvernoy et al. 2013). The hippocampus is composed of several
histologically distinct subfields (Duvernoy et al. 2013), which
are characterized by differential connectivity profiles (Dalton
et al. 2019) and subserve different memory processes (Bartsch
et al. 2011). Thus, a better understanding of MCI progression
and stability necessitates a mechanistic framework that takes
the structural complexity of the hippocampus into account
(Maruszak and Thuret 2014). Whether the different hippocampal
subfields contribute differentially to the progression from MCI
to AD remains unclear, with mixed and inconsistent findings
reported in the literature. Namely, while several studies reported
that the CA1 and subiculum are the most central subfields
in the progression of MCI (Apostolova et al. 2006; Carlesimo
et al. 2015), other studies suggested that the CA2/3, fimbria,
and GC-DG were most central (Li et al. 2013; Khan et al.
2015).

In the current study, we investigated the contribution of
hippocampal subfields to the progression and stability of MCI.
To that end, we utilized a deep learning framework, and a large
neuroimaging dataset, to account for the expected complexity in
the contribution of the different subfields to the progression of
MCI. We propose a deep convolutional neural network trained to
classify stable and progressive MCI based on hippocampal struc-
tural features derived from magnetic resonance imaging (MRI).
We then introduce a novel implementation of occlusion anal-
ysis to evaluate the relative contribution of each hippocampal
subfield to the performance of the predictive model, thus esti-
mating their role in AD progression. Moreover, the same analysis
allowed us to estimate the cumulative contribution of subfields
to MCI stability and the possible existence of redundancy within
the associated hippocampal features.

Materials and Methods
Experimental Data

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The
ADNI was launched in 2003 as a public–private partnership, led

by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial MRI, other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early AD.
For up-to-date information, see www.adni-info.org. All subjects
provided written informed consent and the study protocol was
approved by the local Institutional Review Boards. The subjects
included in the study were diagnosed as cognitively normal (CN),
AD, and MCI. Inclusion criteria for CN subjects were as follows:
1) free of memory complaints. 2) Mini-Mental State Examination
(MMSE) scores between 24 and 30. 3) Clinical dementia rating
(CDR) score of 0. 4) Normal scores in the Logical Memory II sub-
scale of the Wechsler Memory Scale-Revised, using education-
adjusted cutoffs (Wechsler 1987). Inclusion criteria for AD were:
1) subjective memory concerns. 2) MMSE scores between 20
and 26. 3) CDR score of 0.5 or 1. and 4) abnormal scores in
the Logical Memory II subscale of the Wechsler Memory Scale-
Revised, using education-adjusted cutoffs. Finally, inclusion cri-
teria for MCI subjects were: 1) subjective memory concerns. 2)
MMSE scores between 24 and 30. 3). CDR score of 0.5. and 4)
abnormal scores in the Logical Memory II subscale of the Wech-
sler Memory Scale-Revised, using education-adjusted cutoffs.
We used baseline MRI data from 349 subjects from ADNI-2/GO
to train the deep learning model, with 10-fold cross validation
used to optimize the model’s performance. We validated the
model with an independent cohort of 427 subjects from ADNI-
1 (Supplementary Fig. 1). An additional sample of 381 subjects
with MCI at baseline, obtained from ADNI-2/GO, was used to
test the model. This dataset was labeled as either stable MCI
(sMCI) or progressive MCI (pMCI) based on longitudinal diag-
nostic evaluations obtained at least 18 months apart. Subjects
who were classified as pMCI were those who were diagnosed
with MCI at baseline and progressed to a diagnosis of probable
AD by the time of the follow-up visit (Supplementary Fig. 1).
Subjects in the sMCI group were those who were diagnosed
with MCI at baseline and maintained their MCI status at the
follow-up visit. We excluded 65 subjects who were diagnosed
with MCI at baseline but reverted to CN status during follow-
up. Based on these criteria, a total of 118 pMCI and 263 sMCI
subjects were included in this study. The demographic charac-
teristics of each cohort analyzed in this study are summarized
in Table 1.

Imaging Data

Input data for the deep learning model were acquired at ADNI
sites using 1.5T (ADNI-1) and 3T (ADNI-2/GO) scanners and
were based on either an inversion recovery-fast spoiled gradi-
ent recalled or a magnetization-prepared rapid gradient-echo
sequences (Jack et al. 2010). Full details of the image acquisition
parameters are listed on the ADNI website (http://adni.loni.usc.e
du/methods/documents/mri-protocols/).

Image Processing

All images were corrected for intensity nonuniformity artifacts
(Sled et al. 1998) and were registered into the MNI152 template
using FMRIB Software Library v6.0 (Jenkinson et al. 2002). Input
data from the left and right hippocampus were extracted from
the T1-weighted MRI images. We first defined a 3D bounding box
of size 44 × 52 × 52 voxels around the hippocampal region. The
bounding box’s size was sufficient in covering the hippocampal
region in all our target subjects, with its size corresponding to
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Table 1 Demographics

ADNI-1 ADNI-2 and GO

AD CN AD CN pMCI sMCI

N 197 230 159 190 118 263
Age 75.6±7.7 76.0±5.0 74.8±8.1 73.4±6.4 73.6±7.1 71.7±7.3
Gender (% female) 95 (48.2%) 112 (48.7%) 68 (42.8%) 100 (52.6%) 52 (44.1%) 112 (42.6%)
Education 14.7±3.1 16.0±2.8 15.8±2.7 16.5±2.6 16.0±2.7 16.2±2.7
MMSE 23.3±2.0 29.1±1.0 23.1±2.1 29.0±1.3 27.3±1.8 28.3±1.7

Notes: Continuous variables are presented as mean ±SD and categorical variable is presented as %. Abbreviations: AD = Alzheimer’s disease, CN=cognitively normal,
pMCI = progressive mild cognitive impairment, sMCI = stable mild cognitive impairment, N = number of subjects, MMSE = Mini-Mental State Examination.

that used in previous studies (Li and Liu 2019; Liu et al. 2020).
The voxel intensities within the bounding box were normalized
into a range between 0 and 1. Intensity values from each voxel
within the bounding box were then extracted and used as inputs
in the deep learning model described below.

Data Augmentation
To artificially increase the size of the model’s training dataset
and improve its performance and generalizability, we used an
image data augmentation technique with Scikit-learn 0.22.1
(Pedregosa et al. 2011). The augmented image data were gen-
erated through the addition of noise with mean 0 and stan-
dard deviation 1, contrast enhancement by effectively spread-
ing out the most frequent intensity values (stretching out the
intensity range) and flipping left and right. In total, 954 AD
images and 1140 CN images were generated from the original
dataset (AD: N = 159, CN: N = 190) through augmentation and
used in the training dataset to improve the performance of the
model.

Hippocampal subfield segmentation: Subfields in the hip-
pocampus were segmented with an automated segmentation
tool available in FreeSurfer v6.0 (Iglesias et al. 2015), which is
based on a new statistical atlas built primarily upon ultra–high-
resolution (∼0.1 mm isotropic) ex vivo MRI data. This approach
uses Bayesian inference that relied on image intensities and a
tetrahedral mesh-based probabilistic atlas of the hippocampal
formation, constructed from a library of in vivo data and ex
vivo–labeled data (Van Leemput et al. 2009; Iglesias et al. 2015).
This widely used method was validated with ADNI-based MCI
and AD data (Iglesias et al. 2015), with its test–retest relia-
bility established in both AD and CN subjects (Worker et al.
2018). It was used in large multicenter studies (Whelan et al.
2016) and was found as reliable across repeated scans (Quattrini
et al. 2020) and between scanners (Brown et al. 2020). Moreover,
hippocampal subfield segmentation has been widely applied
using 3T MRI data, for example in studies of schizophrenia
(Alnæs et al. 2019), psychotic symptoms (Mancini et al. 2020),
and visual episodic recollection (Norman et al. 2019) and in
genome-wide association studies (Hibar et al. 2017; van der
Meer et al. 2020). Thus, automated hippocampal subfield seg-
mentation from in vivo MRI at 3T is a reliable, validated, and
widely used approach. In the current study, the left and right
hippocampus were segmented into 12 subfields: CA1, CA2/3,
CA4, hippocampal–amygdala transition area (HATA), granule cell
layer of the dentate gyrus (GC-DG), fimbria, molecular layer, hip-
pocampal fissure, hippocampal tail, subiculum, parasubiculum,
and presubiculum.

Deep Learning Model Architecture

A deep learning model based on the DenseNet architecture
(Huang et al. 2017) was trained to learn relevant maps for clas-
sifying pMCI versus sMCI. This state-of-the-art convolutional
neural network architecture was chosen as it shows excellent
classification performance with a range of datasets while dimin-
ishing the vanishing gradient problem and reducing the number
of parameters (Huang et al. 2017). We used deep learning, rather
than traditional machine learning models, such as random for-
est, or support vector machine, primarily since similar models
have achieved the best performance in previous studies (Li et al.
2019; Li and Liu 2019; Liu et al. 2020), when based on complex fea-
tures directly extracted from the raw data (i.e., whole hippocam-
pal intensity values). Moreover, we assumed complex, possibly
nonlinear relationships between hippocampal subfields and the
progression from MCI to AD, further motivating the use of deep
learning.

The deep learning model (see Fig. 1C) comprised of two
streams for the left and right hippocampus. Each stream
consisted of a convolutional layer, four dense blocks, three
transition layers, and a global average pooling layer. The outputs
of the two streams were then concatenated as input to a fully
connected layer. First, the image was passed through a stack of
convolutional layers, where the filters were of size 5×5 × 5. The
convolution stride was fixed to one voxel. The max pooling layer
had a stride of size 2 × 2 × 2 and a kernel size of 2 × 2 × 2. The
dense block implements a dense connection from the lth layer
to all its subsequent layers:

xl = Hl
(
[x0, x1, · · · , xl−1]

)
(1)

where [x0, x1, · · · , xl−1] indicates the concatenation operation of
the feature maps produced in preceding layers, and Hl denotes a
composite function of four consecutive operations: batch nor-
malization layer, leaky rectified linear unit, 3 × 3 × 3 convolu-
tional layer, and dropout layer. The dense block consisted of
multiple convolution units, which were equipped with a 1×1 × 1
convolutional layer, a 3 × 3 × 3 convolutional layer, batch nor-
malization layer, leaky rectified linear unit, and a dropout layer.
Every convolutional unit was connected to all previous layers
by shortcut connections. A transition layer allowed for dimen-
sionality reduction of feature maps in between dense blocks. It
was composed of a batch normalization layer, leaky rectified
linear unit, a 1×1 × 1 convolutional layer, a 3×3 × 3 convolu-
tional layer, a dropout layer, and an averaging pooling layer.
The stacks of global averaging pooling layers were concatenated
and connected by a fully connected layer. The output value was
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Figure 1. Study design and methods. (A) Hypothetical models of MCI progression. In pMCI, gradual cognitive decline continues until individuals meet the diagnostic
criteria of AD. In sMCI, cognitive performance remains relatively stable over time. (B) Group allocation criteria. Cognitive evaluations at baseline and follow-up visits

were used to classify subjects in the pMCI and sMCI groups. (C) Illustration of proposed deep learning model. Abbreviations: AD = Alzheimer’s disease, MCI = mild
cognitive impairment, pMCI = progressive mild cognitive impairment, sMCI = stable mild cognitive impairment.

processed by the fully connected layer with a sigmoid activation
function.

Implementation

The deep learning model was built with the Keras application
programming interface in TensorFlow 2.0. Training and testing
of the model were carried out with an Ubuntu 18.04.3 operating
system and two Nvidia Tesla V100 graphic cards with 16GB
memory each. The model was parallelized across graphic cards.
We trained the model with a mini batch size of 64 and 200
epochs. The deep learning model was optimized using stochas-
tic gradient descent (Kingma and Ba 2014) with momentums and
an exponentially decaying learning rate. The initial learning rate
was 0.0001 and it was decayed by 0.9 after every 10 000 steps. We
added a dropout layer in the dense block and set the dropout rate
to 0.2. In the batch normalization, beta and gamma weight were

initialized with L2 regularization set at 1 × 10−4 and epsilon set
to 1.1 × 10−5. The L2 regularization penalty coefficient was set
at 0.01 for the fully connected layer. The deep learning model
was stable after an iteration of 150 epochs. During training, a
binary cross-entropy loss of predicted output value is calculated
as follows:

L(y) = − 1
N

∑N
i=1 yi · log

(
p

(
yi

)) + (
1 − yi

) · log
(
1 − p

(
yi

))
(2)

where y is the true label (1 for AD and 0 for CN), log(p(y)) is the log
predicted probability of the sample being AD class, log(1 − p(y))
is the log probability for the CN class, and N is the number of
samples in a batch. A focal loss function based on cross-entropy
loss for imbalanced data was also used, but it had no differential
effect on the performance of the model.
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Validation Framework

We evaluated the performance of the proposed deep learning
model both within the training dataset and using an inde-
pendent validation dataset. First, k-fold cross-validation with
k = 10 was applied during the training of the model, which
allowed for the optimization of hyperparameters in the training
set. The model that yielded the best performance was then
validated using an independent dataset from ADNI-1, in the
task of differentiating AD versus CN. Subsequently, the model
was applied to the main independent testing dataset (based
on ADNI-2/GO data), in the task of differentiating pMCI versus
sMCI (Supplementary Fig. 1). Thus, similar to previous studies
(e.g., Suk et al. 2014; Huang et al. 2019; Li et al. 2019), we
used a classification framework in which MCI progression
is predicted based on a model that trains to differentiate
AD versus CN data. This was based on the assumption that
structural features required to differentiate the pMCI and sMCI
groups are well within the distribution of features the model
learns from.

We additionally evaluated whether the class imbalance in the
testing dataset (Table 1) affected the performance of the model,
through a random permutation test. We extracted an equally
sized randomly selected set of subjects from each group/class,
repeating this procedure 10 000 times, while retesting the model
at each iteration. This procedure resulted in a distribution of
accuracy values for testing sets composed of balanced classes,
which were then compared with the accuracy obtained in the
original imbalanced testing set. The procedure was repeated for
two balanced sample sizes: n = 60 and n = 80.

We also tested whether the performance of the proposed
model differed from that of a purely random classifier, through
a random permutation test. We generated a null distribution of
accuracy, sensitivity, and specificity for the random classifier
by randomly assigning subjects to two different classes 10 000
times and retesting the model at each iteration. Differences
between the original performance of the model and the resulting
null distributions were then computed.

Model Comparison

The performance of the proposed deep learning model was com-
pared with that obtained in three common machine learning
models, available from the Scikit-learn library (0.23.2): support
vector machine (Platt 1999), random forest (Liaw and Wiener
2002), and logistic regression (Cox 1958). Similar to the train-
ing of the deep learning model, voxel intensities from a 3D
bounding box surrounding the entire hippocampal region were
used as features. The model was trained to first differentiate
AD and CN and was then tested on the task of differentiating
pMCI versus sMCI. In the classification experiment, support
vector machine was set up based on a soft margin with a linear
kernel. Logistic regression was initiated with a penalty set to
“L2” for regularization, and with other hyperparameters set at
default settings. Default settings were also used for random
forest classification.

Implementation of Occlusion Analysis

Occlusion analysis was used for investigating the contribution of
each hippocampal subfield to the performance of the prediction
model. Masks for each hippocampal subfield were generated

based on the subfield segmentation procedure described above
(see Image Processing). We then masked out each hippocampal
subfield (setting voxels of each hippocampal subfield to zero)
from the input data of the test phase and retested the trained
deep learning model. For any voxel j and corresponding inputs xj:

Occi =
{

0 if j ∈ subfield i,
xj otherwise

(3)

where Occi represents the occlusion of hippocampal subfield i.
If the value of j is an element of subfield i, the intensity of xj is
set to zero. We occluded left and right subfields simultaneously.
Each occluded hippocampal subfield was then ranked based on
the performance (accuracy) of the model, relative to the original
model, where input data from the entire hippocampus was used.

In a second implementation of occlusion analysis, we eval-
uated the performance of the prediction model under gradu-
ally accumulating occlusion of hippocampal subfields. This was
achieved by retesting the prediction model, each time masking
out an additional subfield (i.e., starting from one masked out
subfield, then two, etc.). Let revrank(i) denote the reverse ranking
of the i-th hippocampal subfield’s contribution to accuracy in
comparison to that of all other subfields (N = 12), as identified
in the initial occlusion analysis. Then, the i-th accumulating
occlusion is here defined as:

AOcci = ∑N
i=1 Occrevrank(i) (4)

where AOcci denotes the accumulating occlusion of hippocam-
pal subfields, which were masked out sequentially, in descend-
ing order i, according to their contribution to accuracy (as iden-
tified in the initial occlusion analysis). This step also allowed us
to evaluate the stability of the occlusion analysis, ensuring that
it did not result in abrupt changes in classification performance.
We additionally estimated the points in which the accumulated
occlusion analysis showed large changes in accuracy. First, the
results of the analysis (i.e., changes in accuracy observed in each
of its 12 steps) were fitted with a nonlinear log-sigmoid curve
(Ritz et al. 2015):

f
(
X,

(
b, c, d, e

)) = c + (
d − c

) {
1 − exp

{− exp
[
b

(
log(x) − log(e)

)]}}
(5)

where X is the set of estimated points. Note that b, c, d,
and e are used to indicate that model parameters have to be
estimated from the data points. The fitted curve was generated
using the drm function in the R drc package with a Weibull
distribution. We then sampled 1000 points from the fitted curve
to estimate the location of change points in the curve, using
the mcp function in the R mcp package (Lindeløv 2020). In this
procedure, which relied on default parameters, the location
of change points between regression models is inferred using
a Bayesian inference approach, with user-defined segments.
The predefined segments we considered were based on the
assumption of two change points in the curve. In this approach,
change points correspond to the points in the curve where the
data’s best predictive model changes from one model to another.

Lastly, we evaluated the potential confounding effect that
the size of the occluded subfields had on the accuracy of clas-
sification through random occlusion analysis. This post hoc
analysis focused on the four major subfields that showed the
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most prominent effects in the original occlusion analysis (pre-
subiculum, subiculum, CA1, and molecular layer). The average
size (volume) of each of these four subfields was first calcu-
lated. We then generated, for each subfield, random parcels
with identical size, but at random spatial locations based on
a region growing algorithm (Mary Synthuja Jain Preetha et al.
2012). A total of 1000 random parcels were generated for each
subfield. We then repeated the occlusion analysis 1000 times,
occluding the random parcels at each permutation. This allowed
us to generate a null distribution of accuracy values calcu-
lated based on the randomly placed masks. Differences between
the original accuracy values and the values obtained via ran-
dom occlusion were then assessed with a two-sided permuta-
tion test.

Results
To delineate the contribution of hippocampal subfields to MCI
progression, we analyzed neuroimaging data from the ADNI
database. Our analysis focused on individuals with MCI who
exhibit progressive deterioration in cognitive performance, eval-
uated at baseline and follow-up visits, in comparison to those
who remain stable over time (Fig. 1A). We thus considered base-
line neuroimaging data from two groups (Fig. 1B). First, subjects
in the sMCI group had a baseline diagnosis of MCI that was
retained at follow-up, with at least 18 months between diag-
noses. Secondly, subjects in the pMCI group were subjects who
over the course of a similar duration progressed from a diagnosis
of MCI to probable AD. To train our deep learning model (see
below), we additionally analyzed data from CN subjects along
with subjects with a diagnosis of AD. Two independent cohorts
were analyzed for the two latter groups (data from ADNI-1 and
ADNI-2/GO), used for the training and validation of the deep
learning model.

Participant Characteristics

The demographic characteristics of subjects in the AD, CN,
pMCI, and sMCI groups are shown in Table 1. Comparing the
pMCI and sMCI groups, there were significant differences
in age (t379 = 2.449, P = 0.015) and MMSE score (Wilcoxon
Rank-sum, Z = 4.938, P = 7.89×10−7). No significant difference
was observed for gender distribution (χ2 = 0.072, P = 0.787) or
education (t379 = 0.756, P = 0.450). In the comparisons between
the AD and CN groups, in both cohorts, there were significant
differences in education (ADNI-1: t425 = 4.483, P = 9.47×10−6;
ADNI-2/GO: t347 = 2.614, P = 0.009) and MMSE score (ADNI-1:
Z = 17.900, P = 1.19×10−71; ADNI-2/GO: Z = 15.953, P = 2.70 × 10−57).
Age differed marginally in the ADNI-2/GO (t347 = 1.901, P = 0.058)
cohort, but not in ADNI-1(t425 = 0.562, P = 0.575). Gender distribu-
tions were not significantly different in both cohorts (ADNI-1:
χ2 = 0.022 P = 0.882; ADNI-2/GO: χ2 = 3.374, P = 0.066).

A Deep Learning Model for Classifying Stable and
Progressive MCI

We next developed a deep learning model, based on the
DenseNet architecture (Huang et al. 2017) (Fig. 1C), for classifica-
tion of pMCI versus sMCI, as an initial step prior to delineating
the role of hippocampal subfields in MCI progression. As input
data, the model utilizes voxel intensity values from a 3D
bounding box surrounding the entire hippocampal region. As
in previous studies (Huang et al. 2019; Li et al. 2019), the model

was trained to first differentiate AD and CN (data source: ADNI-
2/GO), with the assumption that these two extreme classes
would allow the model to learn the necessary representations
for classifying MCI subjects as well. The model was then
tested on the task of differentiating pMCI versus sMCI (data
source: ADNI-2/GO). We also validated the model’s performance
by retesting it on the task of differentiating AD versus CN
(data source: ADNI-1). Data augmentation (see Materials and
Methods) was applied within the training dataset to improve
the performance of the model and its generalizability. We
used 10-fold cross-validation within the training dataset to
optimize and fine-tune the model’s performance, finding similar
performance across the different folds (Supplementary Fig. 2).
We fine-tuned the parameter of iteration number in the training
step, to obtain optimized performance. The model with the best
performance achieved maximal accuracy of 94.07% in one of
the folds, with an area under the curve (AUC) of the receiver
operating characteristic (ROC) of 0.993. The model was further
validated with AD and CN data from ADNI-1, achieving an
accuracy of 86.20%, with an AUC of 0.937 (Fig. 2A). Of note, data
from ADNI-1, which were acquired with 1.5T MRI scanners,
were only used for the validation of the deep learning model.
Thus, despite a decrease in accuracy, which may be expected
given that ADNI-1 is based on lower MRI field strength (1.5T,
relative to ADNI 2/GO’s 3T), the model was overall stable and
robust. This model was thus used next for differentiating the
pMCI and sMCI groups based on data from ADNI-2/GO. In this
task, the model achieved an accuracy of 75.85% and an AUC
of 0.777 (Fig. 2B), with a sensitivity of 0.66 and a specificity
of 0.8 (Fig. 2C). When retesting the model with equally sized
groups/classes in the testing dataset, there were no significant
differences relative to the original results (n = 60: P = 0.335,
n = 80: P = 0.345, Supplementary Fig. 3). This confirms that the
performance of the proposed model was not affected by the
class imbalance of the testing set. We additionally evaluated the
performance of the model relative to that of a random classifier
via a random permutation test, finding significant differences
between the two across all performance metrics (all P < 0.001,
Supplementary Fig. 4).

We also compared the performance of the deep learning
model with that obtained with standard machine learning
algorithms, including support vector machine, random forest,
and logistic regression. The deep learning model achieved
better classification performance than all other algorithms
(Supplementary Fig. 5). Additionally, repeating the analysis with
an age- and MMSE-matched test cohort had minimal effects on
the accuracy of the model (Supplementary Fig. 6).

Overall our proposed deep learning–based classification
framework corroborates earlier results, by demonstrating
comparable accuracy performance to those reported previously
for the classification of pMCI versus sMCI (Huang et al. 2019;
Li et al. 2019; Li and Liu 2019). It establishes that whole
hippocampus structural features can be used to differentiate
pMCI from sMCI.

Contribution of Hippocampal Subfields to MCI
Progression: Occlusion Analysis

We next sought to test if differentiation of pMCI from sMCI
can be achieved with data derived from single hippocampal
subfields, assessing the relative contribution of each subfield to
classification performance. Only data from ADNI-2/GO (all at 3T)
were used in this analysis. We first segmented the hippocampal
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Figure 2. The predictive performance of the proposed deep learning model. (A) ROC curve for the task of classifying AD versus CN. (B) ROC curve for the pMCI versus sMCI
task. (C) Confusion matrix, with results from the model showing the best performance, evaluating the sensitivity and specificity obtained in the task of classifying

pMCI versus sMCI. The matrix values were rescaled to the range of [0,1]. Abbreviations: AD = Alzheimer’s disease, CN = cognitively normal, pMCI = progressive mild
cognitive impairment, sMCI = stable mild cognitive impairment, ROC = receiver operating characteristic, AUC = area under the curve.

subfields in each of the subjects using a validated automated
method (Iglesias et al. 2015) (Fig. 3A). The contribution of each
subfield was then assessed using an adaptation of occlusion
analysis, a common approach in computer vision (e.g., Sadr et al.
2003). Briefly, in this analysis, we retested the deep learning
model, each time occluding a bilateral binary mask of each of
the hippocampal subfields from the model’s test data (i.e., from
the 3D bounding box). The occlusion of the subfields, which were
segmented separately for each individual subject, was achieved
by setting the intensity values of each hippocampal subfield to
zero in the input data. The performance (accuracy) of the models
was then ranked and compared with each other as well as to
the model based on an intact hippocampus (Fig. 3B). Accuracy
levels for each of the models differed considerably (Fig. 3C).
The occlusion of subfields led to a decrease in accuracy. In
particular, occlusion of the subiculum, CA1, presubiculum, and
molecular layer led to dramatic decreases in accuracy, relative
to other subfields, including CA2/3 and CA4 for example. Thus,
the presubiculum, subiculum, CA1, and the molecular layer had
the largest impact on the performance of the model (Fig. 3D).

We also assessed the effect of laterality on the accuracy
of classification by repeating the occlusion analysis with left
versus right hippocampal subfield masks tested separately. For
the most impacted subfields (subiculum, CA1, presubiculum,
and molecular layer), occlusion of the left hemisphere had a
more pronounced effect on accuracy relative to occlusion of the
right hemisphere (Supplementary Fig. 7).

The occlusion analysis revealed that many of the subfields
had little to no contribution to the performance of the model.
Namely, occlusion of CA2/3 and parasubiculum, for example,
resulted in an accuracy loss of less than 4%. This suggests
that in the classification of pMCI and sMCI some of the sub-
fields may be redundant. That is, these results may reflect
the existence of a certain degree of duplication or repetition
(i.e., redundancy; Tononi et al. 1999) in the hippocampus. We
evaluated this possibility by performing a sequential version of
the occlusion analysis, where occlusion is accumulated from
step to step (Fig. 4A), in descending order with respect to each
subfield’s contribution to the model’s performance (as reported
in Fig. 3C). The subfields were occluded in descending order,
under the assumption that the least central subfields could
be more redundant, contributing less to the differentiation of

between pMCI and sMCI. Accuracy was evaluated as a function
of the ratio of the total occluded volume to the volume of the
entire hippocampus.

In comparison to the model with no occlusion, the accuracy
started decreasing strongly when 10.5% of the volume of the
hippocampus was removed (with occlusion of the fimbria, para-
subiculum, and CA2/3), estimated by fitting the data with a log-
sigmoid function, and extracting the resulting curve’s change
points using a Bayesian inference approach (see Materials and
Methods; Supplementary Fig. 8). In other words, we found that
around 10.5% of the volume of the hippocampus was redundant
in classifying pMCI versus sMCI. Upon removal of more than
30.2% of the volume of the hippocampus, accuracy levels
started saturating (Supplementary Fig. 8). Finally, repeating
the occlusion analysis with age- and MMSE-matched data
had little effect on the results (Supplementary Fig. 9). Of note,
since the 3D bounding box surrounding the hippocampal
region, where model features were extracted from, contained
a small set of nonhippocampal voxels (from regions such as the
parahippocampal gyrus and entorhinal cortex), classification of
MCI progression with very low accuracy (∼30%) was evident
even when 100% of the volume of the hippocampus was
occluded.

The occlusion of the presubiculum, subiculum, CA1, and
molecular layer had the largest impact on the performance
of the model. These four subfields are among the largest in
the hippocampus, raising the possibility that their occlusion
resulted in large losses in accuracy merely because of their large
size. To test the possible confounding role of subfield size in
our proposed framework, we repeated the occlusion analysis,
with random occluded masks, which are of the same size as the
presubiculum, subiculum, CA1, and molecular layer (Fig. 5A). We
generated a null distribution for each of the four major subfields,
based on 1000 random permutations, each of which consisting
of random parcels, with the same size as the tested subfields
but at random spatial locations (Supplementary Fig. 10). The
occlusion of the random parcels resulted in markedly lower
loss of accuracy, relative to that observed in the original anal-
ysis (all P < 0.001, Fig. 5B). This suggests that the loss of accu-
racy observed when the presubiculum, subiculum, CA1, and
molecular layer were occluded was not merely a reflection of
their size.
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Figure 3. Occlusion analysis of hippocampal subfields. (A) Hippocampal subfield segmentation. The segmentation results of hippocampal subfields are illustrated
on a single representative subject. (B) Schematic framework of the occlusion analysis. In each model, one of the hippocampal subfields was occluded (masked out)

in the testing data and the performance of the model (its accuracy) was ranked relative to the occlusion of other subfields and to the performance of the original
intact model. (C) The results of the occlusion analysis are shown for each model, along with the results of the original intact model (D) Accuracy performance of
each model, superimposed on top of an illustration of the major hippocampal subfields (note: not all subfields are shown). Abbreviations: CA = cornu ammonis,
HATA = hippocampus–amygdala–transition area, GC-DG = granule cell layer of the dentate gyrus.

Discussion
Individuals with MCI show strongly variable symptomatic tra-
jectories, with some progressing eventually to a probable diag-
nosis of AD, while others showing a more stable pattern of
cognitive performance over time. In this paper, we propose a
novel framework for the analysis of the progression and stability
of MCI based on deep learning and occlusion analysis. First, we
introduced a deep convolutional neural network model based
on the DenseNet architecture (Huang et al. 2017) for classify-
ing pMCI versus sMCI. Second, we proposed a novel analytical
framework based on occlusion analysis to evaluate the con-
tribution of hippocampal subfields to the performance of the
proposed deep learning model, thus assessing the role of the dif-
ferent subfields in the stability and progression of MCI. Finally, as
a secondary step, we applied a gradually accumulating occlusion
analysis that allowed us to assess the degree of redundancy
in the hippocampal features in relation to the classification of
pMCI and sMCI.

As an initial step prior to the evaluation of the role of hip-
pocampal subfields, we trained a deep convolutional neural

network to classify the pMCI and sMCI groups based on all struc-
tural hippocampus features. This model achieved an accuracy of
75.85% (and an AUC of 0.777). This classification performance is
on par with earlier deep learning models developed to classify
pMCI versus sMCI based on whole hippocampus structural fea-
tures or multimodel features (e.g., Li et al. 2014; Suk et al. 2014),
which ranged from 72% to 76%. For example, a 3D-convolutional
neural network based on multimodal data, integrating struc-
tural MRI and positron emission tomography (PET), classified
pMCI versus sMCI with an accuracy of 72.22% (Huang et al.
2019), while another recently described hybrid convolutional
and recurrent neural network based on internal and external
hippocampal patches yielded classification accuracy of 72.50%
for the same task (Li and Liu 2019). Another recent study utilized
deep learning and hippocampal features predicting progression
time from MCI to AD with a concordance index of 0.762 (Li et al.
2019). Our model corroborates these earlier reports by demon-
strating that prediction of MCI stability and progression can be
achieved with good accuracy rates based solely on hippocampal
features.
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Figure 4. Accumulated occlusion analysis of hippocampal subfields. (A) An illustration of gradually accumulating occlusion. On each step, additional hippocampal vol-

ume is masked out of the analysis. (B) The model’s accuracy is shown as a function of accumulated occlusion, with subfields masked out in descending order according
to their contribution to the model’s accuracy (as shown in Fig. 3C). The accuracy started decreasing strongly (i.e., relative to the accuracy of the full model) upon removal
of 10.5% of the volume of the hippocampus, as identified with change-point analysis. Abbreviations: CA = cornu ammonis, HATA = hippocampus–amygdala–transition
area, GC-DG = granule cell layer of the dentate gyrus.

Figure 5. Random occlusion analysis for the major hippocampal subfields. (A) The potential confounding effect of subfield size was assessed by repeating the occlusion
analysis 1000 times, each time occluding random parcels, which are of the same size as the presubiculum, subiculum, CA1, and molecular layer but are placed at random
spatial locations. (B) The results of the random occlusion analysis are shown with reference to each of the four hippocampal subfields (the relative size of each mask

is indicated as % of total hippocampal volume). Dashed red lines denote the original accuracy loss observed (same as Fig. 3C). Error bars denote standard deviation.

Our findings extend earlier reports by delineating the con-
tribution of single hippocampal subfields to the progression
and stability of MCI. Our implementation of occlusion analysis
revealed marked differences between the subfields in differ-
entiating the pMCI and sMCI groups. In particular, the results
suggest that the subiculum, presubiculum, CA1, and molecular
layer were more central to this classification task than any other
subfield. While these are among the largest subfields in the hip-
pocampus, our results also demonstrate that their contribution

to MCI progression was not merely a reflection of their size. The
findings are consistent with earlier reports on the involvement
of CA1, the subiculum (Apostolova et al. 2006; Carlesimo et al.
2015), and the molecular layer (Scheff et al. 2006; Zhao et al. 2019)
in the progression of MCI. While several other studies implicated
CA2/3, fimbria, and GC-DG in MCI progression (Li et al. 2013;
Khan et al. 2015), our model suggests that these subfields play a
more minor role. Our findings may reflect the neuropathological
cascade characteristic of AD. Namely, neurofibrillary tangles in
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AD neurodegeneration progress from CA1 to the subiculum,
before reaching CA2/3 (Braak and Braak 1991). Neuronal loss
in CA1 and subiculum is prominent as AD neurodegeneration
progresses, while being milder and slower in the CA2/3 and
CA4 (Rössler et al. 2002). The results also reveal a more pro-
nounced contribution of subfields in the left hemisphere to the
performance of the model, consistent with earlier results (Shi
et al. 2009; Sarica et al. 2018). Altogether, although our findings
highlight the contribution of subiculum, presubiculum, CA1, and
molecular layer in the progression of MCI, further examination
into the possible involvement of other subfields is warranted.

As a secondary step to the occlusion analysis, which helped
us assess the contribution of single subfields to MCI progres-
sion and stability, we also evaluated how accumulated occlu-
sion of hippocampal features affected the results. This analysis
revealed that 10.5% of the volume of the hippocampus was
redundant in the differentiation between pMCI and sMCI. These
results may reflect the progressive nature of neurodegeneration
in AD, wherein the redundant subfields have yet to have been
affected, and thus do not yet differentiate among individuals
with stable and progressive disease trajectories. Another specu-
lative possibility, which remains to be tested in future research,
is that the redundancy reflects neuroprotective mechanisms
that allow individuals with MCI to compensate for the earlier
phases of neurodegeneration (Langella et al. 2021; Sadiq et al.
2021). In both biological and engineered systems, redundancy
refers to duplication or repetition of elements within the system
that ensure functionality in case of failure (Tononi et al. 1999).
Compensatory and reserve mechanisms have been widely pos-
tulated to operate in response to aging and neurodegeneration
(Cabeza et al. 2018; Montine et al. 2019), and the existence of
redundancy in brain networks may counter the earlier phases
of neurodegeneration and allow normal function to be retained
(Arkadir et al. 2014; Cole et al. 2018). Future research could test if
redundancy at the level of hippocampal structure is functionally
advantageous, offering patients with a coping mechanism for
early-phase neurodegeneration.

Several limitations should be noted. First, while our study
considered longitudinal clinical evaluations, we did not examine
longitudinal changes in imaging metrics. Our focus here was
on evaluations of prognostic markers of conversion from MCI
to AD. Future research could use similar methods to exam-
ine longitudinal imaging data. Second, we considered a single
imaging modality in our models (structural MRI). Studies have
consistently revealed the superiority of multimodal features in
diagnostic and prognostic models (e.g., Suk et al. 2014). Since
our focus here was on hippocampal subfields, integration of
data with lower spatial resolution like that obtained from PET
amyloid imaging would have been challenging. Yet, we acknowl-
edge that basing our models on a single modality may have
reduced its performance in the classification task. Third, the
occlusion analysis was performed by setting the intensities of
voxels to zero, a step that can potentially introduce noise in the
deep learning model in the regions surrounding the occluded
voxels. Alternative methods of occlusion should be developed
and tested in future work. Finally, it would be beneficial to
replicate the results with data obtained with higher-resolution
neuroimaging.

In conclusion, the current study delineates the contribution
of hippocampal subfields to the progression and stability of MCI,
highlighting the central role of the subiculum, presubiculum,
CA1, and molecular layer in differentiation between pMCI and
sMCI. The results further reveal that around 10.5% of the volume
of the hippocampus is redundant in the differentiation between

these two groups. These results highlight the need to consider
the intricate structure of the hippocampus in studies of AD
neurodegeneration.
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