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Circular RNA FAT atypical cadherin 1 (circFAT1)/microRNA-525-5p/spindle and 
kinetochore-associated complex subunit 1 (SKA1) axis regulates oxaliplatin 
resistance in breast cancer by activating the notch and Wnt signaling pathway
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ABSTRACT
Increasing evidence has confirmed the vital roles of circular RNAs (CircRNAs) in the drug resistance 
of breast cancer (BC). Herein, we intended to study the effect of circular RNA FAT atypical cadherin 
1 (circFAT1) on BC oxaliplatin (OX) resistance and find out the potential molecular mechanism in 
it. In this study, mRNA and protein levels of genes were measured by RT-qPCR and western 
blotting, respectively. Luciferase reporter assay confirmed the relationship between microRNA- 
525-5p (miR-525-5p) and circFAT1 or spindle and kinetochore-associated complex subunit 1 
(SKA1). CCK-8, transwell, and flow cytometry experiments were utilized to investigate the chemo-
sensitivity, migration, invasion, and apoptosis of BC cells. Gene Set Enrichment Analysis (GSEA) 
was applied to discover possible pathways related to SKA1. It was uncovered that circFAT1 was 
overexpressed in OX-resistant BC tissues and cells. Functional experiments showed that circFAT1 
depletion reduced the level of chemoresistance-related genes. Moreover, circFAT1 knockdown 
remarkably facilitated apoptosis and decreased OX (half-maximal inhibitory concentration) IC50 
value, migration, and invasion in OX-resistant BC cells. It was identified that miR-525-5p directly 
targeted circFAT1 and SKA1. Besides, rescue assays exhibited that circFAT1 promoted OX resis-
tance in BC cells via the miR-525-5p/SKA1 regulatory network. Furthermore, GSEA and western 
blotting identified that SKA1 activated the Notch and Wnt pathway in OX-resistant BC cells. In 
conclusion, our results demonstrated that circFAT1 conferred OX resistance in BC by regulating 
the miR-525-5p/SKA1 via the Notch and Wnt pathway, providing a potential therapeutic target for 
patients with OX-resistant BC.
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Background

As a major malignant neoplasm in females, breast 
cancer (BC) is a leading cause of mortality related 
to cancers for women worldwide [1,2]. In spite of 
great advances achieved in and extensive use of 
adjuvant chemotherapy for BC, almost 60% of 

the BC patients suffered from distant metastases, 
and the median survival time after definite diag-
nosis of metastases is approximately 2 years [3]. 
Platinum complexes, including cisplatin, carbopla-
tin, and oxaliplatin, are mainstream drugs for BC 
treatment [4]. As a third-generation platinum 

CONTACT Bobo Wu bobo_wu996@163.com Department of Ultrasonography, Changzhou No.2 People’s Hospital Affiliated to Nanjing Medical 
University, No.29 Xinglong Lane, Changzhou 213003, China

BIOENGINEERED
2021, VOL. 12, NO. 1, 4032–4043
https://doi.org/10.1080/21655979.2021.1951929

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-4652-7687
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21655979.2021.1951929&domain=pdf&date_stamp=2021-07-20


compound, oxaliplatin (OX) exerts its anti-tumor 
effect by disrupting DNA synthesis and is even 
effective in cells resistant to cisplatin and carbo-
platin [5]. Moreover, OX also showed its antic-
ancer function in BC chemotherapy [6]. Hence, 
to discover novel targets for treatment and 
improve the prognosis of BC patients, it is reason-
able to explore the underlying mechanism of OX 
resistance in BC.

Circular RNAs (circRNAs), a kind of closed- 
loop RNAs, are deeply involved in the regulation 
of gene expression [7]. Accumulated studies have 
identified the critical roles of circRNAs in a variety 
of human cancers, including BC. For instance, 
circACAP2 facilitates BC proliferation and metas-
tasis by regulating COL5A1 via miR-29a/b-3p [8]. 
Circ-HIPK3 accelerates colorectal cancer develop-
ment through interacting with miR-7 [9]. 
CircCDR1as promotes hepatocellular carcinoma 
tumorigenesis as a sponge for miR-1270 [10]. 
Chemoresistance is a critical barrier for che-
motherapeutics in BC. Multiple circRNAs have 
been evidenced as regulators in BC chemoresis-
tance at the molecular level. To cite an instance, 
hsa_circ_0006528 confers resistance to paclitaxel 
in BC Cells through upregulating CDK8 via miR- 
1299 [11]. Circ-UBE2D2 aggravates tamoxifen 
resistance in BC through interacting with miR- 
200a-3p [12]. Besides, circRNA RNF111 
induces BC resistance to paclitaxel via the miR- 
140-5p/E2F3 axis [13]. As disclosed by previous 
studies, circular RNA FAT atypical cadherin 1 
(circFAT1) plays an oncogenic role in human 
tumors, such as osteosarcoma [14], colorectal can-
cer [15], and hepatocellular carcinoma [16]. 
Moreover, circFAT1 has been reported to increase 
the resistance to cisplatin, a platinum drug, in 
colorectal cancer [17]. Therefore, it could be con-
cluded from the above findings that circFAT1 
might induce chemoresistance to platinum-based 
drugs during chemotherapy. However, the specific 
molecular function of circFAT1 in BC resistance 
to OX remains to be sequentially investigated.

In this study, we intended to investigate the role 
of circFAT1 in BC resistance to OX and its under-
lying mechanism. Our data demonstrated that 
circFAT1 enhanced BC resistance to OX via the 

miR-525-5p/SKA1 pathway, indicating an impor-
tant therapeutical target for BC.

Materials and methods

Clinical specimens

A total of 66 BC tissues were collected from 
patients who underwent surgical resection surgery 
at Changzhou No.2 People’s Hospital Affiliated to 
Nanjing Medical University. The clinicopathologic 
characteristics of the 66 patients enrolled in this 
study are presented in Table 1. The chemotherapy 
plan (OX administration) for patients was 85 to 
100 mg/m2 (2-hour intravenous infusion) every 
2 weeks for 6 consecutive weeks. Patients who 
had recurrent disease within 6 months of complet-
ing primary chemotherapy were classified as OX- 
resistant (n = 36). Patients with recurrence beyond 
6 months or without recurrence were classified as 
OX-sensitive (n = 30). The present study was 
approved by the Ethics Committee of Changzhou 
No.2 People’s Hospital Affiliated to Nanjing 
Medical University. All patients signed the 
informed consent forms.

Table 1. Clinicopathologic features of BC patients (n = 66).
Characteristics Patients

Age (years)
≤50 40
>50 26

Grade
I 6
II 55
III 5

Tumor Size (cm)
≤2 22
>2 44

Node status
Negative (0) 31
Positive (≥1) 35

Estrogen Receptor
Negative 28
Positive 38

Progesterone Receptor
Negative 33
Positive 33

HER 2
Negative 42
Positive 24

Triple-Negative Breast Cancer (TNBC)
Yes 16
No 50
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Cell culture

Human breast epithelial cells (MCF-10A) provided 
by BeNa Culture Collection (Beijing, China) were 
cultured in DMEM/F12 supplemented by 10% FBS 
at 37°C with 5% CO2. Human BC cell lines 
(BT474, MCF-7, and T47D) (BeNa Culture 
Collection, Beijing, China) were cultivated in 
DMEM with 10% FBS under the same conditions.

To establish OX-resistant BC cells (BT474/OX, 
MCF-7/OX, T47D/OX), BC cells (BT474, MCF-7, 
T47D) were continuously exposed to progressively 
increasing OX concentrations for 3 months. OX- 
resistant BC cells were cultured in DMEM med-
ium supplemented with 5 μmol/L OX and 10% 
FBS at 37°C with 5% CO2.

Cell transfection

Short hairpin RNA (shRNA) targeting circFAT1 
(sh-circFAT1: 5ʹ-GAGAAAGATTCCCGACAGTT 
A-3ʹ), SKA1 (sh-SKA1: 5ʹ-ACGGAGATGAG 
ATCATTGTAA-3ʹ) and negative control (sh-NC: 
5ʹ-ACGGUACCGUAGGCGAGCCAC-3ʹ), miR- 
525-5p inhibitor (5ʹ-GUAACGCUACGGG 
CGCAACGC-3ʹ), miR-525-5p mimics (5ʹ- 
AAGUCCAGGGGUCCCCGGCAA-3ʹ), and corre-
sponding negative controls (NC inhibitor: 5ʹ- 
ACCCCGGUAAAAGUCGGCCGG-3ʹ; NC mim 
ics: 5ʹ-UAAUGCCCGACGAACGGGCCG-3ʹ) were 
acquired from GenePharma (Shanghai, China). The 
transfection was performed using LipofectamineTM 

2000 (Thermo Fisher Scientific).

RT-qPCR assay

Total RNAs were extracted from tissue specimens 
and cells using Trizol reagent (Invitrogen, USA). 
Then, a Reverse Transcription kit (Takara) was 
used to generate cDNAs (for circFAT1 and 
SKA1) under the following conditions: 42°C for 
15 minutes followed by 3 cycles at 85°C for 5 sec-
onds. Regarding miR-525-5p, TaqMan MicroRNA 
Reverse Transcription kit (Thermo Fisher 
Scientific) was utilized to generate cDNA under 
certain reaction conditions: 50°C for 5 minutes 
and 80°C for 2 minutes. Thereafter, qPCR assay 
was conducted with SYBR Premix ExTaq II kit 
(Takara, Dalian, China) and ABI 7500 PRISM 

750 (Applied Biosystems) [18]. All the primers 
used are as follows: circFAT1 forward (F): 5ʹ- 
AACAGAAGAGAACTGGGGCG-3ʹ and reverse 
(R): 5ʹ-GATCAGGGTGCCAATGGTGA-3ʹ; SKA1 
F: 5ʹ-TGAGGTTGGAGTCTGTGTGTT-3ʹ and R: 
5ʹ-GATCTGACGAGGCCATCCTT-3ʹ; GAPDH F: 
5ʹ-TATTGTTGCCATCAATGACCC-3ʹ and R: 5ʹ- 
ACTCCACGACGTACTCAGC-3ʹ; miR-525-5p F: 
5ʹ-GTCGTATCCAGTGCGTGTCGTG-3ʹ and R: 
5ʹ-GCGAGCACAGAATTAATACGACTCAC-3ʹ; 
U6 F: 5ʹ-CTCGCTTCGGCAGCACA-3ʹ and R: 5ʹ- 
AACGCTTCACGAATTTGCGT-3ʹ.

Drug sensitivity assay

The sensitivity of BC cells to OX was measured 
using a CCK-8 assay kit (Dojindo Molecular 
Technologies, Inc.). In short, BT474/OX or MCF- 
7/OX cells (5 × 104 cells/well) were seeded into 96- 
well plates and exposed to OX in a concentration 
gradient from 0 to 20 μmol/L for 48 h. Then, the 
cells were cultured for another 2 hours after the 
10 μL CCK-8 reagent (Beyotime, China) was 
added to the plates. The absorbance was detected 
using a microplate reader (BioTek China) at 
450 nm.

Transwell

For invasion assay, BT474/OX or MCF-7/OX cells 
were seeded in the upper chamber with Matrigel- 
coated membrane (8 μm pore size) (BD 
Bioscience, USA). Serum-free medium was added 
in the upper chamber; for the lower chamber, 
medium with 10% FBS was supplemented. 
Subsequently, cells underneath the membrane 
were fixed with 75% methanol and stained with 
0.1% crystal violet 24 hours later. For migration 
assay, membrane without Matrigel was employed. 
Five random fields per chamber were selected to 
count the number of the migrated and invaded 
cells using a microscope (Olympus, Japan) [19].

Flow cytometry

Annexin V-PE Apoptosis Detection Kit (BD 
Pharmingen, USA) was used to assess the cell 
apoptosis according to the manufacturer’s protocol 
[20]. In brief, 1 × 106 BT474/OX or MCF-7/OX 
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cells were washed with PBS three times before 
resuspension with binding buffer. Then, 5 μl PE 
Annexin V and 5 μl 7-AAD were added to stain 
the cells on ice for 30 minutes. Thereafter, 400 μl 
binding buffer was added into each tube. The cells 
stained were measured by flow cytometry 
(FACSCalibur, Germany).

Luciferase reporter assay

Briefly, to build pGL3-circFAT1 (or pGL3-SKA1) 
wild type (WT)/mutant type (MUT) luciferase 
reporter vectors, the RNA sequence of circFAT1 
and SKA1 3�-UTR containing potential binding 
sites to miR-525-5p was inserted into pGL3 
(Promega, USA). Then, BT474/OX or MCF-7/OX 
cells (1 × 104) were put into 24-well plates, culti-
vated, and co-transfected with pGL3 WT/MUT 
vectors and miR-525-5p mimics/NC mimics, 
respectively. At last, Dual-Luciferase Reporter 
Assay System (Promega, USA) was utilized to 
detect the luciferase activity 48 hours after trans-
fection [21].

Western blotting

Extraction of total protein from BT474/OX or 
MCF-7/OX cells was conducted with RIPA buf-
fer (Sigma-Aldrich). Then, total protein quanti-
tation was performed by Bradford method. 
Then, protein samples were subjected to SDS- 
PAGE and transferred onto PVDF membranes 
(Roche, Switzerland). After blocked with 5% 
skim milk, the PVDF membranes were culti-
vated with primary antibodies against MRP1 
(1:1000; ab260038; Abcam), MDR1 (1:1000; 
#13,978; Cell signaling technology), LRP1 
(1:1000; ab92544; Abcam), Notch2 (1:1000; 
ab245325; Abcam), GSK-3β (1:1000; #12,456; 
Cell signaling technology), β-catenin (1:1000; 
ab68183; Abcam), or β-actin (1:1000; ab8227; 
Abcam) at 4°C overnight and incubated with 
secondary antibody for 2 hours at room tem-
perature. The protein bands were visualized 
with an enhanced chemiluminescent substrate 
kit (Millipore). The proteins were quantified 
using Quantity One software (Bio-Rad 
Laboratories, USA).

Statistical analysis

Data analyses were subjected to SPSS 21.0 software 
(IBM, NY, USA) and the data were displayed as 
mean ± SD. Comparisons between two groups 
were done by Student’s t-test, while one-way ana-
lysis of variance was employed for multiple-group 
comparisons. P < 0.05 was regarded with statistical 
significance.

Results

Here, we intended to investigate the role of 
circFAT1 in regulating chemoresistance of BC to 
OX. We performed a series of in vitro assays and 
found that circFAT1 promoted OX resistance 
in BC through activating the Notch and Wnt sig-
naling pathway via the miR-525-5p/SKA1 axis. 
Hence, our data for the first time investigated the 
biological function of circFAT1 in regulating che-
moresistance of BC to OX.

Upregulated circFAT1 is discovered in 
OX-resistant BC tissues and cells

To explore the expression of circFAT1 in OX- 
resistant BC, RT-qPCR was carried out to detect 
circFAT1 abundance in OX-resistant BC tissues 
and cells. It was shown that circFAT1 level was 
increased in OX-resistant BC tissues and cell lines 
(BT474/OX, MCF-7/OX, and T47D/OX), relative 
to OX-sensitive BC tissues and parental BC cell 
lines (BT474, MCF-7, and T47D) (Figure 1(a,b)). 
These results indicated that circFAT1 expression 
was upregulated in OX-resistant BC.

CircFAT1 knockdown decreases the resistance 
of BC cells to OX

Since upregulated circFAT1 level was discov-
ered in OX-resistant BC tissues and cells, we 
assumed a promoting role of circFAT1 in OX 
resistance in BC. Hence, cellular experiments 
were further conducted to detect the biological 
function of circFAT1 OX-resistant BC cells. 
RT-qPCR showed that circFAT1 expression 
level was significantly decreased in OX- 
resistant BC cells (BT474/OX and MCF-7/OX) 
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Figure 1. Upregulated circFAT1 is discovered in OX-resistant BC tissues and cells.
(A and B) RT-qPCR showed the circFAT1 expression in tissue samples and cells. **P < 0.01, *P < 0.05. 

Figure 2. CircFAT1 knockdown decreases resistance of BC cells to OX.
(A) RT-qPCR showed the circFAT1 expression levels in BT474/OX and MCF-7/OX cells transfected with sh-circFAT1. (B and C) CCK-8 
showed the OX IC50 value in BT474/OX and MCF-7/OX cells treated with increasing OX concentration. (D-G) RT-qPCR and western 
blotting showed the expression levels of chemoresistance-related genes (MDR1, MRP1, LRP1). *P < 0.05, **P < 0.01. 
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after circFAT1 knockdown (Figure 2a). The 
IC50 value for OX was decreased in BT474/OX 
and MCF-7/OX cells after circFAT1 inhibition, 
relative to the control group (Figure 2(a,c)). 
Furthermore, circFAT1 depletion downregu-
lated the mRNA and protein levels of chemore-
sistance-related genes (MRP1, MDR1, and 
LRP1) in BT474/OX and MCF-7/OX cells 
(Figure 2(d,g)). In conclusion, it was demon-
strated that circFAT1 silencing suppressed the 
resistance of BC cells to OX in vitro.

CircFAT1 inhibition promotes apoptosis and 
repressed metastatic capabilities of 
OX-resistant BC cells

To further investigate the effects of circFAT1 on OX- 
resistant BC cell migration, invasion, and apoptosis, 
loss-of-function assays were carried out. Flow cyto-
metry disclosed that circFAT1 silencing significantly 
accelerated the apoptosis of BT474/OX and MCF-7/ 
OX cells (Figure 3(a,b)). Moreover, circFAT1 repres-
sion reduced the number of migrated and invaded 
cells, as indicated by Transwell assays (Figure 3(a,d)). 
In general, the results demonstrated that circFAT1 

knockdown promoted cell apoptosis and suppressed 
cell migration and invasion in OX-resistant BC.

CircFAT1 directly targets miR-525-5p to enhance 
metastasis and attenuate apoptosis in 
OX-resistant BC cells

Next, miR-525-5p was predicted as a possible target 
of circFAT1 through StarBase website (http://star 
base.sysu.edu.cn/) (Figure 4a). Luciferase reporter 
assay revealed that miR-525-5p overexpression led 
to a significant reduction in luciferase activity of 
circFAT1-WT rather than circFAT1-MUT in 
BT474/OX and MCF-7/OX cells (Figure 4b). RT- 
qPCR revealed that miR-525-5p level was downre-
gulated in BT474/OX and MCF-7/OX cells, relative 
to their parental cells (Figure 4c). Furthermore, 
BT474/OX and MCF-7/OX cells exhibited an 
increase in miR-525-5p abundance after circFAT1 
blocking (Figure 4d). According to Pearson’s corre-
lation analysis, there was a negative correlation 
between circFAT1 and miR-525-5p expressions in 
OX-resistant BC tissues (Figure 4e). Furthermore, it 
was revealed that circFAT1 knockdown promoted 
OX-resistant BC cell apoptosis and impaired OX- 

Figure 3. CircFAT1 inhibition promotes apoptosis and repressed metastatic capabilities of OX-resistant BC cells.
(A and B) Flow cytometry showed that the apoptotic ratio of BT474/OX and MCF-7/OX cells transfected with sh-circFAT1 and sh-NC. 
(C, D) Transwell assay showed the migrated and invaded cells in OX-resistant BC cells transfected with sh-circFAT1 and sh-NC. 
*P < 0.05, **P < 0.01. 
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resistant BC cell metastasis, which was reversed by 
miR-525-5p downregulation (figure 4(f,h)). 
Therefore, the data suggested that circFAT1 nega-
tively modulated miR-525-5p to confer OX resis-
tance in OX-resistant BC cells.

CircFAT1 accelerates metastasis and reduces 
apoptosis in OX-resistant BC cells via miR-525- 
5p/SKA1 axis
StarBase website predicted SKA1 as a downstream 
target for miR-525-5p (Figure 5a). According to 

the analysis performed with TCGA database, 
SKA1 exhibited an increased expression in breast 
invasive carcinoma (BRCA) tissues (Figure 5b). 
Thereafter, luciferase reporter assay confirmed 
that SKA1 was directly targeted by miR-525-5p 
in BC cells (Figure 5(c,d). Rescue experiments 
demonstrated that miR-525-5p inhibition 
restrained apoptosis but exacerbated metastatic 
capabilities of OX-resistant BC cells; however, 
such phenomena were abrogated by SKA1 block-
ing (Figure 5(e,g)). It was also revealed by RT- 
qPCR that circFAT1 inhibition decreased SKA1 

Figure 4. CircFAT1 directly targets miR-525-5p to enhance metastasis and attenuate apoptosis in OX-resistant BC cells.
(A) StarBase predicted the binding sites between miR-525-5p and circFAT1. (B) Luciferase reporter assay showed the luciferase 
activity within miR-525-5p and circFAT1. (C) RT-qPCR showed the miR-525-5p expression in BT474/OX and MCF-7/OX cells compared 
with parental cells. (D) RT-qPCR showed the miR-525-5p expression in BT474/OX and MCF-7/OX cells transfected with sh-circFAT1. (E) 
Pearson’s correlation showed the negative correlation between circFAT1 and miR-525-5p in OX-resistant BC samples. (F-H) Flow 
cytometry and Transwell assays showed the apoptotic and metastatic situation of BT474/OX and MCF-7/OX cells transfected with sh- 
NC, sh-circFAT1, or sh-circFAT1+ miR-525-5p inhibitor. *P < 0.05, **P < 0.01. 
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abundance, while miR-525-5p knockdown mark-
edly increased SKA1 level (Figure 5 H and I). 
Besides, SKA1 expression was inversely correlated 
to miR-525-5p level in OX-resistant BC tissues as 
shown by Pearson’s correlation analysis 
(Figure 5j). To sum up, circFAT1 positively modu-
lated SKA1 level via miR-525-5p to aggravate OX 
resistance in OX-resistant BC cells, suggesting the 
circFAT1/miR-525-5p/SKA1 regulating network.

SKA1 knockdown hinders Notch and Wnt 
signaling in BC cells resistant to OX
SKA1 has been proven to accelerate tumorigen-
esis through the activation of several signaling 
pathways [22]. Herein, Gene Set Enrichment 
Analysis (GSEA) indicated that Notch and Wnt 
signaling pathways were both positively associated 
with SKA1 expression in BC (Figure 6a). To 
further validate the GSEA results, protein 

Figure 5. CircFAT1 accelerates metastasis and reduces apoptosis in OX-resistant BC cells via miR-525-5p/SKA1 axis.
(A) StarBase website predicted the binding sites between miR-525-5p and SKA1. (B) SKA1 in breast invasive carcinoma (BRCA) 
tissues, compared with normal tissues according to TCGA database. (C and D) Luciferase reporter assay showed the luciferase activity 
within miR-525-5p and SKA1. (E-G) Flow cytometry and Transwell assays showed the apoptotic and metastatic situation of BT474/OX 
and MCF-7/OX cells transfected with NC inhibitor, miR-525-5p inhibitor, or miR-525-5p inhibitor+sh-SKA1. (H and I) RT-qPCR showed 
the SKA1 expression in BT474/OX and MCF-7/OX cells transfected with si-circFAT1 and/or miR-525-5p inhibitor. (J) Pearson’s 
correlation showed the negative correlation between SKA1 and miR-525-5p in OX-resistant BC samples. *P < 0.05, **P < 0.01. 
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expressions of Notch2, GSK-3β, and β-catenin 
were detected in BT474/OX cells by western blot-
ting. It was shown that SKA1 silencing sup-
pressed Notch2, GSK-3β, and β-catenin 
expressions in BT474/OX cells, indicating SKA1 
might activate the Notch and/or Wnt signaling 
pathways (Figure 6(b,c)).

Discussion

Conventional treatments have no curative impact 
on advanced breast cancer; moreover, treatment of 
advanced breast cancer is complex and even con-
troversial since there are still no universally 
accepted therapies [23]. Oxaliplatin is a third- 
generation platinum analog, which has been 

widely used in clinical treatment for breast cancer 
treatment [4]. Besides, unlike other platinum com-
pounds such as cisplatin and carboplatin, oxalipla-
tin is of no nephrotoxicity and minimal 
myelosuppression [3]. As drug resistance has 
been regarded as a major problem for BC 
oncotherapy in clinical practice [24], it is impor-
tant to explore the underlying molecular mechan-
ism of OX resistance in BC. In the current study, 
we explored the role of circFAT1 in resistance 
of BC cells to OX in vitro and discovered its 
molecular mechanism in regulating OX resistance 
in BC.

As reported in previous studies, circFAT1 has 
been investigated in several human cancer types 
for its diagnostic and prognostic values. To cite 

Figure 6. SKA1 knockdown hinders notch and Wnt signaling in BC cells resistant to OX.
(A) GSEA showed the enrichment plots of gene expression signatures for the Notch/Wnt signaling according to SKA1 expression. (B 
and C) Western blotting was used to detect the protein expression levels of Notch2, GSK-3β, and β-catenin in BT474/OX cells. 
**P < 0.01. 
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an instance, Wang et al. reported that circFAT1 
regulated EZH2 level as a sponge for miR-600, 
thus accelerating colorectal cancer progression 
[25]. Additionally, it was demonstrated by Wei 
et al. that circFAT1 facilitated the development 
of hepatocellular carcinoma via the miR-30a-5p/ 
REEP3 axis [16]. Furthermore, Liu et al. uncov-
ered that circFAT1 promoted osteosarcoma cell 
proliferation and metastasis via the miR-375/ 
YAP1 axis [14]. Our results revealed that 
circFAT1 level was increased in OX-resistant 
BC tissues and cells, and circFAT1 blocking led 
to a decline in chemoresistance-related genes, 
including MRP1, MDR1, and LRP1, in OX- 
resistant BC cells. Further functional experi-
ments exhibited that circFAT1 knockdown 
manifestly reduced IC50, promoted apoptosis 
and reduced metastasis in OX-resistant BC 
cells. To sum up, it was strongly demonstrated 
that circFAT1 aggravated the resistance of BC 
cells to OX.

Accumulating evidence has demonstrated the 
critical role of circRNA/miRNA/mRNA regulatory 
network in regulating chemoresistance in BC [26– 
28]. To investigate the downstream mechanism of 
circFAT1 in OX-resistant BC cells, the target genes 
of circFAT1 were screened. Through bioinfor-
matics analysis and dual-luciferase assay, miR- 
525-5p was predicted and verified to target 
circFAT1 and SKA1. MiR-525-5p has been con-
firmed as an anti-tumor gene in various malignant 
tumors, such as cervical cancer [29], ovarian can-
cer [30], and bladder cancer [31]. SKA1 has been 
reported to act as an oncogenic role in various 
human cancers, including bladder cancer [32], 
hepatocellular carcinoma [33], and esophageal 
squamous cell carcinoma [34]. Additionally, it 
was also demonstrated that SKA1 expedites cispla-
tin resistance in non-small cell lung cancer, indi-
cating its promoting role in the development of 
chemoresistance [35]. In our study, functional 
assays revealed that circFAT1 enhanced chemore-
sistance of BC cells to OX via miR-525-5p/SKA1 
axis.

Multiple studies have proven the important reg-
ulatory functions of Notch and Wnt pathways in BC 
progression. To cite an instance, Chen et al. revealed 
the promoting role of Wnt signaling in cell prolif-
eration and migration abilities in BC [36]. Xia et al. 

discovered that Notch signaling promoted BC 
tumor growth and metastasis [37]. In addition, 
Yan et al. demonstrated that HIF-2alpha increased 
chemoresistance in BC cells by activating Wnt and 
Notch pathways [38]. Herein, a positive relation 
between SKA1 expression and the Notch and Wnt 
signaling pathways was identified by GSEA. It was 
further confirmed by western blotting that SKA1 
blocking suppressed Notch2, GSK-3β, and β- 
catenin levels, indicating the inactivation of the 
Notch and Wnt signaling pathway. Hence, we 
demonstrated that SKA1 might mediate OX resis-
tance in BC via the Notch and Wnt pathways.

Conclusions

Our results illustrated the crucial role of circFAT1 
on OX-resistant BC cells, that is, circFAT1/miR- 
525-5p/SKA1 axis enhanced OX resistance in BC 
via the activation of Notch and Wnt pathway. 
However, in vivo experiments are required to 
further validate these findings in follow-up studies.
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