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Neutrophils correlate with hypoxia microenvironment and promote progression 
of non-small-cell lung cancer
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ABSTRACT
Hypoxia, a strong and selective pressure, has been involved in invasion, metastasis, and angio
genesis of tumor cells. Our study performed the transcriptome profiles of 666 non-small-cell lung 
cancer (NSCLC) patients. Various bioinformatic approaches were combined to evaluate the 
immune cell infiltration in the high hypoxia risk patients. In addition, in vitro experiments were 
performed to assess the effects of tumor-associated neutrophils (TANs) on NSCLC cells prolifera
tion, migration and invasion and to reveal the underlying mechanisms. We divided NSCLC into 
two groups (Cluster1/2) based on the expression profiles of hypoxia-associated genes. Compared 
with the Cluster1 subgroup, the Cluster2 had a worse prognosis. Significant enrichment analysis 
revealed that PI3K/AKT/mTOR signaling pathway and TANs were highly related to hypoxia micro
environment. Eleven hypoxia-related genes (FBP1, NDST2, ADM, LDHA, DDIT4, EXT1, BCAN, 
IGFBP1, PDGFB, AKAP12, and CDKN3) were scored by LASSO COX regression to yield risk scores, 
and we revealed a significant difference in overall survival (OS) between the low- and high-risk 
groups. Mechanistically, CXCL6 in hypoxic cancer cells promoted the migration of TANs in vitro, 
and in turn promote NSCLC cells proliferation, migration and invasion. In summary, this study 
revealed a 11-hypoxia gene signature that predicted OS of NSCLC patients, and improved our 
understanding of the role of TANs in hypoxia microenvironment.
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Introduction

Lung cancer is the leading cause of cancer death 
worldwide. Non-small cell lung cancer (NSCLC) 
comprises up to 80% of all lung cancer cases and 
has a poor prognosis [1]. Compared to the steadily 
increasing survival rates for most cancers, the sur
vival rates for NSCLC are still unsatisfactory, 
mostly caused by resistance to anticancer treat
ment and metastasis [2]. Therefore, it is crucial 
to discover neo-markers to deliver greater prog
nostic value and understand the mechanisms of 
progression for NSCLC.

It has been demonstrated that tumor microen
vironment (TME) plays a critical role in support
ing the progression of NSCLC. The TME in 
NSCLC is composed of multiple components, 
including inflammatory cell infiltration, blood ves
sels, soluble factors, and hypoxic condition [3]. 
The hypoxic zone in solid tumors is invaded by 
a great many of immune-suppressant cells, such as 

tumor-associated neutrophils (TANs), myeloid 
derived suppressor cells (MDSCs), T-regulatory 
(Treg) cells and tumor-associated macrophages 
(TAMs) [4]. Emerging evidence suggests a strong 
link between the hypoxic TME and infiltrating 
immune cells. In hypoxic TME, lung cancer- 
derived exosomes reprogramed macrophages, 
which in turn promoted metastasis of lung cancer 
[5]. Hypoxia selectively upregulates PD-L1 on 
MDSCs via HIF-1α and blockade of PD-L1 abro
gates MDSCs function [6]. As an important ele
ment of TME in NSCLC, TANs play crucial roles 
in supporting tumor growth. A pan-cancer study 
including NSCLC showed that TANs infiltration 
in the TME is a leading predictor of poor outcome 
[7]. Similarly, in NSCLC, a high ratio of neutro
phils to lymphocytes is linked to a poor outcome 
[8]. However, the mechanisms involved in the 
association between TANs and hypoxic TME in 
the progression of cancer are still to a great extent 
unknown.

CONTACT Fang Sun xcancerres@126.com Respiratory and Critical Care Ward 1, Henan Provincial Chest Hospital, Zhengzhou, China
Supplemental data for this article can be accessed here.

BIOENGINEERED
2021, VOL. 12, NO. 1, 8872–8884
https://doi.org/10.1080/21655979.2021.1987820

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-3517-7183
http://orcid.org/0000-0002-4645-0061
https://doi.org/10.1080/21655979.2021.1987820
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21655979.2021.1987820&domain=pdf&date_stamp=2021-10-22


Hypoxia is a complex process that involves sev
eral hundred molecules [9]. Thus, models that 
integrate several hypoxia-related genes can 
improve the accuracy of prognostic predictions 
compared to a single gene. However, some of 
these characteristics were often uncertain and 
resulted from an unspecified genetic background. 
This study aimed to exploit machine learning 
methods to construct a robust prognostic gene 
panel. Based on the increased infiltration of 
TANs in high hypoxia risk tumors, we also inves
tigated the specific mechanisms by which NSCLC 
cells recruit TANs under hypoxic conditions.

Materials and methods

Acquisition of lung cancer datasets

The set of sequence-based mRNA expression data 
(RNA-seq data) of NSCLC was downloaded from 
The Cancer Genome Atlas (TCGA) (https://cancer 
genome.nih.gov/). Another three gene expression 
arrays of human NSCLC datasets (GSE50081, 
GSE30219, and GSE37745) were downloaded 
from the Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo). Moreover, 
clinicopathological information and survival data 
from four cohorts (TCGA, GSE50081, GSE30219, 
and GSE37745) were also obtained for further 
prognostic analysis.

Identification of hypoxia status and assessing the 
immune infiltrates

To explore the function of hypoxia related genes in 
NSCLC, R package ‘ConsensusClusterPlus’ was 
applied to classified NSCLC patients into various 
clusters.

Infiltration levels of the abundances of immune 
cells in NSCLC were evaluated by CIBERSORT 
[10]. To avoid calculation errors, an immune infil
tration estimation was performed using the ‘xCell’ 
R package [11].

Gene set variation analysis (GSVA)

The actin pathway, MYC targets V1, IL-6/JAK2/ 
STAT3 pathway, PI3K/Akt/MTOR signaling, 
hypoxia, epithelial-mesenchymal transition (EMT), 

and angiogenesis gene set files obtained from the 
‘Molecular Signatures Database’ were utilized for 
GSVA using ‘GSVA’ packages for R [12].

Establishment of prognostic model, receiver 
operating characteristic (ROC) curve and 
nomogram

A univariate Cox regression analysis was firstly 
performed on all of candidate genes to calculate 
the relationship between the expression of each 
gene and OS. The selected key genes were then 
further confirmed by the Lasso regression. The 
prognosis risk score was established, and a risk 
score based on the normalized expression data 
was generated. Patients were then divided into 
high- and low- risk groups according to the med
ian cutoff of the prognosis risk score. The prog
nostic performance was evaluated by using time- 
dependent ROC curve analysis to estimate the 
predictive sensitivity and accuracy of our model. 
Using the survival and the rms package for R, age, 
gender, risk score, and stage were used to build 
a nomogram.

Cell lines, cell culture and hypoxic exposure

The NSCLC cells (H-1299 and A549) were 
acquired from the ATCC. For normoxia experi
ments, the cells were cultured at 37°C and 5% 
CO2. For hypoxia experiments, the cells were cul
tured in a hypoxic chamber under hypoxic condi
tions (1% O2).

Neutrophils from peripheral blood

Briefly, blood was obtained from NSCLC patients 
and erythrocytes were excised using the dextran 
sedimentation method. Using density centrifuga
tion, neutrophils were clarified and re-suspended 
in RPMI 1640 containing 2% fetal bovine serum.

Neutrophil from NSCLC tissues

Briefly, fresh NSCLC tissues were sliced into small 
pieces and digested in RPMI-1640 supplemented 
at 37°C for 30 min with 0.002% DNase I and 0.05% 
collagenase IV. The leukocytes were harvested and 
CD66b+ neutrophils were isolated using the 
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EasySep PE Selection Kit (Stemcell Technologies) 
according to the manufacturer’s instructions.

Cell proliferation and wound healing assay

To detect proliferation, 500 cells were plated on 
6-well plates and maintained for 2 weeks. A 4% 
paraformaldehyde assay were used to stained with 
crystal violet.

Cells were loaded into 6-well plates for 48 h, 
and a wound was swabbed with a pipette tip. After 
incubation with serum-free medium for 48 h at 
37°C, at the wound front migrating cells were 
pictured. The wound area was calculated with 
Image J software.

Assessment of mRNA expression

Total RNA from NSCLC cells was extracted accord
ing to the manufacturer’s instructions by the Trizol 
Reagent. Subsequently, complementary DNA 
(cDNA) was obtained via reverse transcription for 
RT-PCR according to the SYBR-Green PCR Mix.

Primers sequences used in our study were as 
follows:

CXCL1 forward 5′- 
CCCAAGAACATCCAAAGTGTG-3′,

reverse 5′- 
CATTCTTGAGTGTGGCTATGAC-3′;

CXCL2 forward 5′- 
CTCAAGAACATCCAAAGTGTG-3′,

reverse 5′-ATTCTTGAGTGTGGCTATGAC-3′;
CXCL5 forward 5′- 

GGAAGGAAATTTGTCTTGATCC-3′,
reverse 5′-TTTCCTTGTTTCCACCGTC-3′;
CXCL6 forward 5′- 

CGTTACGCTGAGAGTAAACC-3′,
reverse 5′-GTTCTTCAGGGAGGCTACC-3′;
CXCL8 forward 5′- 

ACTCCAAACCTTTCCACCC-3′,
reverse 5′-CAATAATTTCTGTGTTGGCGC-3′;
CCL3 forward 5′- 

CGGTGTCATCTTCCTAACC-3′,
reverse 5′-TCGCTGACATATTTCTGGAC-3′.

Plasmid constructs and transfections

For plasmid transfections, NSCLC cells were 
transfected with vectors of CXCR6-siRNA with 

the following target sequences: 5ʹ- 
ACGGATGTGTTCCTGGTGA −3ʹ or negative 
control RNA according to the manufacturer’s 
instructions using Lipofectamine 2000 (Roche, 
USA). Briefly, prior to treatment, Lipofectamine 
2000/siRNA complexes were produced in 
reduced serum medium, OptiMEM (Invitrogen) 
at the recommended ratio of 20 pmol siRNA per 
1ul Lipofectamine 2000. NSCLC cells were then 
treated with Lipofectamine 2000/siRNA com
plexes for 6 h before being replaced with RPMI 
1640 containing 10% fetal bovine serum. NSCLC 
cells were also treated with Lipofectamine 2000/ 
NC siRNA complexes as above descried.

Enzyme-linked immunosorbent assay (ELISA)

According to the manufacturer’s instructions, the 
level of CXCL6 was measured using the Human 
CXCL6 ELISA Kit (Abnova). A curve of absor
bance versus the concentration of CXCL6 in the 
standard wells was generated.

Neutrophil chemotaxis assay

Neutrophil chemotaxis was assayed in a 3 μm 
Transwell system. Briefly, hypoxia or normoxia 
conditioned medium (CM) from NSCLC cells, 
CXCL6 in RPMI 1640 containing 2% FBS 
(Gibco) or hypoxia CM with CXCL6 neutralizing 
antibody was added to the lower wells. 
Neutrophils migrating into the lower chamber 
were gathered and numbered in the chambers.

Transwell invasion assay

According to the manufacturer’s instructions, cells 
were placed in Boyden chambers coated with 
Matrigel diluted 1:8 with DMEM (Gibco) on the 
submembrane surface. After 48 hours, the afore
mentioned cells were immobilized in 4% parafor
maldehyde and dyed with 0.5% crystal violet, and 
were evaluated under microscope by counting cells 
in five different areas per each condition.

Statistical analysis

Intergroup comparisons were performed by one- 
way ANOVA or Student ‘s test. OS of the patients 
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was determined by the Kaplan–Meier analysis and 
compared by the log-rank tests. The Cox propor
tional hazards regression model was used for uni
variate and multivariate survival analyses. LASSO 
analyses were applied to reduce the complexity of 
the model and select the significant hypoxia- 
related genes to construct the prognostic model. 
A value of P < 0.05 was regarded as statistically 
significant.

Results

Lung cancer patient characteristics and 
hypoxia-related gene identification

Three GEO databases with available OS data and 
clinical information (GSE50081, GSE30219, and 
GSE37745) were enrolled into one meta-cohort 
contained 666 lung cancer patients (Table S1). To 
classify the hypoxia status of lung cancer samples, 
we focused on 205 hypoxia-related genes that were 
obtained from previous research and Gene Set 
Enrichment Analysis (hallmark-hypoxia).

Then, we applied unsupervised clustering 
methods to classify 666 tumor patients into dif
ferent molecular subgroups through 205 hypoxia 
related genes. Two distant subgroups, referred 
to as Cluster 1 and Cluster 2, were finalized 
(Figure 1a and 1B). The Kaplan-Meier curves 
showed significant differences in OS between 
the two clusters by log-rank test (Figure 1c). 
We further selected the GSE39582 datasets, 
which presents the most complete patient infor
mation, featuring the clinical discrepancies 
between these subgroups. Pathways involved in 
epithelial-mesenchymal transition (EMT), IL-6/ 
JAK2/STAT3, PI3K/Akt/MTOR, Hypoxia, MYC 
targets V1 and Angiogenesis were activated in 
Cluster 2 (worse survival), whereas Cluster 1 
(favorable survival), revealed enrichment of 
pathways correlated to tumor progression, 
including EMT, hypoxia, and angiogenesis 
(Figure. S1A). Further survival analysis showed 
that two gene sets (Hypoxia and PI3K/Akt/ 
MTOR signaling) were associated worse survival 
(Figure 1d).

The immune cell infiltration between high and 
low hypoxia risk NSCLC patients

Growing evidence shown that the hypoxic micro
environment may protect tumors from anti-tumor 
immune responses by promoting immune escape 
and suppressing anti-tumor immune cells. Using 
the CIBERSORT method, we assessed differences 
of 22 immune cell infiltration between Cluster 1 
and Cluster 2 patients. Figure 2a and S2A sum
marizes the results obtained from 666 lung cancer 
patients in GEO databases. The proportion of 
immunosuppressive cells was significantly higher 
in Cluster 2 with high hypoxia risk (e.g., macro
phages M2 and neutrophils), and NK cells resting 
(Figures 2B). Although Tregs cells did not differ 
between high and low hypoxic risk tumors, inacti
vated NK cells and immunosuppressive cells may 
drive the immunosuppressive microenvironment. 
Transcriptome file of three GEO databases was 
applied on the ESTIMATE method to estimate 
the infiltration of different immune cells. Cluster 
2 with high hypoxia risk was significantly enriched 
in immunosuppressive immune cells, such as 
macrophages M2 and neutrophils as mentioned 
above (Figure 2c). We determined if any of the 
above immune cells with differential expression 
correlated with patient survival. This analysis 
showed that only neutrophils were associated 
with worse survival (Figure 2d). Therefore, target
ing hypoxia may have significant clinical implica
tions in improving immunotherapy.

Validation of hypoxia-related gene set in the 
TCGA cohort

The hypoxia-related gene set was further validated 
by the TCGA cohort, and we condensed into two 
distinct hypoxia-related subtypes by applying con
sensus clustering analysis (Figure 3a). Patients in 
Cluster1 had a higher OS, while patients in 
Cluster2 yielded a poorer prognosis outcome 
(Figure 3b). All these genes were subjected to 
Cox regression analysis. A total of 60 genes were 
markedly correlated with the OS of TCGA, and 
LASSO Cox regression was used to filter out less 
relevant prognostic genes (Fig. S2B). The optimal 
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Figure 1. Lung cancer patient characteristics and hypoxia-related gene identification. (A) Consensus matrices of NSCLC patients for 
k=2 based on 205-hypoxia-related genes in three GEO cohort; (B) NSCLC cases are divided into two subtypes based on unsupervised 
analysis; (C) Differences in patient overall survival with two clusters; (D) Cox proportional hazard regression of survival months and 
survival status were performed using gene set enrichment scores for the six hypoxia-associated gene signatures. Log-rank test was 
used to determine significant p values.
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Figure 2. Immune Landscape Between Low and High Hypoxia Risk NSCLC Patients. (A) and (B) The 22 immune cells proportions 
obtained from 666 lung cancer patients in GEO databases; (C) Rows of the heatmap show expression of TME-infiltrating cell 
signatures calculated by xCell; (D) Kaplan-Meier plots of infiltrating immune cells with differential expression as described above.
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Figure 3. Validation of hypoxia-related gene set in the TCGA cohort. (A) Consensus matrices of NSCLC patients for k=2 based on 
205-hypoxia-related genes in the TCGA cohort; (B) Differences in patient overall survival with two clusters; (C) Establishment of 
a prognosis-predictive model dividing patients into high and low risk groups; (D) Differences in patient overall survival with high and 
low risk groups; (E) Time-dependent ROC curves for the risk score in the TCGA dataset for predicting 1, 3, and 5-year OS; (F) 
Nomogram based on risk score, age, gender, and stage; (G) Calibration plots of the nomogram for predicting the probability of OS at 
5 years in the TCGA dataset.
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gene signature consisting of 11 prognostic genes 
were identified (Fig. S2C). Using the correspond
ing coefficients of 11 prognostic genes, the indivi
dual-level risk score formula for each patient was 
calculated as following: risk score = – 
0.24× FBP1 – 0.90× NDST2 + 0.13× ADM + 
1.02× LDHA + 
0.05× DDIT4 + 0.82× EXT1 + 0.06× BCAN + 
0.12× IGFBP1 + 0.20× PDGFB + 
0.22× AKAP12 + 0.26× CDKN3. As shown in 
Figure 3c, the heatmap revealed that the expres
sion level of 11 genes (FBP1, NDST2, ADM, 
LDHA, DDIT4, EXT1, BCAN, IGFBP1, PDGFB, 
AKAP12, and CDKN3) varied accompanying with 
the higher risk scores. In addition, we calculated 
the relationship between risk score and cancer- 
related mortality, and the patients who had higher 
risk scores were supposed to have a shorter OS 
than lower risk group, suggesting that these 11 
genes might be considered as risk genes in 
NSCLC (Figure 3d). Time-dependent ROC curve 
showed that our 11 prognostic gene model exhib
ited good performance and accuracy in prognosis 
prediction either for 1-year (AUC = 0.738), 3-year 
(AUC = 0.702) and 5-year (AUC = 0.666) OS of 
NSCLC patients (Figure 3e). We generated 
a nomogram with a concordance index of 0.733 
to predict the probability of 5 and 10-year OS, by 
incorporating the 11-hypoxia gene signature, age, 
gender, and TNM stage (figure 3f). The calibration 
curve showed that the nomogram performed 
a high level of accuracy (Figure 3g).

CXCL6 is the key chemokine for the recruitment 
of TANs in hypoxic NSCLC cells

Based on the aforementioned important role 
played by TANs infiltration in hypoxic TME, we 
further examined the effect of conditioned media 
on neutrophils in hypoxia-treated NSCLC cells. As 
shown in Figure 4a, CM from hypoxia-induced 
A549 and H-1299 cells recruited more TANs 
derived from NSCLC tissues than CM from nor
moxic cells. To further screen the possible chemo
kines, candidate chemokines were identified 
through RT-qPCR. Hypoxia facilitated NSCLC 
cells to generate more neutrophil chemokines, 
and CXCL6 increased the most among all the 
increased chemokines (CXCL1, CXCL2, CXCL5, 

CXCL6, CXCL8, and CCL3) as detected by RT- 
PCR (Figure 4b). Consistently, ELISA revealed 
that the expression of CXCL6 was significantly 
increased under hypoxia condition (Figure 4c). 
Transwell migration assays were performed to 
determine that migration of TANs enhanced by 
hypoxic NSCLC cells was almost identical to that 
of 700 pg/ml CXCL6 (Figure 4d). In agreement, 
migration of TANs of hypoxic NSCLC was 
repressed by a CXCL6 antibody. Furthermore, 
obstruction of the CXCL6 receptor CXCR6 
(siCXCR6) in TANs markedly compromised the 
migration of TANs. Similar results were obtained 
by the exploration of TANs derived from periph
eral blood (Figure. S3A-D).

TANs promote NSCLC cells proliferation, 
migration and invasion

To examine the effect of neutrophils on NSCLC 
cells biology, we cocultured NSCLC cell lines with 
TANs derived from NSCLC tissues. Proliferation 
analysis demonstrated that TANs promoted 
NSCLC cells growth in vitro (Figure 5a). 
Moreover, compared with control, TANs signifi
cantly enhanced the migration and invasion abil
ities of A549 and H-1299 cells (Figure 5b and c). 
Similar results were obtained by the exploration of 
TANs derived from peripheral blood (Figure. 
S4A-C).

In this study, we verified hypoxia upregulated 
neutrophils recruitment and constructed a novel 
hypoxia associated gene signature that could 
improve the individualized prognosis prediction 
in NSCLC. Moreover, hypoxia increased CXCL16 
production and attracting TANs. CXCL6- 
mediated TANs infiltration contributes to 
hypoxic-related cancer progression (Figure 5d).

DISCUSSION

Given the wide variation in prognostic outcomes 
of NSCLC, it is of great importance to build 
a robust classifier to segment patients with differ
ent risks and prognosis, which is essential to max
imize the benefits of accurate assessment, 
individual therapy and timely long-term follow- 
up. Numerous data indicate that hypoxia and 
TME are involved in processes that promote the 
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development of tumor cells and a more malignant 
phenotype [4,13]. Consistent with criteria prog
nostic parameters like nodal status, tumor stage 
and tumor grade, hypoxia and immune cells infil
trating TME have been proposed as prognostic 
factors for patient outcome [14,15]. Although 
methods such as PET imaging and immunohisto
chemical marker expression assays have been initi
ally implemented to detect the degree of hypoxia 
in patients’ tumors, the specific identification 
methods are still fraught with many unknowns. 

In this study, the integrated mining of transcrip
tional profiles and microenvironment features was 
intended to establish a tool to solve this vital 
clinical issue.

In this study, we profiled the mRNA expression 
of 205 hypoxia-associated genes in three GEO 
databases. Two NSCLC subgroups Cluster 1/2 
were identified by consistent clustering on the 
basis of hypoxia-related genes. The Cluster 1/2 
subgroup not only affects disease prognosis and 
key signaling pathways, but it influences immune 

Figure 4. CXCL6 is the critical chemokine induced by hypoxic NSCLC cell to recruit TANs derived from NSCLC tissues. (A) 
Quantification of neutrophil migration as assessed by transwell assays; (B) and (C) Expression of CXCL6 in hypoxic or normoxic 
NSCLC cells was examined by real-time PCR and ELISA; (D) Quantification of neutrophil migration as assessed by transwell assays.
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cells infiltration. Bioinformatic approach uncov
ered that hypoxia condition mainly associated 
with the PI3K/Akt/MTOR signaling pathway, the 
JAK2/STAT3 signaling pathway, the MYC targets 
V1 signaling pathway, and angiogenesis. 
Interestingly, a number of studies have found 
that hypoxia plays a role in the induction of 
tumor cell growth and metastasis by PI3K/Akt 
signaling and MYC target V1 signaling [16–18]. 
There is also much evidence to support the inter
action between hypoxia and angiogenesis [19–21]. 
Moreover, we used Cox and LASSO regression to 
develop an 11-gene prognostic signature for 
TCGA cohort. The risk scores were derived by 
integrating mRNA expression levels and risk coef
ficients for 11 hypoxia-related genes, and 

significantly classified prognosis in NSCLC 
patients into low and high-risk clusters. There 
are a number of clinically available multigene 
based risk models that can predict the prognosis 
of NSCLC. Zhu and colleagues recently reported 
a 22-autophagy-related signature based on overall 
survival in patients with lung adenocarcinoma 
[22]. Recently, Wu et al. reported a seven long 
non-coding RNAs prognostic model to predict 
OS in NSCLC patients. So far, there were limited 
prognostic models based on hypoxia-associated 
genes for patients with NSCLC. In an effort to 
exploit hypoxia-induced epithelial-mesenchymal 
transition gene signatures associated with clinical 
outcomes in NSCLC, Gao et al. demonstrated a 17 
gene prognostic panel for NSCLC [23]. Our model 

Figure 5. TANs derived from NSCLC tissues promote NSCLC cells proliferation, migration and invasion. (A), (B) and (C): NSCLC cells 
cocultured with TANs or alone were subjected to colony formation, wound healing, and transwell invasion assays; (D) Schematic 
illustration of the crosstalk between CXCL6-overexpressing NSCLC cells and TANs in the TME.
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shows good accuracy and stability in clinical out
come prediction either for 1-year (AUC = 0.738), 
3-year (AUC = 0.702) and 5-year (AUC = 0.666) 
OS of NSCLC patients. Our data also revealed that 
all 11 genes in our model were associated with 
poor prognosis in NSCLC patients. These discov
ered hypoxia-associated genes have been repeat
edly reported in cancer [24–27]. Previous studies 
reported that hypoxia-induced GBE1 expression 
promotes tumor progression by repressing FBP1 
activities in lung adenocarcinoma [28]. In contrast, 
in the present study, we found a positive coeffi
cient for FBP1, indicating that FBP1 was consid
ered as risk gene in NSCLC. The underlying 
molecular mechanisms deserve further 
investigations.

Accumulating evidence indicates that hypoxia is 
an important feature of TME and that it can drive 
progression and metastasis by facilitating suppres
sive cells (TANs, Tregs, and TAMs), and produ
cing immunosuppressive molecules. CIBERSORT 
revealed that patients in Cluster 2 with high 
hypoxia risk had significantly more abundant infil
trative TANs and M2 macrophages phenotype. 
Furthermore, TANs were associated with a poor 
prognosis, suggesting that our hypoxia model may 
predict the immune microenvironment. Hypoxia 
not only tightly regulates the production of speci
fic chemokines, it also controls their action by 
regulating their receptors [29,30]. Chemokines 
play an important role in regulating tumor immu
nity [31]. Our findings therefore provide insight 
into the underlying mechanisms of recruitment- 
related chemokines in TANs infiltration, and 
found that the production of CXCL6 increased in 
NSCLC cells under hypoxic condition, and the 
blockade of CXCL6 almost halted TANs migra
tion, suggesting that the recruitment of TANs is 
mediated mainly by CXCL6. CXCL6 induced pro
liferation and metastasis of lung cancer cell lines 
was confirmed in other studies, and the role of 
CXCL6 in the TME of NSCLC is unclear [32,33]. 
Our study broadened the understanding of CXCL6 
in NSCLC progression. As previously mentioned, 
multiple studies have noted that TANs appear to 
mostly develop a pro-tumorigenic phenotype 
[34,35]. In this study, we revealed TANs enhanced 
the proliferative and invasive ability of NSCLC 
cells in vitro. Experimental studies are needed to 

further clarify the molecular mechanisms under
lying the TANs related pro-tumorigenic pheno
type in NSCLC.

Conclusions

In conclusion, we identified a hypoxia model based 
on 11-hypoxia gene signature, and investigated the 
association between hypoxic condition and infiltrat
ing immune cells, especially TANs in NSCLC 
patients. Then, we confirmed that CXCL6 is 
a strong chemotactic cytokine for TANs infiltration 
in NSCLC and observed that the role of TANs on 
NSCLC proliferation, migration and invasion. Thus, 
our study provided more comprehensive insight 
into how hypoxia status influence on prognosis 
and the TME, and may help clinicians develop indi
vidualized hypoxia-targeted therapies in NSCLC.
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