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Abstract

The number of adults 65 years and older is increasing worldwide and will represent the 20% 

of the population by 2030. Half of them will suffer from obesity. The decline in muscle 

mass and strength, known as sarcopenia, is very common among older adults with obesity 

(sarcopenic obesity). Sarcopenic obesity is strongly associated with frailty, cardiometabolic 

dysfunction, physical disability, and mortality. Increasing efforts have been hence made to identify 

effective strategies able to promote healthy aging and curb the obesity pandemic. Among these, 

lifestyle interventions consisting of diet and exercise protocols have been extensively explored. 

Importantly, diet-induced weight loss is associated with fat, muscle, and bone mass losses, and 

may further exacerbate age-related sarcopenia and frailty outcomes in older adults. Successful 

approaches to induce fat mass loss while preserving lean and bone mass are critical to reduce the 

aging- and obesity-related physical and metabolic complications and at the same time ameliorate 

frailty. In this review article, we discuss the most recent evidence on the age-related alterations in 

adipose tissue and muscle health and on the effect of calorie restriction and exercise approaches 

for older adults with obesity and sarcopenia, emphasizing the existing gaps in the literature that 

need further investigation.
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1. Obesity and sarcopenia in older adults

The number of older adults (age ≥ 65 years) is increasing worldwide. In 2017, the number of 

older adults accounted for 13% of the global population and is expected to reach 2.1 billion 
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people by 2050 (Nations, 2017). Most chronic conditions exacerbate with aging, which 

is per se associated with profound body composition changes, i.e., gain and redistribution 

of fat mass and loss of muscle and bone masses (Batsis and Villareal, 2018). Among the 

most common conditions, there is obesity (defined as a BMI of ≥ 30 kg/m2), a complex, 

multifactorial and relapsing disease that has spread into a pandemic worldwide (Bray 

et al., 2017; WHO, 2018). In several countries, obesity prevalence reaches 30-40% of 

the population and its incidence is expected to further increase during the next decades 

(Bluher, 2019; Ward et al., 2019). Obesity is characterized by an excessive accumulation 

of white adipose tissue, not only in fat depots, but also ectopically, a phenomenon that 

significantly compromises physical function (Batsis and Villareal, 2018; Bray et al., 2017). 

It is thus not surprising that obesity is associated with over 200 medical complications 

and with an increased risk of morbidity and mortality, representing the fifth leading cause 

of death worldwide (Bluher, 2019; Bray et al., 2017). The decline in muscle mass and 

strength, known as sarcopenia, is very common among older adults with obesity (sarcopenic 

obesity, Figure 1) (Bluher, 2019; Bray et al., 2017) and is closely associated with frailty 

– a condition of impaired homeostatic reserve and stress tolerance, resulting in increased 

vulnerability to adverse health outcomes (Fielding et al., 2011). Sarcopenic obesity is 

therefore strongly related not only to cardiometabolic dysfunctions, but also to physical 

disability (Batsis and Villareal, 2018).

Older adults will represent the 20% of the population by 2030 and half of them will suffer 

from obesity (Flegal et al., 2016). Hence, although we are clearly experiencing a significant 

increase in overall life expectancy, the chronic conditions associated with aging which are 

exacerbated by obesity, profoundly burdens the quality of life during those “gained years”. 

Increasing efforts have hence been made to identify effective strategies able to promote 

healthy aging and curb the obesity pandemic. Among these, lifestyle interventions consisting 

of dietary and exercise protocols have been extensively explored (Armamento-Villareal et 

al., 2012; Batsis and Villareal, 2018; Colleluori et al., 2019; Colleluori et al., 2017; Villareal 

et al., 2017a; Villareal et al., 2011a; Villareal et al., 2017b; Weiss et al., 2017a). In this 

context, it is important to underline that diet-induced weight loss is associated with not only 

fat, but also muscle and bone losses and may further exacerbate age-related sarcopenia and 

frailty in older adults (Armamento-Villareal et al., 2012; Villareal et al., 2011a). Successful 

approaches able to induce fat mass loss while preserving muscle and bone mass are critical 

to reduce the aging- and obesity-related cardiometabolic risks and, at the same time, prevent 

or ameliorate frailty (Batsis and Villareal, 2018; Cartee et al., 2016; Egan and Zierath, 2013; 

Piccoli et al., 2020; Villareal et al., 2017a; Villareal et al., 2011a). In this review article, 

we first describe adipose tissue and skeletal muscle alterations occurring in the context of 

aging and obesity and then discuss the most recent evidence on the effects of different 

types of lifestyle protocols (combined exercise and calorie restriction) on such impairments, 

emphasizing the existing gaps in the literature worth further investigation.

2. Body composition changes in older adults with obesity

Human body composition undergoes considerable modifications with advancing age. 

Specifically, muscle and bone mass progressively decrease starting from the third decade 

of life, while fat mass increases up to the age of 70 and decreases afterwards (Fantin et 
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al., 2007; Santanasto et al., 2017). The age-related lean mass reduction is estimated to be 

~0.5-1.0% per year (Cruz-Jentoft et al., 2019). Appendicular lean mass and skeletal muscle 

index (limb muscle mass in kg divided by the square of the height in meters) progressively 

decrease with aging (Rossi et al., 2021). Importantly, fat mass increase and lean mass 

decrease occurring with aging may be underestimated due to fat redistribution and skeletal 

muscle lipid infiltration. Such miscalculation often occurs when assessing body composition 

through dual energy x-ray absorptiometry (DXA) or bioimpedance which have limitations in 

distinguishing organs’ fat infiltration. For this reason, magnetic resonance (MRI) (Figure 1) 

or computed tomography (CT) may provide a better estimation of the actual fat and muscle 

amount (Batsis and Villareal, 2018). In a study conducted on ~1800 older adults (70-79 

years old), in fact, Santanasto and colleagues reported a reduction of total fat and lean mass, 

as well as visceral adipose tissue (VAT) and thigh muscle areas after five years of follow up, 

but an increase in intramuscular adipose tissue (IMAT) assessed by CT (Santanasto et al., 

2017).

The age-related fat redistribution in favor of VAT depots (as opposed to subcutaneous) 

occurs independently of weight gain (Fantin et al., 2007; Hughes et al., 2004; Siervo et 

al., 2016), a phenomenon strongly contributing to the cardiometabolic risks (Ross et al., 

2020). While the age-related fat redistribution is partly attributed to sex hormonal profile 

modifications (Aguirre et al., 2015; Colleluori et al., 2018a; Colleluori et al., 2018b; Kotani 

et al., 1994; Koutsari et al., 2009), the rise in relative fat amount is due to multiple factors. 

Aging is in fact associated with a reduction in lean mass which in turn leads to a significant 

decrease in resting metabolic rate, triggering a vicious cycle responsible for the muscle 

mass reduction and relative fat mass increase. This phenomenon is attributed in part to 

behavioral modifications typically observed in older adults such as for example: reduced 

levels of physical activity, lower consumption of high-quality proteins (e.g., meat due to 

difficulties in chewing), along with an increased preference for highly palatable food rich in 

sugars and fat (Batsis and Villareal, 2018; Zamboni et al., 2014). In addition, physiologic 

hormonal changes occurring with aging, such as marked decrease in anabolic hormones (i.e., 
testosterone and growth hormone/IGF-1 axis) strongly contribute to the deleterious body 

composition changes (Batsis and Villareal, 2018; Zamboni et al., 2014).

Importantly, not all adipose depots display the same age-related variations. Brown adipose 

tissue, for example, which has the main role to dissipate energy in the form of heat during 

the process of non-shivering thermogenesis, reduces with advancing age, partly contributing 

to the energy expenditure decrease (Cypess et al., 2009; Zingaretti et al., 2009). On the other 

hand, bone marrow adipose tissue, of which the specific functions have yet to be clarified, 

increases with aging, obesity, or calorie restriction, possibly affecting hematopoiesis and 

cytokine production (Blebea et al., 2007; Krings et al., 2012). Furthermore, due to 

recent advances in technology, including the use of single cell or single nucleus RNAseq 
approaches, different adipocyte subpopulations with specific functions within each adipose 

depot have been discovered and seem to be differently affected by diet (Sarvari et al., 2021; 

Schwalie et al., 2018; Wenfei, 2020). The advent of such novel experimental strategies 

has also allowed the identification of specialized age-related subpopulations within the 

skeletal muscle, paving the way to new unexplored areas of investigation (Kim et al., 2020; 

Petrany et al., 2020). Whether lifestyle factors, aging, and obesity influence such adipose 
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and/or skeletal muscle subpopulations has been only marginally investigated and represents 

a groundbreaking area of investigation.

3. Adipose tissue dysfunction in older adults with obesity

In contrast to subcutaneous adipose tissue (SAT), lipids deposition in VAT and IMAT 

(Figure 1) are associated with insulin resistance, dyslipidemia, chronic inflammation, 

hypertension, and physical dysfunction (Brinkley et al., 2012; Goodpaster et al., 2000; 

Siervo et al., 2016; Tchkonia et al., 2013), leading to a greater overall risk of mortality 

within every body mass index (BMI) category (Cerhan et al., 2014; de Hollander et al., 

2012; Santanasto et al., 2017). Older adults display more systemic lipolysis and meal fat 

oxidation, but less lipid storage in SAT compared to younger adults according to one study 

using mCi [l-14C] to trace meal fatty acids (Koutsari et al., 2009). SAT’s inability to store 

excessive energy results in the deposition of lipids in VAT and other ectopic depots (e.g., 
skeletal muscle, liver, pancreas, heart), the primum movens of lipotoxicity (Despres and 

Lemieux, 2006). Such phenomenon is further exacerbated by the chronic positive energy 

balance typical of obesity (Zamboni et al., 2014). Excessive calorie load follows adipose 

tissue expansion which can occur through adipocyte hypertrophy and hyperplasia (Kim et 

al., 2014). Human adipocyte volume is positively related to total fat mass, whereas adipocyte 

number is set during adolescence and remains constant throughout life (Spalding et al., 

2008). Massive weight loss by bariatric surgery leads in fact to a reduction in adipocyte 

size but not number, which is higher among obese compared to lean individuals (Spalding 

et al., 2008). Accordingly, 16 weeks of weight gain resulted in adipocyte hypertrophy, but 

not hyperplasia in healthy adults (Salans et al., 1971). In contrast to what is observed 

during youth, adipocyte hyperplasia during adulthood occurs predominantly in VAT during 

sustained and chronic positive energy balance when adipocytes cannot further accommodate 

the energy surplus increasing their size (Kim et al., 2014; Wang et al., 2013). Paradoxically, 

the age-related inability to expand adipose tissue through de novo adipogenesis is at the core 

of the metabolic anomalies observed in conditions of obesity. Aging is therefore associated 

with a marked decline in homeostatic and obesity-related adipocyte plasticity and with a 

reduction in adipocyte progenitor self-renewal (Kim et al., 2014). Similarly, the preadipocyte 

dysfunction occurring with advancing age and obesity is responsible for the lower adipose 

tissue expandability, and results in obesity-related complications (lipotoxicity and ectopic 

fat deposition) (Guo et al., 2007; Sepe et al., 2011). SAT adipocyte hypertrophy is related 

to low adipocyte generation rate which predicts insulin resistance in humans and animal 

models (Arner et al., 2010; Kim et al., 2014; Spalding et al., 2008; Weyer et al., 2000). 

Interestingly, a specific adipocyte size threshold associated with type 2 diabetes and poor 

metabolic response to gastric bypass was identified in adults with obesity (Cotillard et 

al., 2014). Adipocytes within different depots have a peculiar critical size above which 

cells cannot further expand, display signs of stress, and die of pyroptosis (Cinti et al., 

2005; Giordano et al., 2013). Hypertrophic and stressed adipocytes exhibit a deregulation 

of fatty acid flux and altered pattern of adipokines and chemokines expression (e.g., higher 

IL-6, TNF-α, and resistin and lower adiponectin), which attract pro-inflammatory immune 

cells and strongly contribute to inflammation and insulin resistance (Giordano et al., 2013; 

Lumeng et al., 2011). Adipocyte size and death are hence associated with the presence 
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of the so-called crown like structures i.e., macrophages surrounding dead adipocytes and 

absorbing their remnants/debris discovered by the group of Cinti (Figure 2A and B) (Cinti 

et al., 2005; Murano et al., 2008). Crown like structures are more prevalent in obese than 

lean (Cinti et al., 2005) and their presence in the adipose tissue is associated with lower 

insulin disposition index and higher VAT, intrahepatic adipose tissue, IMAT, TNF-α, fasting 

insulin, and glucose in adults with obesity (Le et al., 2011). Adipocytes in VAT have 

a lower critical death size compared to those in SAT, a feature that partly explains the 

strict association between central obesity and the impaired metabolic profiles (Giordano 

et al., 2013; Murano et al., 2008). Pro-inflammatory macrophages (type 1) and T cells 

infiltrating the adipose tissue are increased with aging and obesity and establish the typical 

low-grade chronic inflammation observed in older adults (inflammaging) (Lumeng et al., 

2011; Weisberg et al., 2003). Besides inflammation, obesity induced–adipocyte hypertrophy 

is associated with anomalies in tissue remodeling i.e., overproduction of extracellular matrix 

components, reduced angiogenesis, fibrosis and hypoxia, which profoundly compromise 

tissue microenvironment and function (Cancello et al., 2005; Goossens et al., 2011; Sun et 

al., 2013). Interestingly, trained, older women with obesity display lower SAT inflammation 

and oxidative stress markers expression, and reduced infiltration of proinflammatory 

macrophages compared to their sedentary counterparts (Cizkova et al., 2020). Importantly, 

VAT directly discharges the excess of free fatty acids into the portal circulation, reason 

for which lipid overload riches in primis the liver (often causing non-alcoholic fatty 
liver steatosis or NASH) and then the skeletal muscle, leading to lipotoxicity and muscle 

dysfunction (Figure 2C and D). A longitudinal study conducted in 70-79 years old adults 

demonstrated that thigh muscle fat loss has a strong protective effect against mortality in 

weight stable men (Santanasto et al., 2017). It is therefore not surprising that the age-related 

body composition changes, such as muscle fat infiltration, are closely associated with frailty 

and disability (Batsis and Villareal, 2018). The specific changes occurring in the skeletal 

muscle in the context of aging and obesity are described in the next section.

4. Skeletal muscle dysfunction in older adults with obesity

The age-related reduction in muscle mass and strength adversely impacts health and is 

exacerbated by obesity. Skeletal muscle is in fact the most extended tissue in mammalians 

and plays various roles: not only allows locomotion and defines physical function, but 

also sets energy expenditure, insulin sensitivity, and whole-body metabolic health, besides 

representing the main body proteins reservoir. Considering its wide distribution, relatively 

small alterations in skeletal muscle tissue profoundly affects overall health.

4.1 Muscle mass

In older adults, thigh muscle reduction was recognized as the best predictor of mortality 

among numerous metabolic outcomes investigated (Santanasto et al., 2017). It is estimated 

that 10-20% of muscle mass is lost by the 7th decade of life (Janssen et al., 2000). For this 

reason, the understanding of the mechanisms responsible for muscle loss and identification 

of effective strategies to counteract such loss is extremely urgent.
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4.1.1 Muscle protein synthesis—Contrary to what was previously thought, the age-

related decline in muscle mass is not due to an augmented muscle protein breakdown, 

but to a blunted muscle protein synthesis (MPS response to anabolic stimuli (e.g., insulin, 

amino acids and exercise), as elegantly demonstrated by Volpi and colleagues who compared 

muscle protein turnover using stable isotope methodology in young and older volunteers 

(Rasmussen et al., 2006; Volpi et al., 2000). On the other hand, obesity is associated with a 

wide range of alterations in skeletal muscle protein kinetics (Beals et al., 2019). Although 

basal MPS is similar in obese and normo-weight adults (Beals et al., 2019), reduced mixed 

muscle protein turnover, lack of mitochondrial protein synthesis, and lower inhibition of 

whole-body proteolysis in response to anabolic stimuli have been described in adults with 

obesity compared to their normo-weight counterparts (Guillet et al., 2009; Tran et al., 2018). 

In addition, adults with obesity were reported to experience diminished myofibrillar MPS 

in response to food ingestion compared to controls (Beals et al., 2016). Such anomalies 

are not surprising considering the obesity-related impairments in macronutrient utilization, 

especially glucolipid metabolism and insulin sensitivity (Beals et al., 2019; Rasmussen et al., 

2006). Nonetheless, not all studies on muscle protein kinetics in obesity report consistent 

findings possibly due to different experimental design (e.g., type of anabolic stimulus used), 

comparison groups, and muscle subfractions investigated (mitochondria, mixed muscle, 

sarcoplasmic, or myofibrillar protein synthesis) (Beals et al., 2019).

4.1.2 Muscle fibers, capillarization and regeneration abilities—Fiber size, 

number, and relative type as well as muscle capillarization are affected by aging. 

Specifically, fiber size and number are reduced in older adults, which display a higher 

relative prevalence of type I fibers (slow twitch) with a concomitant decrease in capillary 

content (Morgan et al., 2020). Capillarization plays the crucial function of delivering 

oxygen, nutrients, and regulatory hormones to the muscle and its alteration contributes not 

only to the reduced muscle function, but also to the lower MPS response to anabolic stimuli 

described above (Batsis and Villareal, 2018; Rasmussen et al., 2006). Based on a study in 

older adults, the amount of muscle fiber capillarization predicts the hypertrophic response 

to resistance exercise (anabolic stimulus), with a lower amount related to a blunted muscle 

fiber size increase (Moro et al., 2019).

Fiber growth, repair, and regeneration are determined by satellite cells which allow proper 

muscle turnover and anabolic response. Satellite cell proliferation and function are impaired 

with aging and sarcopenia, and therefore, a blunted adaptive response of muscle fiber to 

exercise stimuli is observed in older compared to younger adults (Snijders et al., 2014). In 

addition, during aging exacerbated by obesity, mesenchymal cell progenitors in the skeletal 

muscle tend to give rise to adipocyte-like cells, further contributing to the ectopic lipids 

deposition (Sepe et al., 2011). Obesity is moreover characterized by a higher prevalence 

of the type II fiber subtype (fast twitch), which is associated with lower lipid oxidation 

abilities, impaired insulin sensitivity, and higher oxidative stress and metabolic impairments 

(Fisher et al., 2017; Tanner et al., 2002). A study conducted in adults with obesity revealed 

a positive relation between the baseline prevalence of type 1 fiber and the percentage of 

weight loss 12 months after gastric bypass, suggesting that fiber type may influence obesity 

susceptibility and/or response to weight loss, and not vice-versa, a topic worth further 
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exploration (Tanner et al., 2002) (for further details please see ref (Morgan et al., 2020)). 

Despite the differences in fiber type’s prevalence occurring with aging and obesity, it is 

important to note that both are independently associated with muscle atrophy and reduced 

myogenesis (Morgan et al., 2020).

4.2 Muscle quality

The age-related loss of muscle strength is three times faster than the loss of muscle mass, 

which has led to extensive efforts exploring mechanisms that underlie the age-related 

decrease in muscle quality (Bell et al., 2016; Goodpaster et al., 2006; Romanello and 

Sandri, 2015). Muscle quality has been defined as muscle strength relative to a given 

quantity of muscle mass in previous studies (Cruz-Jentoft et al., 2019) with muscle strength 

assessed through distinct methods (e.g., one-repetition maximum, handgrip strength) (Batsis 

and Villareal, 2018). At the cellular and molecular level, the interplay of a multitude of 

mechanisms seems to be implicated in the reduction of muscle quality with aging and will 

be briefly described below.

4.2.1 Lipid infiltration and inflammation—Reduced muscle density due to lipid 

infiltration occurs with aging and obesity, and correlates with impaired physical function, 

e.g., decreases in gait speed, balance, and strength across different older populations 

(Scott et al., 2015; Visser et al., 2005). Lipid infiltrating muscle fibers (intramyocellular) 

and/or stored in adipocytes situated between fibers (extramyocellular) are associated with 

reduced improvements in strength and performance in response to resistance exercise 

in older individuals (Long et al., 2021). In addition, the excess fat may be stored in 

adipocytes occupying the space between muscles (IMAT) and such ectopic deposition is 

strongly associated with insulin resistance, disability, hospitalization, and reduced quality 

of life (Goodpaster et al., 2000; Trombetti et al., 2016; Visser et al., 2005). Muscle fat 

infiltration is closely related to local inflammation which in turn contributes to muscle 

wasting (Bell et al., 2016; Wu and Ballantyne, 2017). Furthermore, inflammatory cytokines 

reduce myocytes response to the insulin-like growth factor 1 (IGF1) hence impairing 

muscle anabolic pathways (Hamrick, 2017). Although myocytes are capable of secreting 

inflammatory cytokines (and myokines), obesity-associated local inflammation within the 

skeletal muscle is mainly attributed to the release of pro-inflammatory cytokines by resident 

adipocytes, a topic nicely described by Wu and colleagues elsewhere (Wu and Ballantyne, 

2017). Similar to that observed in VAT, skeletal muscle immune cells tend to polarize to the 

pro-inflammatory state in the context of obesity (Wu and Ballantyne, 2017). Importantly, 

IMAT was associated with circulating monocyte chemoattractant protein 1 (MCP-1, pro-

inflammatory cytokine) and with insulin resistance independent of VAT according to a 

cross-sectional study in women with obesity (Haam et al., 2016). Moreover, 10% weight 

gain induced by overfeeding in otherwise healthy adults led to a significant remodeling of 

the skeletal muscle extracellular matrix, local inflammation, and reduced insulin sensitivity, 

but not to significant alterations in SAT or to systemic inflammation (Tam et al., 2014). 

Taken together, this evidence points toward the early insult of skeletal muscle health during 

obesity, which may precede the VAT or SAT impairments resulting from nutrient excess. 

Notably, thigh muscle loss, and not VAT changes, was the best predictor of mortality in older 

adults, while thigh fat loss had a protective effect in weight stable individuals (Santanasto 
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et al., 2017), results that further underline the critical role of skeletal muscle health during 

aging and obesity.

4.2.2 Proteostasis, mitochondrial function and dynamics—The above-described 

phenomena result in high states of cellular stress, for which functional protein and organelle 

quality control mechanisms, able to identify, repair or remove damaged structures are highly 

needed in the context of aging and obesity (Bell et al., 2016; Cartee et al., 2016; Drey et al., 

2013; Egan and Zierath, 2013; Romanello and Sandri, 2015). Among these processes are the 

autophagy and ubiquitin proteasome systems in which their hyper or hypoactivation cause 

muscle wasting and cellular malfunction, respectively. For this reason, genes regulating 

such pathways have been named atrogens (atrophy related genes, e.g., ATG6, MURF1, 
MAFbx). Similarly, mitophagy and mitochondrial fusion and fission dynamics are crucial 

to allow adequate mitochondrial function and respond to oxidative stress (Romanello 

and Sandri, 2015). A study comparing normal weight and overweight adults revealed 

a higher expression of autophagy-related genes due to the elevated inflammation and 

oxidative stress (Potes et al., 2017). Furthermore, young and lifelong trained senior adults 

displayed similarly lower skeletal muscle atrogenes expression compared to sedentary older 

adults, suggesting not only an increased cellular stress occurring with aging (requiring 

higher atrogenes activation), but also its attenuation through regular physical activity 

throughout life (Zampieri et al., 2015). Importantly, the age-related muscle atrophy is 

associated with elevated mitochondrial fission which ultimately leads to the activation of 

proteolytic pathways (Cartee et al., 2016; Romanello and Sandri, 2015). Such phenomenon 

is accompanied by reduced mitochondrial content and function and increased oxidative 

stress, features that characterize adults with obesity (He et al., 2001; Kelley et al., 1999; 

Morgan et al., 2020). In summary, older adults with obesity require a degree of activation 

of the above pathways that aging does not support and show blunted adaptation to exercise 

compared to younger adults (Cartee et al., 2016; Potes et al., 2017).

4.2.3 Neuromuscular junction—The age-related reduction in physical function and 

activity is also attributed to alterations in the neuromuscular junction function (Badawi 

and Nishimune, 2020; Batsis and Villareal, 2018; Drey et al., 2013). Based on studies 

conducted in human cadavers, aging is associated with a gradual loss of cervical and 

lumbar motor neurons, possibly due to impaired trophic signaling, local degeneration 

and/or feedback signals from dysfunctional muscle, a topic extensively detailed elsewhere 

(Badawi and Nishimune, 2020). Muscle denervation is among the numerous age-related 

events contributing to atrophy and degeneration, a phenomenon detectable by histochemical 

analyses through the progressive accumulation and clustering of small and angular 

fibers reflecting what has been called disseminated neurogenic atrophy (Badawi and 

Nishimune, 2020). Nevertheless, the role of neurodegenerative mechanism in the etiology 

of sarcopenia has only been marginally studied. Additionally, obesity is also associated 

with neuromuscular junction impairments – partially denervated synaptic sites, reduced 

synaptic area, abnormal acetylcholine receptors expression and distribution (Martinez-Pena 

and Akaaboune, 2020). However, only very few studies conducted in animal models are 

available on the topic, which makes further pre-clinical and clinical research necessary.
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A schematic summary of skeletal muscle alterations occurring with obesity and aging is 

shown in Figure 3.

5. Lifestyle intervention in older adults with obesity

Different exercise or dietary protocols can be employed in the context of lifestyle 

interventions. Exercise interventions may include i. resistance training: exercises that make 

muscles work against a weight or force (e.g., knee extensions, bench press) consisting of 

1-3 sets of 8-12 repetitions performed at 60-80% of 1-repetition maximum for 2-3 days 

per week; ii. aerobic training: exercises that make the heart pump faster (e.g., running, 

cycling) consisting of 20-60 minutes/session performed at 60-75% of the maximum heart 

rate for 3-7 days per week; iii. balance training: exercises that emphasize static and dynamic 

postures (e.g., heel-to-toe walking, standing on one foot) consisting of 1-2 sets for 3-7 

days per week {Izquierdo, 2021 #3314}{Aguirre, 2015 #2509} . Different exercise types 

may be performed in specific combinations and intensities. In our laboratory, we have 

found that the combination of aerobic and resistance training was the most effective in 

improving functional status of older adults with obesity while dieting (Villareal 2017a). 

Dietary interventions to treat obesity often involve calorie restriction necessary to achieve 

weight loss. The dietary protocol applied in our laboratory, in line with the Joint Position 
Statement of the American Society for Nutrition and Obesity Society for Obesity in Older 
Adults (Villareal et al., 2005), typically consists of a balanced (approximately 30% of 

energy as fat, 50% as carbohydrate, and 20% as protein or at least 1.0 g/kg protein/d) 

energy-restricted (deficit of 500-750 kcal per day) which results in a ~10% weight loss 

within 6 months (Villareal et al 2005, Villareal et al., 2011a). The dietary intervention is 

combined with behavioral strategies (e.g., goal setting, self-monitoring) to modify eating 

habits. Multivitamin and mineral seements are provided to ensure that all daily requirements 

are met, including 1500 mg Ca/d and 1000 IU vitamin D/d (Villareal et al 2005). Such 

weight reduction has been associated with a decrease in cardiometabolic risks associated 

with obesity (Heymsfield and Wadden, 2017, Bouchonville 2014). Other dietary protocols 

(e.g., intermittent calorie restriction, Mediterranean diet, high protein diet) can be adopted 

and are currently being studied. In the next section, we refer to the combination of 

different exercise modalities (aerobic, resistance, and balance) and calorie restriction (energy 

restriction as described above) unless otherwise specified. A comprehensive analysis of the 

effect of different dietary protocols on aging muscle has been reported elsewhere (Gielen et 

al., 2021; Hsu et al., 2019).

5.1 Body composition and frailty outcomes

In 2011, our group demonstrated that the combination of diet-induced weight loss and 

regular exercise may be the most effective lifestyle intervention for older adults with 

obesity. Diet plus exercise induces fat mass loss while minimizing weight loss–induced 

reduction of muscle and bone mass as compared to diet alone or exercise alone (Villareal 

et al., 2011a). Moreover, among the lifestyle interventions, diet plus exercise resulted in the 

greatest improvement in physical function and reduction in frailty (Villareal et al., 2011a). 

Interestingly, in older men with obesity and hypogonadism, the addition of testosterone 

to such lifestyle strategy results in a relative preservation of lean mass and bone mineral 
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density, without further improving physical function (Barnouin et al., 2021). In another 

randomized controlled trial (RCT) in 160 frail, older adults with obesity (LITOE study, 

Figure 4) we demonstrated that the combination of resistance and aerobic exercise during 

matched diet-induced weight loss leads to the greatest preservation of muscle and bone 

mass and improvement of physical function as compared aerobic or resistance exercise alone 

(Armamento-Villareal et al., 2020; Villareal et al., 2017a) (Figure 1B and C). Additionally, 

the combination exercise added to weight loss in this study population was found to be 

the most effective in improving ectopic fat deposition (VAT and IMAT) that translated into 

mitigation of aging- and obesity related physical and metabolic complications (Waters et 

al., 2021). Based on this evidence, it is recommended that diet-induced weight loss should 

always be accompanied by both resistance and aerobic training in frail, older adults with 

obesity, a lifestyle strategy that also results in the greatest improvement in frailty outcomes, 

muscle strength, and quality of life (Villareal et al., 2017a).

5.2 Adipose tissue dysfunction

Dietary calorie restriction and exercise cause fatty acid mobilization from adipose depots 

to other tissues which result in a healthier adipokine profiles (Bouchonville et al., 2014; 

Weiss et al., 2017b). Based on a recent study conducted in 25 older adults, 12 months 

of resistance training improved muscle strength and mass but did not alter VAT content 

(Ziegler et al., 2019). In the context of lifestyle interventions, calorie restriction is necessary 

to allow a significant VAT reduction and to improve cardiometabolic health. Older adults 

with obesity performing 12 months of diet and exercise, or diet alone, significantly reduced 

VAT, systemic inflammation, blood pressure and improved insulin sensitivity and lipid 

profile as compared to controls and to adults performing exercise alone (Bouchonville et 

al., 2014; Colleluori et al., 2017). Exercise per se usually induces only a modest (~2 kg) 

weight loss (Villareal et al., 2011a); in fact, the volume of exercise needed to achieve a 

significant weight reduction equivalent to that attained by diet is considerable (Villareal 

et al., 2006). Interestingly, a trial conducted in healthy, sedentary individuals losing equal 

~10% of weight by exercise or calorie restriction demonstrated that exercise-induced weight 

loss resulted in a greater reduction in VAT and IMAT compared to that achieved by 

calorie restriction (Murphy et al., 2012), suggesting that physical activity may result in 

a healthier fat distribution. Furthermore, while insulin sensitivity improvements correlated 

with VAT reduction in the diet group, they correlated with IMAT loss in the exercise group 

(Murphy et al., 2012). Myokine secretion from exercising muscle are among the potential 

mediators for the exercise-induced changes in body composition (Bostrom et al., 2012; 

Palermo et al., 2015). A recent RCT conducted in adults with obesity demonstrated that 

the exercise-induced VAT reduction is mediated by the release of IL-6 by skeletal muscle 

(Wedell-Neergaard et al., 2019). Four months of exercise training reduced the relative 

content of immune cells and inflammatory characteristics in the SAT of non-obese older 

women (Cizkova et al., 2020). The same study revealed a reduction in the expression of 

HIF1α and SOD markers of hypoxia and oxidative stress respectively, suggesting an overall 

improvement in the adipose tissue function induced by exercise. Furthermore, based on 

the assessment performed on SAT explants, trained women exhibited a reduced adipocyte 

secretion of inflammatory cytokines such as TNF-α and IL-8, but not IL-6, and displayed 

improved systemic inflammation (Cizkova et al., 2020). Moreover, weight loss is associated 
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with reduced infiltration of inflammatory cells in the SAT of adults with obesity (Cancello 

et al., 2005). These results are consistent with another study in severely obese men and 

women following a lifestyle protocol of calorie restriction and moderate intensity aerobic 

exercise for 15 weeks (Bruun et al., 2006). The authors reported a significant reduction 

in systemic and SAT inflammation (macrophages infiltration, cytokines expression and 

release) which correlated with increasing adiponectin production and improvement in insulin 

sensitivity (Bruun et al., 2006). Interestingly, based on the results obtained from vastus 
lateralis biopsies, the skeletal muscle did not seem to significantly contribute to the systemic 

inflammatory status, which was mainly determined by adipose tissue (Bruun et al., 2006). 

A recent RCT conducted in women with obesity demonstrated that 12 weeks of aerobic 

plus resistance training led to a significant SAT increase of mitochondrial respiration and 

reduction of H2O2 content (marker of oxidative stress) compared to controls (Mendham et 

al., 2020). On the other hand, adipocyte hypertrophy occurring with aging was counteracted 

with calorie restriction based on recent preclinical evidence which showed attenuated 

adipocyte enlargement and lower decline in thermogenic BAT (Sheng et al., 2021), a finding 

that requires validation in humans.

5.2 Muscle dysfunction

The independent effects of diet and exercise on MPS in older adults with obesity has been 

extensively studied (Smith et al., 2012; Villareal et al., 2012; Villareal et al., 2011b). During 

acute weight loss, the MPS response to anabolic stimuli is greater than during weight 

maintenance (Villareal et al., 2011b), while exercise increases MPS during both the basal 

and fed state (Villareal et al., 2012). Our study conducted in a subgroup of participants 

in the LITOE trial (n:47, Figure 4) demonstrated that MPS response to anabolic stimuli 

(mixed meal), which is impaired with aging (Volpi et al., 2000), improves more when a 

resistance exercise component is included during diet-induced weight loss (Colleluori et 

al., 2019). Similarly, based on the same study, resistance exercise was required to preserve 

the expression of regulators of muscle regeneration (MEF2A), data consistent with the 

greater preservation of muscle mass reported among individuals performing resistance plus 

aerobic exercise or resistant exercise alone (Colleluori et al., 2019). Consistent with our 

results, Snijder and colleagues reported that 12 weeks of resistance exercise combined with 

aerobic exercise (high intensity interval training) significantly increased type I and II muscle 

fibers satellite cell content in older adults (Snijders et al., 2019). The increase in type 

II fiber satellite cells in the study population was associated with an increase in muscle 

capillarization (Snijders et al., 2019).

Exercise, but not diet, decreases skeletal muscle inflammation in frail older adults with 

obesity (Lambert et al., 2008). Specifically, the combination of aerobic and resistance 

exercise during weight loss led to a reduction in the expression of atrogenes (LAMP2), 

as well as of mitochondrial (FIS1, PARL, OPA1) and inflammatory (TLR2, CD68) stress 

markers in the vastus lateralis muscle, reflecting an attenuated myocellular stress due to 

the intervention (Colleluori et al., 2019). On other hand, a recent study conducted on older 

non-obese adults performing 12 months of resistance exercise (without calorie restriction), 

reported improvements in muscle strength and mass without alterations in vastus lateralis 
inflammation, suggesting that exercise training without weight loss in non-obese subjects 
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may have a different effect on muscle health (Ziegler et al., 2019). Diet plus aerobic exercise 

alone provoked a higher activation not only of mitochondrial function (consistent with 

higher improvements in VO2peak), but also of mitophagy and mitochondrial fusion and 

fission regulators expression (OPA1, MFF, DRP) (Colleluori et al., 2019). Although aerobic 

exercise has been demonstrated to attenuate the decline in mitochondrial respiratory capacity 

experienced with advancing age (Cartee et al., 2016), it is possible that an elevated activation 

of the oxidative network in the context of weight loss, aging, and sarcopenia results in 

muscle mass reduction due to a greater catabolic stimulation (Colleluori et al., 2019). 

The described data provide a mechanistic explanation for the observed positive changes 

in body composition and frailty outcomes in the LITOE trial – participants performing 

the combination of aerobic and resistance exercise preserved the most muscle mass and 

experienced the greatest increase in physical function and muscle strength (Colleluori et 

al., 2019; Villareal et al., 2017a). The LITOE substudy could not detect variations in 

neuromuscular junction integrity as assessed by the measurements of circulating C-terminal 

agrin fragment (Montagnani et al.), which was demonstrated to be a reliable marker of 

neuromuscular junction degeneration and sarcopenia, elevated among older adults (Drey 

et al., 2013). Such finding is consistent with the results from the LIFE-P trail conducted 

on over 300 elderly undergoing exercise intervention (Bondoc et al., 2015). However, 

two recent smaller studies detected a significant reduction in circulating CAF among 

adults following different exercise interventions (Bigdeli et al., 2020; Willoughby et al., 

2020). Furthermore, older adults practicing long-term high-level exercise were reported to 

experience lower loss of muscle strength, fewer denervated fiber, and preserved otherwise 

lost fibers compared to their sedentary counterparts assessed by histomorphology (Mosole 

et al., 2014). Accordingly, it is possible that the functional decline in the neuromuscular 

junction occurring with aging can be prevented with regular exercise practiced throughout 

life (Mosole et al., 2014).

A schematic representation of the effect of lifestyle intervention on myocellular function of 

the aging muscle is shown in Figure 5

6. Conclusions and future perspectives

The combination of aerobic and resistance exercise added to diet-induced weight loss 

significantly improves physical function and ameliorates frailty in older adults with obesity. 

Among the lifestyle interventions, this may be the most effective in improving myocellular 

quality and MPS response to anabolic stimuli thereby preserving muscle mass during dietary 

calorie restriction. Such lifestyle intervention can thus be considered an effective strategy to 

mitigate aging- and obesity-related metabolic and physical complications, with the ultimate 

goal to maintain the functional independence and quality of life of older adults with obesity. 

Therefore, healthcare providers should consider prescribing both resistance and aerobic 

exercise to counteract sarcopenic obesity, one of the major health care challenges of this 

century affecting an increasing proportion of older adults. Additional studies should be 

performed to further explore mechanisms as the bases for such clinical outcomes, with a 

particular focus on muscle-adipose tissue crosstalk in the context of exercise and weight 

loss.
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Figure 1: Skeletal muscle and adipose tissue in older adults suffering from obesity by MRI.
A. Abdominal MRI of an older adult with obesity; arrows indicate SAT: subcutaneous 

adipose tissue and VAT: visceral adipose tissue; L: liver; k: kidney. B. Thigh MRI of 

an older adult with obesity; arrows indicate intermuscular adipose tissue (IMAT). Thigh 

MRI of an older adult with obesity before (C) and after (D) diet-induced weight loss plus 

combined aerobic and resistance exercise training (6 months intervention). Total mass, fat 

mass and lean mass data refer to whole body composition assessed by dual energy x-ray 

absorptiometry.
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Figure 2: Adipose tissue and muscle dysfunction in obesity and aging
A and B (hematoxylin staining): light microscopy of visceral adipose tissue belonging 

to a 71-year-old woman with central obesity. A: elevated infiltration of inflammatory 

cells (partly indicated by arrowheads) often forming crown-like structures surrounding 

adipocytes; (20x magnification). B: squared area indicates an example of crown-like 

structure (40x magnification). C and D (hematoxylin and eosin staining): fat infiltration 

within the erector spinae muscle of an older adult; adipocytes infiltration indicated in the 

squared area in C (10x magnification); D (40x magnification) shows adipocytes infiltration 

within atrophic fibers (arrowhead) in the same subject.
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Figure 3: Schematic representation of skeletal muscle alterations occurring with obesity and 
aging.
Fat infiltration and inflammation; anomalies in protein quality control mechanisms (e.g., 

autophagy and ubiquitin proteosome system function); reduced muscle protein synthesis in 

response to anabolic stimuli (i.e., exercise, food ingestion); reduced myogenesis and muscle 

regeneration capacity; alterations in mitochondrial function and dynamics (e.g., mitophagy, 

fission and fusion) and in neuromuscular junction efficiency. All these processes are strictly 

associated with reduced muscle quality and strength, ultimately resulting in muscle wasting, 

disability and impaired physical function (frailty).
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Figure 4: Schematic representation of the Lifestyle Intervention Trial in Elderly Obese (LITOE).
A total of 160 of older men and women (≥65 years of age) with obesity (BMI≥30 kg/m2) 

and frailty were randomized to diet-induced weight loss plus either aerobic, resistance 

or the combination of both exercise modalities for 6 months. A fourth set of subjects 

was included in the control group who did not undergo diet or exercise intervention but 

received educational classes on a healthy lifestyle. Forty-seven subjects from the LITOE trial 

participated in the muscle sub-study and underwent vastus lateralis biopsies to investigate 

muscle protein synthesis response to anabolic stimuli (meal ingestion) and myocellular 

quality. The study was completed at the end of 2018 (LITOE ClinicalTrials.gov number, 

NCT01065636).
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Figure 5: Pathways involved in the age- and obesity- related muscle dysfunction, affected by 
weight loss plus aerobic and resistance exercise.
Aging and obesity are characterized by muscle lipids infiltration and a state of chronic, 

low-grade inflammation, e.g., higher circulating IL-6 and TNF-α. Inflammation contributes 

to muscle wasting impairing i) the anabolic action of the IGF1-mTOR pathway and 

muscle protein synthesis response to anabolic stimuli (already lower in older adults) and 

ii) promoting the expression of atrogenes such as regulators of autophagy and ubiquitin 

proteosome system (Napoli et al.). On the other side, mitochondrial stress, reflected 

by mitophagy and mitochondrial fission hyperactivation, also contributes to atrogenes 
transcription and muscle wasting. The age-related muscle atrophy is also due to an 

impairment in neuromuscular junction efficiency and reduced myogenesis capacity. Based 

on the LITOE sub-study, diet-induced weight loss plus resistance and aerobic exercise 

training reduces myocellular stress affecting all those pathways (except for neuromuscular 

junction efficiency assessed measuring circulating C-terminal Agrin fragment) and results 

in improvement in muscle protein synthesis in response to feeding, muscle strength, 

physical function and attenuated muscle wasting. Red lines indicate inhibition, green arrows 

activation, black arrows major pathways activation, while yellow dotted arrows refer to 

pathways on which diet plus resistance and aerobic exercise have a positive effect.
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