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Abstract
Background.  Poor prognosis of glioblastoma patients and the extensive heterogeneity of glioblastoma at both 
the molecular and cellular level necessitates developing novel individualized treatment modalities via genomics-
driven approaches.
Methods. This study leverages numerous pharmacogenomic and tissue databases to examine drug repositioning 
for glioblastoma. RNA-seq of glioblastoma tumor samples from The Cancer Genome Atlas (TCGA, n = 117) were 
compared to “normal” frontal lobe samples from Genotype-Tissue Expression Portal (GTEX, n  =  120) to find 
differentially expressed genes (DEGs). Using compound gene expression data and drug activity data from the 
Library of Integrated Network-Based Cellular Signatures (LINCS, n  =  66,512 compounds) CCLE (71 glioma cell 
lines), and Chemical European Molecular Biology Laboratory (ChEMBL) platforms, we employed a summarized 
reversal gene expression metric (sRGES) to “reverse” the resultant disease signature for GBM and its subtypes. 
A multiparametric strategy was employed to stratify compounds capable of blood-brain barrier penetrance with a 
favorable pharmacokinetic profile (CNS-MPO).
Results.  Significant correlations were identified between sRGES and drug efficacy in GBM cell lines in both 
ChEMBL(r = 0.37, P < .001) and Cancer Therapeutic Response Portal (CTRP) databases (r = 0.35, P < 0.001). Our 
multiparametric algorithm identified two classes of drugs with highest sRGES and CNS-MPO: HDAC inhibitors 
(vorinostat and entinostat) and topoisomerase inhibitors suitable for drug repurposing.
Conclusions.  Our studies suggest that reversal of glioblastoma disease signature correlates with drug potency 
for various GBM subtypes. This multiparametric approach may set the foundation for an early-phase personalized 
-omics clinical trial for glioblastoma by effectively identifying drugs that are capable of reversing the disease sig-
nature and have favorable pharmacokinetic and safety profiles.

Key Points

	•	 We leverage numerous pharmacogenetic databases to discover brain penetrant drugs 
that have the potential to reverse the glioblastoma disease signature.

	•	 This multiparametric approach may lay the foundation for an early-phase personalized 
-omics clinical trial.

A multiparametric pharmacogenomic strategy for 
drug repositioning predicts therapeutic efficacy for 
glioblastoma cell lines
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Glioblastoma (GBM) is the most common primary malig-
nant brain tumor, accounting for nearly half of all central 
nervous system neoplasms.1–3 Although there have been 
significant advances in molecular and clinical phenotyping 
of GBM, median survival of patients has remained un-
changed in the last 25 years with a 5-year survival rate of 
13.4%.4–6 Due to the prognosis and the extensive heteroge-
neity of glioblastoma, at both a molecular and cellular level, 
attention has shifted to individualized treatment modalities 
based on transcriptional assessment of tumors.

The goal of genomics-driven oncology is to replace 
failed chemotherapeutic strategies with promising tailored 
treatments using profiling to find druggable targets. This 
form of precision medicine correlates individual pheno-
typic signatures to cellular responses via high-throughput 
drug screening. Over the last few years, large-scale bio-
informatics databases have been established to catalog 
disease signatures and transcriptomic responses to envi-
ronmental and genetic perturbagens. Of these, the Library 
of Integrated Network-Based Cellular Signatures (LINCS), 
Cancer Cell Line Encyclopedia (CCLE), and Chemical 
European Molecular Biology Laboratory (ChEMBL) have 
offered new computational approaches for drug repo-
sitioning by aligning disease signatures, drug-induced 
gene expression changes, and cellular responses.7–10 
Using these systems, the Reversal of Gene Expression 
Score (RGES) was recently established as a measure of a 
compound's ability to reverse the disease-specific tran-
scriptional signature.11 Because RGES positively correlates 
to half-maximal inhibitory concentrations (IC50), RGES may 
be used as a surrogate to identify promising new thera-
peutics for certain diseases.

Here, we leverage extensive clinical and genomic data-
bases (GTEX and TCGA) to link genomic signatures of 
GBM subtypes (classical, mesenchymal, proneural) to 
drug-induced gene expression changes. In this study, we 
employ the previously described RGES system to stratify 
drug candidates capable of treating GBM subtypes by inte-
grating GBM TCGA and CCLE gene expression profiles and 
cellular drug response data. To date, this approach has not 
been utilized in glioblastoma for several reasons: 1)  cel-
lular/genetic heterogeneity in tissue samples, 2) poor CNS 
penetration, and 3) failure to find a druggable target. To ad-
dress these issues, our multiparametric algorithm incorp-
orates the CNS-Multiparameter optimization (CNS-MPO) 
score to facilitate the discovery of compounds with low 
toxicity, neuro-penetrance, and optimal pharmacokinetic 
profiles.12

This manuscript focuses on individualized treatments 
and genomics-driven oncology for glioblastoma treat-
ment by repositioning drugs with optimal pharmacokinetic 
profiles and blood brain penetrance that may reverse the 
disease signature of glioblastoma in a subtype specific 
manner as GBM has been classified into mesenchymal, 
classical, and proneural subtypes. Since differential gene 
expression with The Cancer Genome Atlas (TCGA) tumor 
data is limited in GBM due to lack of corresponding same 
tissue controls, we utilized normal frontal lobe tissue from 
Genotype-Tissue Expression project (GTEx) as normal 
controls for calculating disease signatures. We then util-
ized a previously described summarized reversal gene 
expression metric (sRGES) and the CNS-Multiparameter 
optimization (CNS-MPO) score to stratify drugs that may 
reverse the disease signature with low toxicity, neuro-
penetrance, and optimal pharmacokinetic profiles. This 
multiparametric approach may set the foundation for an 
early-phase, highly personalized -omics clinical trial for the 
treatment of glioblastoma.

Methods

Gene Expression Data Sets

We downloaded preprocessed raw read counts from 
GBM samples in The Cancer Genome Atlas (TCGA) using 
TCGAbiolinks.13,14 Forty GBM cell lines were identified 
from the Cancer Cell Line Encyclopedia (CCLE), and their 
gene expression profiles were downloaded from the CCLE 
Portal (http://www.broadinstitute.org/ccle). Tumor sam-
ples from TCGA were matched to GBM cancer cell lines 
from CCLE, and their gene expression profiles were cor-
related using previous described methods.11,15 Briefly, the 
top 5000 genes ranked by interquartile range from CCLE 
were correlated to tumor sample gene expression using 
Spearman rank correlation. Additionally, for normal brain 
controls, we collected preprocessed RNA-seq data from 
human frontal lobe from the Genome Tissue Expression 
Project (GTEX) portal (http://www.gtexportal.org).

For drug gene expression profiles, we accessed the 
level 4 data from the LINCS L1000 assay using the LINCS 
Data Portal (http://lincsportal.ccs.miami.edu/datasets/). 
The transcriptomic responses of 978 landmark genes after 
exposure to over 25,000 perturbagens, together with the 
corresponding metadata from the L1000 dataset, were 

Importance of the Study

Given the relative resistance and significant 
molecular heterogeneity of glioblastoma, 
personalized treatments that reverse disease 
phenotypes must be explored. This manu-
script leverages numerous pharmacogenetic 
and tissue databases to discover brain pen-
etrant compounds that reverse the glioblas-
toma transcriptomic signature and selectively 

target glioblastoma cells. Our multiparametric 
approach also uniquely integrates pharmaco-
kinetic profiles of drugs that stratifies com-
pounds on their safety, neuro-penetrance, 
and treatment efficacy. This multiparametric 
approach may lay the foundation for an early-
phase personalized -omics clinical trial for 
glioblastoma.

http://www.broadinstitute.org/ccle
http://www.gtexportal.org
http://lincsportal.ccs.miami.edu/datasets/
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retrieved including drug concentration, cell line, and treat-
ment duration.16,17 Only compound-induced gene expres-
sions that demonstrated reproducibility among replicates 
were included in our analysis, as defined as gold signa-
tures in the array. While the L1000 dataset does not spe-
cifically report on the responses within GBM cell lines, we 
have previously shown that using these signatures to re-
verse a GBM disease signature is predictive of the actual 
pharmacologic cellular response in GBM in vitro and in 
vivo.18

Compound Activity Profiles

All GBM cell lines from CCLE were manually matched to 
cell lines in the ChEMBL Version 27 (https://www.ebi.ac.uk/
chembl/) database (Supplementary Table S1). Half-maximal 
inhibitory concentrations (IC50) were extracted from 
ChEMBL for all GBM cell lines; studies with genetically/en-
vironmentally manipulated cell lines were excluded. For 
duplicate assays using the same compound and cell line, 
the median IC50 was calculated (Supplementary Table S2). 
For external validation of the ChEMBL data, compound ef-
ficacy was accessed from the Cancer therapeutic Response 
Portal (CTRPv2, https://portals.broadinstitute.org/ctrp.
v2.1/) for GBM cell lines.19,20 Using previously described 
methods, the median area under the curve (AUC) using 
percent-viability scores was computed with <10 μM as an 
activity threshold for each compound.21

Disease Signatures

Differential gene expression (DGE) between The Cancer 
Genome Atlas (TCGA) and Genotype-Tissue Expression 
Study (GTEx) RNA-seq data were calculated using the 
ReCount2 (Bioconductor.ord/packages/recount).22,23 We 
queried the TCGA/GTEx data using the TCGAquery_re-
count2 function of TCGAbiolinks (v2.8) for glioblastoma. 
Individual patient samples were parsed into their respec-
tive subtypes (Mesenchymal, Classical, Proneural). Given 
similarities in the transcriptomic profile, glioma CpG island 
methylator phenotype (G-CIMP) was included into the 
proneural/neural phenotype.24,25 Supplementary Fig. S1. 
Given the molecular distinction between IDH-mutant and 
IDH wild-type high-grade gliomas, a separate analysis was 
also conducted for the proneural subgroup after excluding 
IDH-mutant tumors. The GTEx data from the frontal lobe 
was used as a control set for normal brain for our analysis. 
There were 49 mesenchymal samples, 39 classical sam-
ples, and 29 proneural samples used in our dataset, for a 
glioblastoma aggregate of 117 samples. These were com-
pared against 120 GTEx frontal lobe samples. By using the 
limma-voom function, we carried out DGE analysis using 
a single-pipeline to avoid batch effects between heteroge-
neous datasets.26

Summarized Reversal of Gene expression Score

Originally adapted from the connectivity score, the re-
versal of gene expression score (RGES) was computed 
as described previously by Chen et  al. Briefly, the RGES 

was defined as esup−esdown, where the enrichment score 
(es), is defined as a compilation of upregulated (esup) and 
downregulated disease genes (esdown) based on a ranked 
gene expression list from the LINCS L1000 dataset. The 
RGES recapitulates the potential of a certain compound/
drug to reverse the disease signature at a given concen-
tration and exposure period. The summarized reversal of 
gene expression score (sRGES) was adapted from Chen 
et  al. to merge the multiple drug expression profiles 
(varying concentrations and incubation periods) into a uni-
fied normalized score using a reference condition (10 μM, 
24 h treatment duration). We correlated the disease expres-
sion profile of the GBM subtype to the tested cell lines, 
and incorporated it into the sRGES score. The code for der-
ivation of the sRGES score is provided on the following 
link: github.com/Bin-Chen-Lab/RGES.11 As described in 
previous studies, we performed a Spearman rank correla-
tion test to assess the nonparametric correlation between 
sRGES and cell viability (IC50) from ChEMBL and AUC from 
CTRP.11,21

Reversed Genes

Our analysis also identified several reversed genes for 
each subtype of glioblastoma and glioblastoma aggre-
gate samples that were specifically reversed by effective 
compounds (IC50 < 10 μM). If a compound had multiple IC50 
values in the ChEMBL database, only the median of the 
values was used. We sorted each gene expression profile 
with upregulated and downregulated genes ranked high 
(on the top) and low (on the bottom) respectively. Reversal 
of upregulated gene designation was given to those genes 
that were ranked lower eg downregulated in the effective 
group (<10 μM) than the ineffective group (>10 μM). We ap-
plied the same principle for downregulated genes. Further, 
to obtain a rigorous list of reversed genes, a leave-one-
compound-out cross-validation approach was employed 
with P  <  .25 as previously described. Finally, only genes 
present in all trials were kept.11 The genes quantified by the 
L1000 assay represent transcriptomic network nodes, the 
expression of which have been reported to adequately re-
flect the activities and state of the cell as a whole as a re-
duced version of the transcriptome. 16 A disease signature 
is derived by comparing tumor tissue to a nontransformed 
tissue reference (ie GTex). Using a nonlinear correlation 
to quantify RGES, a strong negative correlation of a com-
pound signature with the disease signature would reflect 
a reversal of a signature specific to tumor tissue (ie target 
genes). A  more positive correlation coefficient would re-
flect a larger effect on off-target genes, specific to untrans-
formed reference tissue (GTex).

Compound CNS Multiparametric 
Optimization Scoring

Based on previously published methods, each tested 
compound in the LINCS library was attributed to a corre-
sponding CNS Multiparametric Optimization (CNS-MPO) 
score to identify safe CNS compounds with optimal phar-
macokinetic properties and blood-brain barrier penetra-
tion. Each compound is aligned based on the InChI key (the 

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab192#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab192#supplementary-data
https://portals.broadinstitute.org/ctrp.v2.1/
https://portals.broadinstitute.org/ctrp.v2.1/
http://Bioconductor.ord/packages/recount﻿
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab192#supplementary-data
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IUPAC International Chemical Identifier), and physicochem-
ical parameters were obtained including molecular weight, 
calculated partition coefficient (ClogP), calculated distri-
bution coefficient (ClogD), topological polar surface area 
(TPSA), hydrogen bond donors (HBD), and most basic pKa 
(Supplementary Table S3). Using a previously described al-
gorithm, a CNS-MPO index was derived, and compounds 
stratified with an CNS-MPO index >4 (a threshold that cor-
related well to clinical success of marketed CNS drugs).12,27

An overview of our methodology is illustrated in Figure 1.  
The datasets used and/or analyzed during the current study 
are available from the corresponding author on reasonable 
request. IRB approval was not required for this study, as all 
databases used were public and did not include any identi-
fiable patient information.

Results

Generation of Differential Gene Expression 
Profiles

Using Recount2, we generated disease expression signa-
tures by comparing RNA-Seq data from 117 glioblastoma 
and 120 normal frontal lobe samples from TCGA and GTEX, 
respectively. To compare the disease expression profiles be-
tween the samples, we generated principal component anal-
ysis (PCA) plots between the GBM TCGA samples and GTEx 
control samples for the entire brain and frontal lobe sam-
ples Figure 2. PCA analysis revealed differential clustering 
between the tumor samples (TCGA) and control brain sam-
ples (GTEx frontal lobe). Of note, GTEx total brain samples 
(Figure 2B) demonstrate significant locoregional heteroge-
neity depending on the sampled area, thereby justifying the 
choice of frontal lobe as a control. A functional pathway an-
notation of DGE between GTEX and TCGA was performed, 
which demonstrated significant disruption of granulocyte 
adhesion, cAMP-mediated signaling, and G-protein coupled 
receptor signaling (Supplementary Fig. S2).

Summarized RGES Performance

In order to investigate the efficacy and validity of the 
summarized RGES method, the sRGES values of the 
compounds were compared with the compounds' IC50 
(half-minimal inhibitory concentration) values through 
Spearman correlation tests. The sRGES values were signif-
icantly correlated with median IC50 value for the glioblas-
toma aggregate sample (rho = 0.45 and p = 3.07e-6) and 
each of its subtypes (CLA: rho = 0.47 and p = 6.92e-07, MES: 
rho = 0.32 and p = 1.28e-3, PRO: rho = 0.51 and p = 4.87e-8) 
as in Figure 3. Similar correlations were found for IDH wild-
stype proneural glioblastoma samples (rho = 0.45, p = 1.5e-
4) Supplementary Fig. S1.

To further investigate the efficacy and validity of the 
summarized RGES method, Spearman's correlations were 
computed between sRGES values and the compound's 
Area under Concentration–Response (AUC) curve. As with 
the IC50 values, the sRGES and AUC scores significantly cor-
related for the glioblastoma aggregate sample (rho = 0.41 
and p  =  4.42e-10) and each of its three subtypes (CLA: 

rho = 0.4 and p = 1.05e-9, MES: rho = 0.36 and p = 8.39e-8, 
PRO: rho = 0.36 and p = 4.63e-08) as in Figure 4. To deter-
mine tumor type specificity for our model, we compared 
sRGES for other cancers (Breast adenocarcinoma, Liver 
Hepatocellular Carcinoma, and Colon Adenocarcinoma) to 
IC50 for GBM. In this analysis, the correlation sRGES and 
IC50 demonstrated a lower correlation coefficient (mean: 
0.45 vs. 0.41), which is similar to findings described by 
Chen et al. Based on the comparisons with IC50 and AUC 
scores, the sRGES model may correlate with drug potency 
for the given data.

Identified Reversed Genes

Based on a leave-one-compound-out validation approach, 
reversed genes were identified that were significantly re-
versed by effective compounds for each of the tumor 
groups for P < .25. The program identified 9 genes in gli-
oblastoma aggregate (GBM) including CDK1, MELK, and 
PCNA; 4 genes in classical subtype (CLA) including MCM3, 
PPIC, and BIRC5; 14 genes in mesenchymal subtype (MES) 
including CDK5R1, NOTCH1, and TERT; and 23 genes in 
proneural subtype (PRO) including ABHD4, ETS1, and 
TIMP2. The complete reversal gene heatmap for GBM is 
in Figure 5, and heatmaps for CLA, MES, and PRO are in 
Figure 6.

CNS-MPO Scoring

The CNS-MPO Scoring metric could only be computed on 
drugs that had each of the necessary 6 components (ClogP, 
ClogD, MW, TPSA, HBD, and most basic pKa). For the glio-
blastoma aggregate group and each of the subtypes, a list 
of sRGES values for 11,951 compounds was generated. The 
characteristics of each compound were then retrieved from 
LINCS small molecules records and, if the necessary informa-
tion was present, a CNS-MPO score was calculated. Then a 
new list of compounds was created based on filtering for 
sRGES < 0 and CNS-MPO >= 4 (Table 1). For the glioblastoma 
aggregate group (Table 2), mesenchymal subtype, classical 
subtype, and proneural subtype, this yielded 3069, 3036, 
2999, and 2988 compounds, respectively.

Discussion

We have adapted a multiparametric pharmacogenetic 
strategy for drug repurposing for glioblastoma to “re-
verse” the disease transcriptomic signature based on the 
LINCS1000 dataset. Here we demonstrate that our strategy 
may serve as an in silico tool to identify compounds that 
1)  target aberrant genetic pathways in glioblastoma sub-
types, 2) induce cell GBM cell death, and 3) align with the 
pharmacokinetic profile of marketed CNS drugs. By inte-
grating data from publicly available pharmacogenomic 
databases (LINCS, TCGA, GTEx, CheMBL, CTRP), we dem-
onstrate a correlation between drug activity and reversal of 
differentially expressed genes within each GBM subtype.

The tools for the sRGES computation have been pre-
viously described by Chen et al., who effectively demon-
strated a correlation between sRGES and cell viability for 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab192#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab192#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab192#supplementary-data
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Figure 1.  Pathway of methodology. Created with BioRender.com.
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several cancer types. However, application of this algo-
rithm was not translated to GBM since astrocytic tumors 
do not have adjacent normal counterparts in TCGA data-
bases. However, with new data to suggest that the GTEx 
repository can serve as a surrogate for a normal control, 
differential gene expression in TCGA could now be inves-
tigated.28 Given locoregional transcriptional heteroge-
neity in the brain, we utilized normal frontal lobe (one of 
the primary sites for GBM) as a relevant control dataset. 
Here, we use the GTEx dataset as a reference normal 
set using the ReCount2 R-package to assess differen-
tial gene expression. In parallel, we extracted data from 
the LINCS pharmacogenomic database, which categor-
izes drug-induced cellular responses for many cancer cell 
lines through transcriptional analysis postexposure to 
over 41,000 small molecules (perturbagens). The vector 
of transcriptional changes from each perturbagen is then 
utilized to calculate a sRGES score that recapitulates the 
compounds' ability to reverse aberrant cancer gene ex-
pression. Validating this strategy, the sRGES score for each 
compound significantly correlated with in vitro cell toxicity 
and viability in two separate public databases (CHEMbL 
and CTRP) for each GBM subtype respectively.

Over the last decade, three main subtypes of glioblastoma 
have been identified with corresponding mutations: proneural 
(IDH1, PDGFR), classical (EGFRVIII), and mesenchymal (NF1); 

the neural subtype was removed because it was nontumor 
specific.24,25,29 Given the significant transcriptional hetero-
geneity between these subtypes, responses to traditional 
chemotherapeutics may vary, ultimately affecting treat-
ment response and prognosis. Our study demonstrates that 
sRGES inversely correlates to IC50 concentrations/AUC not 
only for glioblastoma aggregate samples but also for each 
subtype of glioblastoma (proneural, mesenchymal, clas-
sical). Additionally, this correlation existed for drug activity 
within the CTRP database, suggesting that sRGES is a useful 
measure for predicting drug efficacy for glioblastoma.

Various synthetic lethality (SL) based computational ap-
proaches have been proposed to target tumor-specific sus-
ceptibilities thereby facilitating drug repositioning.30–32 SL 
approaches leverage loss-of-function mutations to identify 
vulnerable cellular targets like targeting an intact DNA repair 
gene in a cancer cell with intrinsic cellular repair deficiency 
(BRCA mutation). Although SL uniquely offers a potential 
mechanism to overcome cancer resistance by exploiting a 
susceptible cellular pathway, our sRGES approach targets 
multiple aberrant genes in the cancer cell to maximize re-
versal of the oncogenic phenotype towards a normal cell. 
Although less specific for individual cellular pathways, the 
sRGES approach offers a broader perspective on drug repo-
sitioning by identifying drugs that may restore regulation of 
the most aberrant genes for each cancer cell.
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Importantly, we employed a previously described 
multiparametric strategy to identify compounds with 
ideal pharmacokinetic properties for drug repurposing in 
neuro-oncology. The CNS-MPO score can be utilized to iso-
late compounds that optimally align with marketed and 
clinically-proven CNS therapeutics; therefore, this tool is 
well positioned to identify drugs with blood brain penetra-
tion and an ideal safety profile.12 Recently, Rankovic et. al 
validated the CNS-MPO scoring system by demonstrating 
that increasing CNS-MPO scores correlated to increased 
unbound drug concentrations in the brain for over 600 
compounds.33 The CNS-MPO score has been previously 
used to evaluate druggability of novel CNS compounds 
for seizures, depression, and substance abuse disorders, 
but this scoring system has yet to be investigated in 

neuro-oncology.34,35 Several factors principally determine 
the biopharmaceutic success of neurological drugs in-
cluding low molecular weight, polar surface area, and hy-
drogen bond donors/acceptors. With a threshold value of 
4 or greater, the CNS-MPO score incorporates these fac-
tors to identify promising marketed or newly developed 
neuro-pharmaceuticals.

Clinical Safety and Efficacy of Repositioned Drugs

The aforementioned analyses have identified several ther-
apeutic classes which may be repurposed for -omics driven 
chemotherapy. Histone Deacetylase inhibitors (HDACi) 
[vorinostat, panobinostat, Trichostatin-A] remained one 
of the top therapeutic classes with a high sRGES and 
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Figure 3.  Drug efficacy data correlates with sRGES. Spearman correlations between sRGES (summarized reversal gene expression score) 
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CNS-MPO score (>4). HDACi have demonstrated marked 
in vitro efficacy in reducing invasion, vascular mimicry, 
and proliferation of glioblastoma stem cells via epigenetic 

and metabolic reprogramming.36,37 Promising preclin-
ical results have facilitated early phase I  clinical trials 
investigating HDACi in recurrent GBM patients with a 
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tolerable safety profile, but without significant improve-
ment in PFS.38 Although no significant dose-limiting 
toxicities (DLT were noted in early phase trials, HDACi 
may have minor toxicities including thromocytopenia and 
lymphopenia.39 Other repositioned drugs for GBM include 
gemcitabine and cytarabine which are currently approved 
for other solid tumors. Cytarabine (Ara-C) is used widely 
for CNS metastatic disease and has a demonstrated safety 
profile when administered intrathecally. Small retrospec-
tive studies have been conducted to evaluate its utility 

in treating subventricular spread of glioma, and a few 
studies demonstrated modest disease control (~6 months) 
in treatment refractory patients with ventricular spread of 
GBM.40 However, these limited prospective studies using 
cytarabine in combination with other chemotherapeutics 
(cisplatin and hydroxyurea) did not demonstrate improved 
overall survival for recurrent high-grade gliomas.41 Other 
preclinical studies using captothecin have demonstrated 
efficacy in cytoreduction in patient-derived cell lines and 
reducing tumor recurrence in vivo.42,43 Future individual-
ized -omics approaches for GBM drug repositioning may 
be warranted to stratify patients who would benefit from 
targeted treatment using a sRGES-guided algorithm.

Limitations

Our approach for drug repurposing for GBM subtypes 
may have a few inherent limitations prior to clinical trans-
lation. Primarily, the data from our analysis is extrapo-
lated from the LINCS dataset of other cancer cell lines 
from a separate lineage since the LINCS data does not 
specifically assay GBM cell lines. Nevertheless, it has 
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Figure 6.  Using a leave-one out compound validation approach, only genes with reversal designation present in every trial with P < .25 were 
kept to create a list of reversed genes for (A) CLA, (B) MES, (C) PRO. Green means upregulated and red means downregulated regarding the 
compound's effect on the gene. Effective compounds have IC50 < 10 μM, and ineffective have IC50 >= 10 μM.
  

  
Table 1.  Top 5 FDA-Approved Drugs for Each Group Ranked by Most 
Negative sRGES and CNS-MPO > 4

pert_id pert_iname sRGES CNS.MPO

BRD-K81418486 Vorinostat −0.2186586 5.16666667

BRD-A30437061 Camptothecin −0.1817918 4.82333333

BRD-K15108141 Gemcitabine −0.1562845 4.554

BRD-K77908580 Entinostat −0.1478504 4.46978571

BRD-K33106058 Cytarabine −0.1117964 4
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been previously demonstrated that sRGES from other 
nonlineage cell lines significantly correlate with pharma-
cologic cellular response.11,21 Moreover, we have previ-
ously demonstrated that response signatures generated 
from the data of non-GBM cell lines within the L1000 
dataset are predictive of pharmacological response in 
GBM cells in vitro and in vivo when integrated with GBM 
expression data.18 Lastly, we must consider any batch ef-
fects associated with analyzing RNA-seq from multiple 
sources such as GTEx and TCGA. However, since all sam-
ples were processed using a uniform pipeline (ReCount2), 
the confounding results due to batch effects were sub-
stantially mitigated.

Additionally, the differential gene expression from 
TCGA and GTEx does not account for individual 
intratumoral heterogeneity since our methods globally 
assay transcriptomic changes across dozens of patients. 
By incorporating single-cell RNA-seq, we may identify 
several cellular subpopulations within each sample with 
varying sRGES values. New developments in scRNA-
seq techniques have been suggested that intratumoral 
heterogeneity may identify treatment-resistant cellular 
subpopulations that are not readily identified by bulk-
RNA sequencing techniques.44 Additionally, the cellular 
plasticity of malignant glioma cells also complicates 
drug repositioning by theoretically shifting the gene 
expression signature; we could aim more accurately at 
this “moving target” by expanding our multiparametric 
protocol for scRNA-seq platforms.45,46 Such scRNA-seq-
driven drug repositioning programs could identify ther-
apeutic options for treatment-resistant cellular niches 
within the tumor microenvironment.

Conclusion

Our approach helps validate that reversal of glioblas-
toma disease signature may serve as a surrogate for 
drug potency for various GBM subtypes. This compu-
tational method helps identify aberrant gene pathways 
and targets that may play a role in GBM pathophysi-
ology. Since we may collect individual patient tumor 
tissue, our multiparametric strategy may facilitate the 
clinical translation of personalized treatment para-
digms that may be validated by in vitro cytotoxicity 
assays. The combination of in vitro drug screening 
of matched patient-derived glioma cell lines and in 
silico transcriptomic profiling may envisage the clin-
ical response of the tumor to certain FDA-approved 
drugs. Other -omics based approaches (metabolome, 

epigenome, proteome) have also recently been utilized 
for glioblastoma; together, these have helped validate 
novel classification systems, improved prognostication, 
and developed precision-based therapeutic approaches. 
Of these, multi-omic approaches that incorporate meta-
bolic and neurodevelopmental pathways have facilitated 
discovery of novel subtypes of GBM (ie mitochon-
drial subtype), which may portend therapeutic suscep-
tibility.47 By incorporating single-cell and bulk tumor 
RNA-seq, computational approaches have improved 
their sensitivity to detect distinct disease signatures, 
and uncover intratumoral heterogeneity, tumor infiltra-
tion, and diverse regulatory mechanisms.48–50 Single-cell 
transcriptomic techniques have also been employed to 
identify potential therapeutic avenues to target invasive 
tumor cells, glioma stem-cell niches and the tumor mi-
croenvironment.50–52 In this manner, we may identify 
personalized treatment options for most patients using 
this novel computational screening method that can be 
validated in both patient-specific cell lines and in vivo 
models. This multiparametric approach may set the 
foundation for an early-phase personalized -omics clin-
ical trial for glioblastoma by effectively identifying drugs 
that are capable of not only reversing the disease signa-
ture, but also reside in an optimal neuro-pharmaceutical 
niche.
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Table 2.  Effective Compounds (S2) With CNS-MPO > 4 Ranked by Most Negative sRGES for GBM

Drug Rank GBM MES CLA PRO

1 Nadifloxacin Levalbuterol Panobinostat Nadifloxacin

2 Panobinostat Enalaprilat Trichostatin-a Enalaprilat

3 Enalaprilat Panobinostat Nadifloxacin Panobinostat

4 Ranolazine Nadifloxacin Dacinostat Levisoprenaline

5 Trichostatin-a Ranolazine Ranolazine Ranolazine
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