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Wilms tumour (WT), an embryonal kidney cancer, has been extensively

characterised for genetic and epigenetic alterations, but a proportion of

WTs still lack identifiable abnormalities. To uncover DNA methylation

changes critical for WT pathogenesis, we compared the epigenome of foetal

kidney with two WT cell lines, filtering our results to remove common

cancer-associated epigenetic changes and to enrich for genes involved in

early kidney development. This identified four hypermethylated genes, of

which ESRP2 (epithelial splicing regulatory protein 2) was the most

promising for further study. ESRP2 was commonly repressed by DNA

methylation in WT, and this occurred early in WT development (in

nephrogenic rests). ESRP2 expression was reactivated by DNA methyl-

transferase inhibition in WT cell lines. When ESRP2 was overexpressed in

WT cell lines, it inhibited cellular proliferation in vitro, and in vivo it sup-

pressed tumour growth of orthotopic xenografts in nude mice. RNA-seq of

the ESRP2-expressing WT cell lines identified several novel splicing targets.

We propose a model in which epigenetic inactivation of ESRP2 disrupts

the mesenchymal to epithelial transition in early kidney development to

generate WT.

1. Introduction

Wilms tumour (WT; nephroblastoma) is an embryonal

kidney cancer [1,2], which originates from foetal kidney

(FK), due to the failure of the mesenchymal to epithe-

lial transition (MET) that the metanephric blastema

undergoes during early nephrogenesis. Premalignant

lesions (nephrogenic rests; NRs) are often found as

microscopic lesions in the normal kidney (NK) adjacent

to WTs [3]. It is hypothesised that genetic and epige-

netic defects occur during renal development that block

MET, leading to the formation of NRs, some of which

progress to WT [1–3].
The molecular events underlying WT pathogenesis

involve an array of genetic and epigenetic defects [2].

The earliest genetic mutations in WT were found in
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the WT1 gene, which plays a critical role in regulating

MET during nephrogenesis [2]. The Wnt pathway is

also vital in renal development [2], and mutations in

Wnt pathway components including CTNNB1 [4,5]

and WTX (AMER1) [6] have also been found in WT.

Recent genome-wide sequencing studies have identified

mutations in microRNA-processing genes, such as

DROSHA, DICER and DGCR8, and mutations in

other renal developmental regulators, including SIX1,

SIX2 and SALL1 [7–12]. Most of these events show

no strong association with clinical outcome, but TP53

mutations are found in the rare anaplastic variant of

WT, which has a much poorer prognosis than other

subtypes [13].

Epigenetic alterations are also common in WT, espe-

cially at the 11p15 locus, where the frequent loss of

imprinting of the foetal growth factor gene IGF2 is

associated with DNA hypermethylation at H19 [14].

Other epigenetic alterations in WT include loss of

imprinting at 11p13 involving imprinted WT1 tran-

scripts [14,15], global hypomethylation [16], DNA

hypermethylation at individual tumour suppressor

genes such as RASSF1A [16–18], and long-range epige-

netic silencing of the PCDHG@ gene clusters [19].

Despite the identification of many loci with genetic

and/or epigenetic lesions in WT, a proportion of WTs

still lack identifiable driver defects, implying that addi-

tional novel genes are involved in WT pathogenesis

[7]. We previously used genome-wide DNA methyla-

tion analysis to identify novel epigenetic lesions in WT

[19], and here, we report further studies comparing

WT cell lines to foetal kidney. We have identified

novel differentially methylated genes, one of which is

the alternative splicing regulator ESRP2 (epithelial

splicing regulatory protein 2). ESRP2 is known to be

important in epithelial to mesenchymal transitions and

MET [20], suggesting that epigenetic deregulation of

MET may be an important factor in WT development.

We show that ESRP2 is frequently silenced by DNA

hypermethylation in WT and that it acts as a tumour

suppressor gene, regulating alternative splicing in novel

genes, some of which affect pathways known to be

important in kidney development.

2. Materials and methods

2.1. Ethical statement

WT samples were from Bristol Children’s hospital

(BCH), or from collaborators at the Royal Marsden

Hospital (RMH), as part of a UK collaboration. Sam-

ples were obtained with informed written consent (from

parent and/or legal guardian for children less than

18 years old) and with appropriate ethical approval

(E5797, Southwest – Central Bristol Research Ethics

Committee (UK)). All methods were performed in

accordance with the relevant regulations specified in the

UK Human Tissue Act 2004. The study methodologies

conformed to the standards set by the Declaration of

Helsinki. All animal experiments and procedures were

approved by the UK Home Office in accordance with

the Animals (Scientific Procedures) Act 1986. Mice were

maintained at the Biological Services Unit, University

of Exeter, UK. Housing and handling of mice have

been done according to the UK Home Office Code of

Practice: https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/attachment_data/

file/388895/COPAnimalsFullPrint.pdf.

2.2. Cell lines

WT cell lines Wit49 (a kind gift from Professor Her-

man Yeger, University of Toronto) [21] and 17.94

(established in our own laboratory; available from

DSMZ (German Collection of Microorganisms and

Cell Cultures), https://www.dsmz.de/dsmz) [22] were

grown in Dulbecco’s modified Eagle’s medium

(DMEM) with 10% FBS, 100 U�mL�1 penicillin,

0.1 mg�mL�1 streptomycin, and 2 mM L-glutamine, at

37 °C in 5% CO2. WT cell line identity was confirmed

by short tandem repeat analysis (Fig. S1).

The V200 and E200L cell lines were derived by

transfecting Wit49 cells with the inducible expression

vector pBIG2r [23], either empty (V200) or containing

an ESRP2 cDNA insert (E200L). ESRP2 cDNA was

amplified by PCR from IMAGE clone 4810948, using

a forward primer containing a BamHI site and a

reverse primer containing an EcoRV site plus a FLAG

tag (Table S1), then ligated into BamHI/EcoRV-

digested pBIG2r (Fig. S2A). Transfected cells were

selected and maintained in 50 µg�mL�1 hygromycin B

(Santa Cruz Biotechnology). Only the ESRP2-

transfected Wit49 cells (E200L) expressed vector-

derived ESRP2 RNA (Fig. S2B). ESRP2 expression

was induced with 2-5 µg�mL�1 doxycycline (Dox,

Sigma), with maximum ESRP2 protein expression at

72 to 96 h postinduction (Fig. S2C).

2.3. Transient transfection

WT cell lines Wit49 and 17.94 were seeded into 6-well

plates (2 9 105 cells�well�1) and transfected with 1 µg
plasmid expressing FLAG-tagged Esrp1 or Esrp2, or

empty vector (pIBX-C-FF-B-Esrp1/2 [24]), using

FuGENE 6 (Promega), according to the
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manufacturer’s instructions. Transfected cells were

selected with 2.5 µg�mL�1 blasticidin (Sigma) after

three days, and after 5 days, adherent cells were trypsi-

nised and counted.

2.4. Cell growth assays

For mass culture assays, cells were seeded into 6-well

plates (1 9 106 cells�well�1) and treated with

2 µg�mL�1 doxycycline or DMSO vehicle control, with

medium changes every 3 days. Cells were trypsinised

and counted using a Countess Cell Counter and trypan

blue stain to exclude dead cells.

For colony assays, cells were seeded into 6-well

plates (2 9 105 cells�well�1) and treated with

2 µg�mL�1 doxycycline or DMSO vehicle control.

Medium was changed every 3 days, and then at

14 days, cells were fixed, stained with methylene blue

and colonies counted manually.

To monitor proliferation in real time, cells were

seeded in 24-well plates (5 9 103 cells�well�1) and

images were taken in four different fields per well

every 2 h (IncuCyte ZOOM live cell imaging system;

Essen BioScience) and phase confluence was calculated

as a surrogate for growth.

2.5. Transwell assay

Cells were pretreated for 4 days with 2 µg�mL�1 doxy-

cycline or control media and then seeded into Tran-

swell inserts (2 9 105 cells�insert�1 in FBS-free

DMEM; 8 µm pore, PET membrane; Falcon, 353093)

in a 6-well plate. Wells were filled with 1.7 mL 10%

FBS in DMEM to produce a chemotactic gradient.

After 24 h, inserts were washed and cells on underside

of membrane were fixed and stained with crystal violet

and counted manually using light microscopy.

2.6. Scratch assay

Cells were seeded into 24-well plates

(7.5 9 105 cells�well�1) and treated with 2 µg�mL�1

doxycycline or DMSO vehicle control, prior to a scratch

being performed manually in the centre of each well.

Wells were washed with PBS to remove dead cells, con-

trol/doxycycline media replaced, and wells were analysed

at 24 and 48 h via Widefield microscopy, using ImageJ

software to determine percentage wound closure.

2.7. Cell Trace Violet (CTV) proliferation assay

1x106 cells were incubated for 20 min at 37 °C in the

dark in 1 mL of diluted CTV stain (Thermo Fisher;

C34571; prepared according to manufacturer’s instruc-

tions), then staining was quenched using 10% FBS in

DMEM, and cells were seeded into T12.5 flasks. Con-

trols were made by fixing 3x105 stained cells in 1%

paraformaldehyde and stored at 4 °C in the dark.

Seeded cells in T12.5 flasks were treated for 6 days

with 2 µg�mL�1 doxycycline or control media, and

intensity of CTV staining was analysed using a Novo-

Cyte Flow Cytometer and FLOWJO software.

2.8. 5-Aza-2’-deoxycytidine treatment

Cells were incubated in medium containing 2 µM 5-

aza-2’-deoxycytidine (Aza; Sigma, Gillingham, UK) or

drug solvent (DMSO) for up to 6 days, with a medium

change every 2 days.

2.9. Xenografting into nude mice

V200 and E200L cells were transduced with lentivirus

expressing firefly luciferase (Amsbio LVP326), and

transduced cells were selected with blasticidin, according

to the manufacturer’s protocol. For orthotopic kidney

implantation, male nude mice (2 months old; Charles

River) were anaesthetised using isoflurane, an incision

was performed in the left flank of the mice, the kidney

was exteriorised and 3 9 106 cells were injected. Mice

were imaged twice weekly (Xenogen IVIS), following

intraperitoneal injection with luciferin. When a biolumi-

nescent signal above background was detected (demon-

strating the establishment of tumour growth), mice were

injected intraperitoneally with doxycycline three times/

week (50 mg�kg�1 in 5% glucose). Mice were culled

either when tumours grew to the maximum allowed size

(10mm in diameter, according to the animal licence) or

after two months of imaging. The sample size was deter-

mined by power calculations using existing data from

similar experiments performed routinely in Dr Oltean’s

lab. More specifically, the sample size was obtained to

be able to see a significant difference (P > 0.05) for

tumour growth with a power value of 0.80 (> 80%). We

have used statistical principles and formulas available

on the following websites: www.nc3rs.org.uk; http://

www.statisticalsolutions.net/pss_calc.php. We have not

done randomisation in the animal experiments, and

there was no blinding of the investigator.

2.10. DNA extraction and methyl CpG

immunoprecipitation (MCIP)

DNA was extracted from WT cell lines with a DNeasy

kit (Qiagen, Manchester, UK). Human foetal kidney

DNA was obtained from BioChain. MCIP was
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performed as described previously [25] by co-

hybridising methylation-enriched DNA fractions with

input DNA onto a custom microarray (NimbleGen),

based on design 2006-04-28_HG18_Refseq_Promoter

(see GEO entry for further details). Statistical analyses

by ChIPMonk software (https://www.bioinformatics.

babraham.ac.uk/projects/chipmonk/) used windowed t-

tests to identify differentially methylated genes

(Table S2). MCIP data are accessible through GEO

Series accession number GSE153047: https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153047.

2.11. Pyrosequencing

DNA was purified by phenol/chloroform extraction,

bisulphite converted (EZ DNA Methylation Gold kit;

Zymo Research), amplified using a PyroMark PCR kit

(Qiagen) and pyrosequenced on a PyroMark Q96

instrument (Qiagen), using primers listed in Table S3.

2.12. RNA extraction, cDNA synthesis and RT-

PCR

Total RNA was extracted using TriReagent (Sigma)

and DNase treated with TURBO DNA-free (Ambion,

Gloucester, UK). Human foetal kidney RNA was

obtained from BioChain. cDNA was synthesised using

the Superscript IV RT-PCR system (Invitrogen,

Gloucester, UK). Gene-specific primers (Table S1) were

used for end-point PCR (HotStarTaq Plus DNA Poly-

merase; Qiagen), to detect inclusion or exclusion of

alternative exons, after electrophoresis on agarose gels

(1.5%). Quantitative real-time PCR (qPCR) using gene-

specific primers (Table S1) was performed using Quanti-

Nova SYBR Green Mix (Qiagen) on an MX3000P

real-time PCR machine (Stratagene), normalising the

amount of target gene to the endogenous level of TBP.

Human universal RNA (Agilent) was used as a refer-

ence to standardise results between qPCR batches.

2.13. Protein extraction and western blotting

Cells were washed with ice-cold PBS and lysed in cell

lysis buffer (Cell Signaling, London, UK), with complete

mini-inhibitors (Roche) for 10 min on ice, and then soni-

cated for 5 min (Diagenode, Bioruptor). 25 µg proteins

were separated on SDS/polyacrylamide gels and analysed

by western blotting. Primary antibodies were against

ESRP2 (rabbit, Abcam ab155227), FLAG (mouse,

Sigma F3165) and b-ACTIN (rabbit, Abcam AB8227),

followed by secondary HRP-labelled anti-rabbit IgG

(Sigma A6154) or anti-mouse IgG (Sigma A9044).

Chemiluminescence detection was with Lumiglo (KPL).

2.14. Immunofluorescence

Cells were grown on sterile glass slides, fixed for 30 min

at room temperature in 1% paraformaldehyde in PBS,

permeabilised for 10 min in 0.5% Triton X-100 in PBS

and finally rinsed in 50mM glycine in PBS. Fixed cells

were stained using a primary antibody against FLAG

(mouse, Sigma F3165) and secondary antibody against

mouse IgG (Alexa Fluor 488-labelled; Invitrogen) to

detect transfected ESRP2, together with Alexa Fluor

594-labelled phalloidin (Invitrogen) to detect actin.

Antibodies were diluted in PBS + 1% bovine serum

albumin, containing 0.1 µg�mL�1 DAPI to image

nuclei. Slides were mounted in Fluoroshield (Sigma)

and examined with a confocal microscope, acquiring

eight images at 1 µm spacing/field. Maximum intensity

projections were merged using ImageJ software (http://

imagej.nih.gov/ij/).

2.15. RNA sequencing (RNA-seq)

RNA was extracted from E200L cells 96 h after treat-

ment with 2 µg�mL�1 doxycycline, or control solvent

(DMSO), using an RNAeasy kit (Qiagen), then DNase

treated, and quality confirmed using an Agilent

ScreenTape RNA assay. Two biological replicates were

used for RNA-seq (i.e. four samples total). Sequencing

libraries were prepared from total RNA (500 ng) using

the TruSeq Stranded mRNA Library Preparation Kit

(Illumina, Inc., Cambridge, UK) and uniquely bar-

coded adapters (RNA LT adapters, Illumina, Inc).

Libraries were pooled equimolarly for sequencing,

which was carried out on the NextSeq500 instrument

(Illumina, Inc.) using the NextSeq High Output v2

150-cycle kit (Illumina, Inc.). Approximately 300 mil-

lion paired reads (passing filter, PF) were obtained,

divided between the four experimental samples. Next-

Seq Control Software version 2.0.0 and RTA v2.4.6

were used for instrument control and primary analysis,

respectively. Reads from the four samples were

mapped to the human genome (hg19) using the new

Tuxedo Suite of programs (HISAT2, StringTie, Ball-

gown; https://www.ncbi.nlm.nih.gov/pubmed/?term=

27560171). To identify RNA splicing alterations, the

four BAM files generated by HISAT2 were used as

input for rMATS ([26] http://rnaseq-mats.sourceforge.

net/user_guide.htm). Bam files were viewed in the Inte-

grative Genomics Viewer (http://software.

broadinstitute.org/software/igv/) to produce Sashimi

plots of alternative splicing. RNA-seq data are accessi-

ble through GEO Series accession number

GSE154496: https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE154496.
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2.16. Statistical analysis

Comparisons of two datasets were performed using

Student’s t-test or a Mann–Whitney U-test, depending

on whether the data met the normal distribution. A

comparison of three or more groups was performed

using one-way analysis of variance (ANOVA) with

Dunnett’s post-test or using Tukey’s pairwise test. The

Chipmonk software used for MCIP analysis and the

rMATS software used for RNA-seq analysis use Ben-

jamini and Hochberg FDR correction for multiple

testing. For smaller numbers of samples, Bonferroni

correction was used for multiple testing. Numbers of

samples quoted in figure legends (n) refer to biological

replicates. P < 0.05 was considered to indicate a statis-

tically significant difference.

3. Results

3.1. Genome-wide DNA methylation analysis

We used MCIP to identify 225 genes that were hyper-

methylated in two WT cell lines compared with foetal

kidney (Fig. 1A and Table S2). Gene ontology analy-

sis showed that these genes were particularly involved

in chromatin organisation, developmental processes

and transcriptional regulation (Fig. 1B and

Table S4). To distinguish genes that were methylated

specifically in WT, two filters were applied: (a) genes

were removed that are polycomb repressive complex

marked in embryonic stem cells, since such genes are

predisposed to DNA methylation in a wide range of

human cancers [27–29] and therefore might not be

WT-specific; (b) positive selection was applied for

genes that are upregulated in early nephrogenesis,

since their inactivation could induce the MET block

that is critical for WT development [2]. Using these

criteria, four candidate genes were pinpointed:

CHST2, KIT, PTTG1IP and ESRP2 (also known as

RBM35B) (Fig. 1A and Table S2), of which ESRP2

was the most consistently methylated in WT

(Fig. 1C).

ESRP2 was particularly attractive for further study,

because of its known involvement in epithelial to mes-

enchymal transitions in cancer [30]. Support for a role

in WT came from examination of the ESRP2 target

ENAH. ESRP2 induces inclusion of the epithelial-

specific exon 11a in ENAH RNA transcripts [24].

Using RT-PCR, less exon 11A was found expressed in

WTs compared with normal kidney (NK) and foetal

kidney (FK), consistent with downregulation of

ESRP2 in WT (Fig. 1D). We therefore went onto

examine DNA methylation and expression of ESRP2

in two large cohorts of WTs using pyrosequencing

(Figs. S3 and S4).

3.2. DNA methylation of ESRP2 in Wilms tumour

The first cohort of WTs from Bristol Children’s

Hospital (BCH) consisted of tumour samples of all

stages, obtained at surgical resection, prechemother-

apy. 72% of these WTs were hypermethylated at the

ESRP2 (DNA methylation > 25%) compared with

normal tissue (NT) (Fig. 2A and Fig. S4A). The sec-

ond cohort from the Royal Marsden Hospital

(RMH) were from stages 1 to 3, taken at surgical

resection, postchemotherapy. In this different cohort,

78% of WTs were hypermethylated (Fig. 2B and

Fig. S4C). ESRP1 DNA methylation was also tested

in the RMH cohort and found to be very low (< 2%)

in NT and WT, and not significantly different

(Fig. 2B). Additional independent DNA methylation

data were extracted for the ESRP1 and ESRP2 pro-

moters from the data set GSE59157, which showed

hypermethylation of ESRP2 in WTs, with much

lower methylation of ESRP1, that was only margin-

ally different between NT and WT (Fig. 2C). Thus,

ESRP2 DNA was hypermethylated in three indepen-

dent cohorts of WTs, but the ESRP2 paralog ESRP1

was not hypermethylated.

There was no significant association between tumour

stage and ESRP2 DNA methylation (Fig. S5A, B),

nor between ESRP2 methylation and survival

(Fig. S6), nor between tumour histology and ESRP2

methylation (Fig. S7A, C).

ESRP2 is located on chromosome 16q22, a chromo-

somal region showing frequent loss of heterozygosity

(LOH) in WT [31]. No difference was observed in the

ESRP2 methylation in WTs with or without 16q LOH

(Fig. S5C).

Most WTs are thought to develop via premalignant

lesions (NRs) [3]. To characterise the phase of WT

development at which ESRP2 DNA methylation

occurs, it was assayed in two sets of matched NK, NR

and WT. ESRP2 was found to be at a similar level of

hypermethylation in NRs and matched WTs compared

with NKs (Fig. 2D). In contrast, RASSF1A, a tumour

suppressor gene frequently hypermethylated in WT

[18], was not hypermethylated in NRs (Fig. 2D), as

previously reported [16]. Methylation values were also

extracted for NRs from data set GSE59157, and simi-

larly, ESRP2 was significantly more methylated in

both NR and WT compared with NK (Fig. 2E), but

RASSF1A was only hypermethylated in WTs and not

NRs compared with NK (Fig. 2E).
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To investigate whether epigenetic changes, including

ESRP2 hypermethylation, are associated with other

clinical and molecular features, the BCH cohort of

WTs were grouped by hierarchical clustering of DNA

methylation values at four loci: ESRP2, the WT1 anti-

sense regulatory region [15], H19 [14] and RASSF1A

[18] (Fig. S8 and Table S5). Interestingly, of the 22

WTs studied for WT1 mutations, all six WT1-mutant

WTs were in the same cluster (group 3), whereas ten

of the WT1 wild-type WTs were in group 1 or 2 and

six in group 3 (P = 0.015, Fisher exact test). This

difference in epigenetic profiles between WT1-mutant

and wild-type WTs is supported by similar findings in

a recent comprehensive characterisation of molecular

defects in WT [7].

ESRP2 DNA hypermethylation was also observed

in 10 of 16 (63%) non-WT childhood renal tumours

(Fig. S9A), especially in clear cell sarcomas of the kid-

ney and in rhabdoid tumours. In data sets GSE73187

and GSE4487, ESRP2 was also found to be hyperme-

thylated in clear cell sarcomas (Figs S9B, C) and rhab-

doid tumours (Fig. S9C). Interestingly, examination of

A

C

0

20

40

60

80

100

B
la

nk
M

e 
0%

M
e 

10
0%

W
it4

9
17

.9
4

FK
10

8
FK

60
9

FK
18

2
FK

35
1

N
K1

08
N

K
28

W
T0

3
W

T0
6

W
T0

8
W

T3
2

W
T3

5
W

T3
8

W
T4

0
W

T4
1

W
T4

2
W

T4
6

W
T5

1
W

T5
5

W
T5

6
W

T6
3

W
T6

4

%
 m

et
hy

la
tio

n

CHST2
KIT
PTTG1IP
ESRP2

Cell
lines FK NK Wilms tumoursControls

D

B

NK      FK      WT51 WT59  WT39 WT54
+    – +    – +    –+    – +    – +    –

+11a
–11a

Wit49  17.94        FK
+   – +   – +   –

% exon 11A 5           1               30                   50          26           8            7             4            5

Genes upregulated
in renal vesicle
PRC marked genes 

Methylated genes

73

37

1479

258

146
CHST2

KIT
PTTG1IP
ESRP2

2

Fig. 1. Identification of ESRP2 as a candidate hypermethylated gene. (A) Venn diagram showing filtering of the 225 methylated genes that

were identified by methyl CpG immunoprecipitation (MCIP), firstly by negative selection for genes that are polycomb repressive complex

(PRC) marked in embryonic stem cells and secondly by positive selection for genes that are upregulated in the renal vesicle during kidney

development. The full list of methylated genes and filtered lists are shown in Table S2. dev., development. (B) Gene Ontology analysis of

the 225 methylated genes. Only categories with a fold enrichment > 3 are shown; Table S4 for full results. (C) Bar chart of CHST2, KIT,

PTTG1IP and ESRP2 DNA methylation. Controls (Blank, Me 0% (unmethylated DNA control), Me 100% (fully methylated DNA control)), Cell

lines (Wilms tumour cell lines, n = 2), FK (foetal kidney, n = 4), NK (normal kidney, n = 2) and Wilms tumours (n = 15). DNA methylation

was assayed by pyrosequencing; Table S3 for pyrosequencing primers. (D) Alternative splicing of ENAH exon 11A was analysed by RT-PCR

followed by agarose gel electrophoresis in 2 WT cell lines (Wit49 and 17.94), FK, NK and 4 WTs. Representative of n = 3.

635Molecular Oncology 16 (2022) 630–647 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

D. Legge et al. ESRP2 methylation in Wilms tumour

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73187
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4487


TCGA data showed DNA methylation changes in

ESRP2 in several adult cancers, including hypermethy-

lation in two adult kidney cancers (renal clear cell car-

cinoma and renal papillary cell carcinoma; Fig. S9D).

This suggests that epigenetic inactivation of ESRP2

may be involved in the pathogenesis of several types

of renal tumours in adults and children, not just in

WT.

3.3. Expression of ESRP2 in Wilms tumour

In the BCH cohort, expression of ESRP2 in WT was

very low compared with NT (Fig. 3A and Fig. S4B)

and hypermethylation was associated with reduced

expression of ESRP2 (Fig. 3B). In the RMH cohort,

the expression of ESRP2 was also reduced in WT

compared with NT (Fig. 3C and Fig. S4D), but

ESRP1 expression was not significantly different

(Fig. 3C). In data set GSE2712, ESRP2 expression

was lower in WT compared with NT, but ESRP1

expression did not differ significantly (Fig. 3D). Like

methylation results, there was no relationship between

ESRP2 expression and tumour histology (Fig. S7B, D,

E). These results showed that ESRP2 but not ESRP1

expression was reduced in WTs compared with NT

and that reduced expression of ESRP2 was associated

with hypermethylation. When the two WT cell lines

were treated with the DNA methylation inhibitor 5-

aza-2’-deoxycytidine (Aza), there was a 5- to 10-fold

increase in ESRP2 RNA expression (Fig. 3E), suggest-

ing a mechanistic link between ESRP2 methylation

and gene expression.

3.4. Biological function of ESRP2 in vitro

The results described above suggested that ESRP2

may have an important functional role in the develop-

ment of WT. To carry out functional analyses, we ini-

tially used transient transfection to constitutively

overexpress ESRP genes in WT cell lines 17.94 and
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Wit49. Overexpression of ESRP2, but not of ESRP1,

produced strong growth inhibition in both cell lines

(Fig. S10). Due to the strong growth inhibition by

ESRP2, we were unable to establish stable cell lines

using these constitutively active expression vectors. We

therefore transfected the WT cell lines with an
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Fig. 3. ESRP2 expression is repressed in Wilms tumour and regulated by DNA methylation. (A) Dot-boxplot of ESRP2 RNA expression
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inducible ESRP2 expression vector (Fig. S2). Unfortu-

nately, we were unable to establish a stable cell line

from 17.94, but the WT cell line Wit49 was success-

fully transfected, producing the E200L cell line (V200

was the control cell line transfected with empty vec-

tor). E200L showed strong doxycycline-induced

expression of ESRP2 RNA (Fig. 4A) and protein

(Fig. 4B), with the expected nuclear localisation of

ESRP2 protein (Fig. 4D). Induction of ESRP2 drove

the splicing of the known target gene ENAH [24]

towards its epithelial splice form (+exon 11a; Fig. 4C),

demonstrating that the construct produced biologically

active ESRP2 in a WT cell line. There was slight leaki-

ness from the expression vector, with more ESRP2

RNA detected in uninduced E200L cells compared

with V200 cells (Fig. 4A), which probably explains the

increased level of ENAH exon 11a in uninduced

E200L cells compared with V200 cells (Fig. 4C).

Overexpression of ESRP2 was associated with an

apparent redistribution of actin filaments towards the

cell periphery (Fig. 4D), compared to a more cytoplas-

mic distribution of actin stress fibres in uninduced cells

(Fig. 4D), as reported in other systems [32,33].

ESRP2 overexpression caused decreased colony-

forming efficiency (Fig. 4E), as well as reduced growth

rate in mass cultures (Fig. S11). Real-time analysis of

cell density showed a slower cell proliferation rate in

the doxycycline-induced E200L cells (Fig. 4F), associ-

ated with a small but significant decrease in the rate of

cell division (Fig. 4G, H). Cell invasion (Fig. S12A)

and cell motility (Fig. S12B) showed no changes upon

induction of ESRP2 expression.

3.5. Xenograft assays of ESRP2 function in vivo

We used orthotopic xenografts of the Wit49-derived

cell lines, under the kidney capsule of nude mice [34]

(Fig. 5), to examine the effect of ESRP2 expression

in vivo. After treatment with doxycycline, tumours

produced by V200 cells continued to proliferate,

whilst tumours produced by E200L cells stopped

growing, or regressed (Fig. 5A and Fig. S13A, B).

V200 cells produced large tumours in four of five

mice, but only one mouse out of five injected with

E200L cells (1E-L) produced a large tumour (Fig. 5B

and Fig. S13C). Western blotting of excised tumours

demonstrated that doxycycline treatment had induced

high-level ESRP2 expression in all E200L tumours,

with the notable exception of 1E-L (where the tumour

grew larger) and V200-induced tumours (Fig. 5C).

This therefore demonstrated a strong correlation

between ESRP2 expression and suppression of

tumour growth.

3.6. RNA-seq analysis of alternative splicing in

Wilms tumour cell lines

In biological duplicates, we carried out RNA-seq on

E200L cells that were doxycycline-induced (ESRP2-

expressing) or uninduced (non-expressing), obtaining

between 70 and 80 million paired-end reads per sam-

ple. These reads were mapped onto the human gen-

ome, examined for differential gene expression and

used in rMATS software [26] to identify alternative

splicing events.

Very few transcripts, apart from ESRP2, showed

significant changes in RNA expression (P < 0.05, fold

change > 2) when ESRP2 expression was induced

(Fig. 6A, B). Interestingly, one induced gene was

GRHL1, and grainyhead-like transcription factors are

important in both kidney development and MET [35],

making them good candidates for an involvement in

WT. However, we found no difference in expression of

GRHL1 between NT and WT (Fig. S14), which does

not support a role for altered GRHL1 expression in

WT pathogenesis.

In contrast to the lack of altered gene transcription,

ESRP2 induction was associated with over 900 splicing

events involving over 700 genes, with significant

changes (false discovery rate, FDR < 0.05) in skipped

exons, mutually exclusive exons and retained introns

(Fig. 6C, Table S6, S7, and S8). The genes involved

were particularly enriched for biological processes con-

cerned with vesicular and intracellular transport

(Table S9). Although we found many ESRP target

genes in common with other reports [36,37], we also

identified over 600 novel target genes (Fig. 6D). Com-

parison with a recent study of MET-associated alter-

native splicing changes during kidney development [38]

also revealed overlap with some of our target genes

(Fig. 6E). Interestingly, the two lists of genes identified

as overlapping our ESRP2 targets, included five genes

(33–36%) in common (CTNND1, CTTN, FLNB,

MAP3K7 and MPRIP; shown in bold in Fig. 6D, E),

emphasising the importance of ESRP-regulated alter-

native splicing in kidney development.

We validated a selection of putative targets by speci-

fic RT-PCR assays, to examine exon inclusion upon

ESRP2 induction. We successfully validated several

previously identified targets; CD44, ENAH, FGFR2,

SCRIB and SLK (Fig. S15), as well as the novel tar-

gets LEF1, NPHP1 and RAC1 (Fig. 6F, G, H). How-

ever, some putative target genes showed no altered

splicing after ESRP2 induction (Fig. S16 and

Table S10).

To investigate the possible role of ESRP2 target

genes in WT pathogenesis, we examined alternative
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splicing of 12 genes (seven novel and five previously

described) in FK, NK and WT (Fig. 7 and Fig. S17).

Five genes (42%) showed significant changes in the

degree of alternative splicing between normal tissues

and WT (Fig. 7), and seven (58%) did not (Fig. S17,

Table S10).
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4. Discussion

This is the first demonstration of ESRP2 repression

caused by DNA hypermethylation in WT, which

implicates RNA splicing alterations as an important

pathogenic factor in WT development. Investigation of

matched sets of NK, NR and WT (Fig. 2D, E)

suggested that inactivation of ESRP2 by DNA methy-

lation occurs at an early stage in kidney development,

prior to NR formation. We propose that ESRP2 is

essential for the differentiation of the metanephric

blastema into nephrons (Fig. 8B) and that loss of

ESRP2 expression causes a differentiation block, initi-

ating NRs, that can undergo further genetic and
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Fig. 5. Tumorigenicity of ESRP2-expressing WT cells. Orthotopic xenografts of V200 and E200L cells were produced by injecting cells under

the kidney capsule of nude mice (n = 5 for each cell line). When a bioluminescent signal was detected above background (incipient growth

of tumours), mice were injected intraperitoneally with doxycycline (Dox) three times per week, as described in Materials and Methods. (A)

Time course of tumour growth as assayed by in vivo bioluminescence in V200 (left) and E200L (right) xenografts. Plots show tumour signals

days after doxycycline induction (i.e. first doxycycline injection = day zero) for each individual mouse. Plot of the average of the

bioluminescence traces is shown in Fig. S13A. (B) Tumours excised from mice (no tumour was excisable in mouse 1B-0 at day 63,

therefore only four E200L tumours are shown). Full details of tumour size and weight are shown in Fig. S13C. (C) Western blot of ESRP2

protein expression in excised tumours.

Fig. 4. Inducible expression of ESRP2 in a Wilms tumour cell line. V200 is a control WT cell line (transfected with empty vector), and E200L

is a WT cell line expressing doxycycline-inducible ESRP2 (Materials and Methods). (A) ESRP2 RNA expression assayed by qPCR, normalised

to endogenous levels of TBP, in V200 and E200L cells after 72-h doxycycline (Dox) induction, shown as fold induction relative to uninduced

V200 cells. Results are mean �SD of n = 3, P value from paired t-test. (B) ESRP2 protein assayed by western blotting in V200 and E200L

cells after 72-h doxycycline induction. Anti-ESRP2 detected total ESRP2 protein, anti-FLAG detected vector-derived ESRP2 and anti-ACTIN

was used as a loading control. Representative of n = 3. (C) Alternative splicing of ENAH exon 11A was analysed by RT-PCR followed by

agarose gel electrophoresis to detect different sized amplicons, in V200 and E200L cells after 72-h doxycycline induction. Representative of

n = 3. (D) Immunofluorescence of E200L cells, stained for FLAG-tagged ESRP2 (green) and ACTIN (red) in the left-hand panels, and for

nuclear DNA with DAPI (blue) in the right-hand panels, after 72-h doxycycline induction (+Dox), or uninduced (-Dox). Scale bars = 50 µm. (E)

Colony-forming assay of induced (doxycycline-treated) and uninduced V200 and E200L cells, shown as fold colony numbers compared to

uninduced controls after 14 days. Results are mean � SD of n = 3, P values from paired t-test. (F) Cell confluence assay (by IncuCyte),

showing growth of induced (doxycycline-treated) and uninduced V200 and E200L cells. Results are mean � SD of n = 6, P value at 162 h

from paired t-test. Representative of n = 3. (G) H: Cell trace violet (CTV) proliferation assay of induced (doxycycline-treated) and uninduced

V200 and E200L cells. (G) CTV staining of triplicates of induced and uninduced cells showing median fluorescence intensity histograms at

6 days of treatment. Red peaks are controls representing staining of cells at day zero. (H) Dot-boxplot of quantitation of staining at 6 days

(n = 3). P values from paired t-tests of log-transformed values.
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Fig. 6. RNA-seq analysis identifies ESRP2 targets in a WT cell line. RNA-seq was performed on E200L cells with or without 96 h of

doxycycline induction (to induce high-level ESRP2 expression). (A) Volcano plot of P value versus fold induction of transcripts in ESRP2-

expressing E200L cells compared with non-expressing cells. Genes induced > 2-fold with P < 0.05 are indicated in red, and ESRP2 is

labelled. (B) List of genes in A that were induced > 2-fold with P < 0.05. (C) Number of altered splicing events and affected genes induced

by ESRP2 expression. SE; skipped exons, MXE; mutually exclusive exons; RI, retained introns. Tables S6 to S8 for full details. (D) Venn

diagram comparing genes identified in this study (SE + MXE + RI) with two other RNA-seq analyses of ESRP-induced splicing changes

[36,37]. (E) Venn diagram comparing genes identified in this study (SE + MXE + RI) with an RNA-seq analysis of MET-associated splicing

changes in the developing kidney [38]. (F, G and H) Alternative splicing of novel targets LEF1 (F), NPHP1 (G) and RAC1 (H). Left-hand
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epigenetic defects to produce WT (Fig. 8C). Support

for this model comes from studies showing that the

Esrp paralogs are expressed in the developing kidney

[39], with increased expression of Esrp 1 and 2 when

renal precursors undergo epithelial differentiation [38],

and that knockout of Esrp genes in mice decreases

kidney volume, due to a lack of nephrons [40].

Inactivation of ESRP2 as an early premalignant

event in WT development probably explains why we

found no association with clinical features (Figs S5

and S6). It also explains why we found no association

between ESRP2 methylation and LOH at 16q

(Fig. S5C), where the ESRP2 gene is located, because

we have previously demonstrated that 16q LOH occurs

after NR formation [14], that is after ESPR2 hyperme-

thylation.

We have shown that ESRP1, though an ESRP2 par-

alogue, is not repressed by hypermethylation in WTs

(Fig. 2B, C and Fig. 3C, D). This implies that ESRP1

and ESRP2 may have different biological functions

and are regulated differently in some instances, as

recently reported in prostate cancer, where ESRP2 but

not ESRP1 is regulated by androgens [41].

Splicing alterations are frequent in human cancers

[42], including ESRP-induced changes in breast cancer

[43,33], prostate cancer [44,41], renal cell carcinoma

[45] and colorectal cancer [46]. Most studies have

reported expression changes without finding underlying

genetic or epigenetic defects in the ESRP genes them-

selves [46,43,45,41,33]. However, there are reports of

genetic defects in ESRP genes in human cancers,

specifically, microsatellite indels [47] or duplications

[44] of ESRP1. In addition, there are reports of DNA

methylation changes in ESRP1 in prostate cancer [48]

and of ESRP2 in breast cancer [49], and our examina-

tion of TCGA data (Fig. S9D) demonstrated ESRP2

methylation changes in several other adult cancer

types. Thus, our results add to a growing body of evi-

dence that ESRP genes can be either genetically or

epigenetically deregulated in a wide range of human

cancers.

Our functional studies suggested that the main bio-

logical effect of ESRP2 is to regulate cell proliferation

by slowing cell division (Fig. 4E–H and Fig. S11).

Whilst we observed some actin cytoskeleton rearrange-

ment (Fig. 4D), we did not observe significant expres-

sion changes in classical epithelial marker genes

(Fig. 6A, B), nor any changes in cell motility or inva-

sion (Fig. S12), unlike what occurs when ESRP

expression is modulated in adult human cancer cell

lines [32,33,30]. Coupled with our xenograft experi-

ments that identify ESRP2 as a bona fide tumour sup-

pressor gene (Fig. 5), these results suggest that the

tumour suppressor activity of ESRP2 in WT cell lines

occurs mainly by altering cell growth properties, rather

than by affecting cellular differentiation.

Mechanistically, our RNA-seq results demonstrated

that ESRP2 modulated the splicing of a diverse range

of genes, including both well-established and novel tar-

gets (Fig. 6 and Tables S6 to S8). A subset of these

genes showed reduced expression of their epithelial

splice forms in WT (Fig. 7), consistent with DNA
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Fig. 7. Alternative splicing of ESRP2 target genes in Wilms

tumour. (A to E) Left-hand panels: Representative agarose gels of

RT-PCRs of amplicons spanning the alternatively spliced exons

(Table S1 for primers), from FK (foetal kidney), NK (normal kidney)

and WT (Wilms tumour). FGFR2 exon IIIb was detected by

restriction digest with AvaI [24]. Right-hand panels: Dot-boxplots

showing per cent splice inclusion (PSI) in NT (normal tissue) and

WT. P values from t-test. ENAH (A), NT n = 11 (4 FK and 7 NK),

WT n = 17; FGFR2 (B), NT n = 5 (3 FK and 2 NK), WT n = 12;

LEF1 (C), NT n = 8 (5 FK and 3 NK), WT n = 17; SCRIB (D), NT

n = 5 (2 FK and 3 NK), WT n = 9; SLK (E), NT n = 5 (2 FK and 3

NK), WT n = 8.
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hypermethylation-induced downregulation of ESRP2

in WT (Fig 2 and Fig. 3). Interestingly, of the 728

genes that we identified as having their splicing modu-

lated by ESRP2 (Fig. 6), only 62 (9%) are WT1

DNA-binding targets [50], whereas 244 (34%) are

WT1 RNA-binding targets [51] (Fig. 8A). The WT1

RNA-binding targets include all five of the ESRP2-

regulated genes that we found in common between our

results and two other RNA-seq studies (Fig. 6D, E).

This suggests that WT1 and ESRP2 are involved in

the post-transcriptional regulation of a similar set of

genes during renal development. Since ESRP2 hyper-

methylation is an early event, like WT1 mutation

[52,53], this suggests that ESRP2 hypermethylation

may be another important early event in WT

development, which contributes to WT pathogenesis

by inhibiting MET (Fig. 8C). These results, together

with genetic evidence showing defects in miRNA-

processing genes in WT [8–12], reinforce the critical

role that post-transcriptional gene regulation plays in

WT pathogenesis.

5. Conclusions

Our genome-wide DNA methylation analysis of WT

has identified ESRP2 as a novel differentially methy-

lated gene. ESRP2 was frequently silenced by DNA

hypermethylation in WT, and this occurred early in

WT development (in nephrogenic rests). ESRP2 inhib-

ited cellular proliferation in vitro, and in vivo it

ESRP2 

ESRP2

A

B

C

SE + MXE + RI 
WT1 DNA targets: Hartwig et al. 2010
WT1 RNA targets: Bharathavikru et al. 2017

460 24
38

206 548

3711

1053

Fig. 8. ESRP2 action in Wilms tumour. (A) Venn diagram comparing the 728 unique genes identified in this study (SE + MXE + RI, skipped

exons; mutually exclusive exons and retained introns; Fig. 6) with 1663 WT1 DNA-binding targets identified by chromatin

immunoprecipitation in developing kidney [50] and 4503 WT1 RNA-binding targets (protein-coding genes) identified by RNA

immunoprecipitation in M15 mesonephric cells [51]. (B) ESRP2 may be required for epithelial differentiation, to form nephrons during kidney

development. (C) Loss of ESRP2 function by hypermethylation may inhibit normal differentiation and therefore promote persistence of

undifferentiated blastema, leading to nephrogenic rest formation and eventual progression to Wilms tumour. B and C adapted from Fig. 2 in

reference [1].
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suppressed tumour growth of orthotopic xenografts in

nude mice, demonstrating that ESRP2 acts as a

tumour suppressor gene in WT. Using RNA-seq of the

ESRP2-expressing WT cell lines, we have identified

several novel splicing targets, some of which affect

pathways known to be important in kidney develop-

ment. We propose that epigenetic inactivation of

ESRP2 disrupts the regulation of alternative splicing

during the mesenchymal to epithelial transition in

early kidney development, to generate WT.
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