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CHRONIC MYELOPROLIFERATIVE NEOPLASMS

Clonal myelopoiesis promotes adverse outcomes in chronic
kidney disease
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We sought to determine the relationship between age-related clonal hematopoiesis (CH) and chronic kidney disease (CKD). CH,
defined as mosaic chromosome abnormalities (mCA) and/or driver mutations was identified in 5449 (2.9%) eligible UK Biobank
participants (n= 190,487 median age= 58 years). CH was negatively associated with glomerular filtration rate estimated from
cystatin-C (eGFR.cys; β=−0.75, P= 2.37 × 10–4), but not with eGFR estimated from creatinine, and was specifically associated with
CKD defined by eGFR.cys < 60 (OR= 1.02, P= 8.44 × 10–8). In participants without prevalent myeloid neoplasms, eGFR.cys was
associated with myeloid mCA (n= 148, β=−3.36, P= 0.01) and somatic driver mutations (n= 3241, β=−1.08, P= 6.25 × 10–5)
associated with myeloid neoplasia (myeloid CH), specifically mutations in CBL, TET2, JAK2, PPM1D and GNB1 but not DNMT3A or
ASXL1. In participants with no history of cardiovascular disease or myeloid neoplasms, myeloid CH increased the risk of adverse
outcomes in CKD (HR= 1.6, P= 0.002) compared to those without myeloid CH. Mendelian randomisation analysis provided
suggestive evidence for a causal relationship between CH and CKD (P= 0.03). We conclude that CH, and specifically myeloid CH, is
associated with CKD defined by eGFR.cys. Myeloid CH promotes adverse outcomes in CKD, highlighting the importance of the
interaction between intrinsic and extrinsic factors to define the health risk associated with CH.
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INTRODUCTION
Clonal hematopoiesis (CH) is an age-related phenomenon
characterised by a gradual replacement of polyclonal leucocytes
by one or more clones marked by somatic mutations [1, 2] or
mosaic chromosomal alterations (mCA) [3, 4]. CH is associated
with an elevated relative risk of developing haematological
malignancies compared to age and sex-matched controls without
CH [5], and also an elevated risk of developing non-malignant,
immune and inflammatory disorders [6, 7] such as atherosclerotic
cardiovascular disease (CVD) [2, 8], chronic obstructive pulmonary
disease [9] and premature menopause [10].
Chronic kidney disease (CKD) is a common worldwide health

problem defined by low estimated glomerular filtration rate
(eGFR) and/or elevated urine albumin to creatinine ratio (uACR)
[11]. Patients with CKD experience a gradual and progressive loss
of kidney function, but only small minority progress to end-stage
kidney disease (ESKD) and require kidney replacement therapy.
The majority of cases are at an early stage of the disease process
[12], which remains incompletely defined due to variation in eGFR
and albuminuria measurements [13–17].
Like CH, CKD is associated with an elevated risk of CVD and

mortality [18]. Atherosclerotic risk factors for CVD, such as
diabetes, smoking, hypertension and dyslipidemia, are prevalent

in individuals with CKD, but there is an excess risk of CVD
associated with CKD that is over and above that captured by
atherosclerotic risk factors alone. In addition to sharing some risk
factors, CH, CKD and CVD are characterised by persistent low-
grade inflammation [19–22]. however, a specific relationship
between CH and CKD has not been defined. In this study, we
sought to assess the relationship between CH and CKD in UK
Biobank (UKB), an ongoing, prospective UK cohort study of
approximately 500,000 community-dwelling participants aged
40–69 years when recruited between 2006 and 2010.

METHODS
Study cohort
UKB participants provided comprehensive demographic, psychosocial and
medical information during an initial assessment along with baseline blood
and urine samples for genomic, biochemical, and other laboratory tests.
Long-term follow-up was provided via linked medical records [23]. We
focused on participants with both genome wide single nucleotide
polymorphism (SNP) array and whole exome sequence (WES) data (n=
200,361; median age= 58 years, median follow up= 11 years) [24]. All
participants provided informed consent according to the Declaration of
Helsinki; UKB received ethical approval from the North West multi-centre
Research Ethics Committee (REC reference 11/NW/0382).
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Identification of CH
We previously described the identification of myeloid, lymphoid or other
mCA in UKB from SNP array data [25]. The process for identifying likely
somatic driver variants is described in the Supplementary Methods.
Mutated genes were defined as myeloid-neoplasia related (‘myeloid’)
according to previously published criteria [8], other genes were defined as
‘lymphoid’. The complete list of unique putative somatic driver variants
(n= 1611) is shown in Supplementary Table 1. CH was defined as
participants with any mCA and/or any somatic driver mutation; myeloid CH
was defined as the presence of myeloid mCA and/or a myeloid somatic
driver mutation(s); lymphoid was defined by lymphoid mCA and/or
lymphoid mutations, without myeloid mutations or myeloid mCA [8].

Kidney function
The eGFR in units of mL/min/1.73 m2 was calculated in R using the Nephro
package [26] and three different formulae as defined by the Chronic
Kidney Disease Epidemiology Collaboration: creatinine (UKB field: 30700,
eGFR.creat), cystatin-C (UKB field: 30720, eGFR.cys) or creatinine and
cystatin-C (eGFR.creat.cys) [27]. The creatinine-based scores included
ethnicity as recorded in UKB field: 21000. With respect to CKD, patients
were considered as healthy (≥90), mild (≥60 and <90), moderate (≥15 and
<60) or end stage (<15) for each eGFR score [27]. In addition, uACR in mg/
mmol was calculated as a further measure of kidney disease using albumin
in urine (UKB field: 30,500) and creatinine in urine (UKB field: 30,510).
Shrunken pore syndrome (SPS) is typically defined by an eGFR.cys/eGFR.
creat ratio of ≤0.6 in the absence of factors that interfere with cystatin C or
creatinine measurement, such as high muscle mass [28]. We defined
potential SPS as an eGFR.cys/eGFR.creat ratio of ≤0.6.

Discovery and validation cohorts
To investigate the relationship between CKD and either CH or myeloid
neoplasia, the data were split randomly into equally sized discovery and
validation cohorts. Results from the discovery and validation cohorts were
combined using a fixed effect inverse variance weighted meta-analysis
using STATA version 16 (StataCorp LLC, College Station, TX) and Cochran’s
Q test to measure heterogeneity.

The relationship between CH and CKD
To study the association between CH and CKD we excluded 10,144
participants due to (i) missing creatinine or cystatin-C data (n= 9913), (ii)
any form of ESKD (n= 231) that was either diagnosed before study entry
according to relevant ICD10 codes or interventions and procedures as
detailed in the Supplementary Methods, or if any of the three eGFR scores
was <15. Participants with ESKD were excluded due to the possibility of
dialysis and/or erythropoietin treatment that would influence their eGFR
scores and blood counts, and because the relationship between ESKD and
CVD is well characterised. Individuals with diabetes or hypertension were
not excluded. The relationship between CH and CKD was tested using
multivariable logistic regression in R where CKD was used as the
dependant and CH as a binary predictor. CKD was coded into cases (1)
and controls (0) using the eGFR thresholds of <60 or ≥60, respectively [29]
and the analysis was repeated for each eGFR score (eGFR.creat, eGFR.cys,
and eGFR.creat.cys). Logistic regressions were adjusted for potential
confounding variables: age, sex, smoking status, systolic blood pressure,
diastolic blood pressure, cholesterol, high-density lipoprotein (HDL), low-
density lipoprotein (LDL), body mass index (BMI), glycated haemoglobin
(HbA1c) as an indicator of diabetes, high-sensitivity C-reactive protein (hs-
CRP) as a marker of inflammation and the first 10 genetic principal
components. Effect sizes were reported as odds ratios (OR) with 95%
confidence intervals (CI). The relationship between eGFR scores and CH
was tested using multivariable linear regression in R where eGFR status
was treated as the dependant and CH as a binary predictor and correcting
for same confounding variables. UKB did not include follow-up biochem-
ical assessments for the great majority of participants and so incident ESKD
was inferred from recorded hospital episodes as indicated above. Prevalent
and incident myeloid neoplasia are defined in the Supplementary
Methods.

Mendelian randomisation (MR)
MR was used to assess the possibility of a causal relationship between CH
and CKD by using germline SNPs associated with the development of CH
as instrumental variables. Following the STROBE guidelines [30], we
investigated the use of two significance thresholds for selecting

instrumental variables based on their association with CH defined by
driver somatic mutations in a subset of the TOPMed cohort (n= 65,405
total participants; n= 3831 CHIP cases) [31]. The first used a modest
threshold (P < 0.001) to select 380 SNPs with MAF ≥ 0.01 and SNPs
clumped (r2 > 0.001, within 10 Mb) for a liberal analysis which aimed to
investigate the evidence for a true null relationship. In the second,
conservative, analysis we used a stricter threshold (P < 1 × 10–5) to select a
subset of 28 SNPs that were strongly associated with CH and would
provide more robust evidence of causality. The effect sizes on CKD were
obtained from a meta-analysis of 60 GWAS from the CKDgene consortium
(n= 625,219, including 64,164 CKD cases) [32]. We estimated that ~2.4% of
individuals from the TOPMed cohort are also included in the CKDgene
consortium which could inflate false-positive findings [33]. To mitigate
against this, we performed a sensitivity analysis using the estimated effect
sizes in a subset of patients from the CKDgene cohort with European
ancestry (n= 480,698, including 41,395 cases). Detailed information for the
SNPs used in both analyses is shown in Supplementary Table 2. MR was
performed using the TwoSamplesMR package in R [34] to apply the Robust
Adjusted Profile Score (MR-RAPS) methodology which enables the use of
weak instrumental variables, is robust to pleiotropy and considers
measurement error in the exposure estimate [35]. Additional sensitivity
analyses were performed using methods that test the different assump-
tions of MR, specifically the inverse-variance weighted (IVW) method which
performs a meta-analysis for the estimates of the instrumental variants
[36], the MR-Egger method which uses the average pleiotropic effect as
the intercept that allow the use of instrumental variables with pleiotropic
effects [37], and the weighted median method which allows for a subset of
instrumental variables to be invalid [38].

Prediction of adverse outcomes
A Cox proportional hazard model (survival package in R) [39] was used to
determine if the risk of adverse outcome was associated with CH, CKD
defined by each eGFR score or the urine albumin-to-creatinine ratio
(uACR). Adverse outcomes were defined by a composite endpoint of either
death (UKB data release April 2020), myocardial infarction (MI, field 40002,
February 2018) or stroke (field 40006, February 2018). Participants who
suffered MI or stroke before entering UKB were excluded. Follow-up times
were calculated using the lubridate package [40] to determine the duration
between study entry and the earliest of date of death (UKB field 40000),
date of MI (UKB field 40002) or date of stroke (UKB field 40006). Patients
without an adverse outcome were censored at the date of last follow-up
for MI and stroke or the date of they were lost to follow-up (UKB field 191).
Univariate survival analyses were performed for all traditional risk factors
(age, sex, smoking status, LDL, HDL, cholesterol, HbA1c, BMI, hs-CRP,
systolic and diastolic blood pressure). Variables with P < 0.2 were entered
into a multivariate survival analysis in a backward stepwise manner and
retained if they reached nominal significance (P < 0.05).
To assess the potential for a non-linear relationship between eGFR

scores and adverse outcomes, we used a restricted cubic spline function
[41] to transform and segment the eGFR scores. Separate curves were
fitted to each segment to generate a smooth fitted curve. The method was
used to transform each eGFR score using the rms package in R [42] and
default values for the number of knots (n= 5) and degrees of freedom
(n= 4). The regression included the covariates described above. The
adjusted spline values were plotted with 95% CI.
Receiver operating characteristic curves (ROC) and area under the curve

(AUC) metrics [43] were used to evaluate the prediction accuracy of the
multivariable survival models. AUCs were reported for three pairs of
prediction models with and without CH: (i) traditional risk factors, (ii)
traditional risk factors and eGFR.cys and (iii) traditional risk factors and
uACR. Where relevant, P values for all tests were corrected for multiple
testing using the false discovery rate (FDR).

RESULTS
Definition and breakdown on CH in UKB
In a previous analysis of SNP array data from the entire UKB
cohort, we identified 8203 mCA larger than 2 Mb in 5040
participants [44]. In the subset of participants with available WES
data (n= 200,631), we identified 3085 mCA in 2016 participants,
of which 197 (185 participants) were associated with myeloid
neoplasms and 278 (237 participants) were associated with
lymphoid neoplasms. Analysis of the WES data identified 4137
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putative somatic driver mutations (1611 unique variants) in 3863
participants (Supplementary Table 3). In total, 5718 (2.9%)
participants had CH defined by one or more mCA and/or driver
mutations and 194,913 participants were considered as CH-free
controls. For further analysis, these data were split randomly into
discovery and validation cohorts (Table 1 and Supplementary
Table 4).

Assessment of the relationship between CH and CKD
We compared eGFR.cys, eGFR.creat and eGFR.creat.cys in partici-
pants with or without CH after excluding 10,144 ineligible
participants with pre-existing ESKD or missing biochemistry
measures. After excluding ineligible cases, the discovery cohort
consisted of 2735 participants with CH and 92,457 CH-free
controls, and the validation cohort compromised of 2714
participants with CH and 92,581 CH-free controls. As expected,
the cystatin-C-derived eGFR score was lower than the scores that
included creatine [45] and consequently fewer participants were
determined to have moderate CKD, defined by an eGFR score
between 15 and 60, according to eGFR.creat (n= 4194) and eGFR.
creat.cys (n= 4433) compared with eGFR.cys (n= 8304). The
median for all three eGFR scores was lower in participants with CH
compared to those without CH (Fig. 1) and the median uACR was
higher (1.2 with CH versus 1.05 without CH; P < 0.001) indicating
impairment of kidney function in association with CH. Participants
with lower eGFR scores tended to be older, male, smokers, with
low HDL, high LDL, high BMI, high systolic and diastolic blood
pressure, and high albuminuria (Supplementary Table 4).
To determine the association between CH and CKD, we

performed logistic and linear regression analyses where CKD
was coded as either a binary (1=moderate CKD eGFR > 15 and
<60, 0= eGFR ≥60) or as a continuous trait based on each
eGFR score and adjusted for potential confounding variables

(Supplementary Table 5). In the logistic models, CH was associated
with an increased risk of moderate CKD estimated from cystatin-C
scores (eGFR.cys, OR= 1.02 [95% CI: 1.01–1.02], P= 8.44 × 10−8). A
weaker association was observed for eGFR.creat.cys (OR= 1.01
[95% CI: 1.00–1.01], P= 0.04) and there was no association with
eGFR.creat (OR= 1.00 [95% CI: 0.995–1.004], P= 0.93) (Supple-
mentary Table 6). Similar results were obtained from linear
regression analysis where eGFR scores estimated from cystatin-C
were negatively associated with CH (eGFR.cys, β=−0.75, P=
2.37 × 10−4) but not eGFR.creat.cys (β=−0.21, P= 0.33), or eGFR.
creat (β= 0.43, P= 0.03, not significant in the discovery and
validation cohorts) (Fig. 2). For all tests there was no evidence for
heterogeneity between the discovery and validation cohorts (P >
0.05, Cochran’s Q test).
To investigate the relationship between CH and CKD in more detail,

we tested the constituent components of CH for association with
eGFR.cys as a continuous trait using linear regression. Low eGFR.cys
scores were associated with myeloid mCA (β=−4.44, P= 8.90 × 10–5)
but not lymphoid mCA (β=−1.7, P= 0.12) or other mCA (β= 0.61,
P= 0.15). Alterations involving chr9p were the most strongly
associated subtype of myeloid mCA (β=−8.06, P= 8.80 × 10−5).
For CH defined by somatic mutations, myeloid neoplasia-associated
genes were strongly associated with lower levels of eGFR.cys
(β=−1.33, P= 5.52 × 10−7), whereas lymphoid genes were not
significant (β=−1.31, P= 0.125). At the gene level, the relationship
was significant for CH defined by JAK2 (n= 139, β=−1.03, P< 1 ×
10–300) and TET2 (n= 788, β=−1.94, P= 4.50 × 10–4) variants but not
DNMT3A or ASXL1. Again, for all tests there was no evidence for
heterogeneity between the discovery and validation cohorts (P> 0.05,
Cochran’s Q test). Full results for the discovery and validation cohorts
are presented in Supplementary Table 7. The median VAF of CH
defined by myeloid neoplasia associated genes was higher in
participants with CKD (eGFR < 60) defined by eGFR.cys (median

Table 1. CH defined by both acquired mCA and/or driver somatic mutations.

Participants Discovery cohort Validation cohort Total

Males Female Total Males Females Total

N % N % N % N %

Total number 45,198 45 55,118 55 100,316 44,956 45 55,359 55 100,315 200,631

All CH 1286 45 1582 55 2868 1335 47 1515 53 2850 5718

Myeloid CHa 831 46 960 54 1791 885 49 912 51 1797 3588

Lymphoid CHb 135 48 146 52 281 140 46 167 54 307 588

All mCA 431 42 585 58 1016 439 44 561 56 1000 2016

Myeloid mCA 48 53 42 47 90 54 57 41 43 95 185

Lymphoid mCA 57 50 56 50 113 60 48 64 52 124 237

Other mCA 326 40 487 60 813 325 42 456 58 781 1594

All driver mutations 894 47 1027 53 1921 941 48 1001 52 1942 3863

Myeloid genesc,d 805 46 933 54 1738 854 49 890 51 1744 3482

DNMT3A 295 39 470 61 765 348 45 419 55 767 1532

TET2 193 46 225 54 418 188 46 217 54 405 823

ASXL1 103 64 59 36 162 92 64 51 36 143 305

JAK2 37 58 27 42 64 46 57 35 43 81 145

Other myeloid genes 220 54 190 46 410 225 52 207 48 432 842

Lymphoid genes 89 49 94 51 183 87 44 111 56 198 381

Control (CH-free) 43,912 45 53,536 55 97,448 43,621 45 53,844 55 97,465 194,913
a79 participants had both myeloid mutations and myeloid mCA.
bLymphoid CH was defined by lymphoid mCA and/or lymphoid mutations, without myeloid mutations or myeloid mCA. 30 participants had both lymphoid
mutations and lymphoid mCA.
c14 participants had both myeloid and lymphoid mutations and were classed as myeloid.
d218 participants had more than one myeloid gene mutation.
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VAF= 0.24) compared to other participants (eGFR ≥ 60) (median
VAF= 0.21, P= 1.71 × 10–7) but no difference was seen for CKD
defined by eGFR.creat (median VAF= 0.23 vs. 0.21, P= 0.12)
(Supplementary Fig. 1). At the level of individual genes, a
significant difference was only seen for JAK2 with a median VAF
of 0.56 in cases with CKD defined by eGFR.cys compared to
other participants (VAF= 0.20, P= 4.70 × 10–6).
The link between myeloid neoplasms and reduced kidney function

is well established and was replicated in our subset of UKB
participants which included 320 participants with a prevalent myeloid
neoplasms (diagnosed before or within a year of study entry) that was
associated with lower eGFR.cys score (β=−5.22, P= 7.77 × 10–10).
Excluding these cases, eGFR.cys was still associated with myeloid CH
(n= 3,330, β=−1.05, P= 8.80 × 10–5), including both myeloid mCA
(n= 148, β=−3.36, P= 0.01) and myeloid related-genes (n= 3241,
β=−1.08, P= 6.25 × 10–5). Stratification at the gene level identified

associations between eGFR.cys and mutations in CBL, TET2, JAK2,
PPM1D and, to a lesser degree, GNB1 (Table 2; Supplementary
Table 8).
We assessed the relationship between myeloid CH and the risk

of developing ESKD in participants without prevalent myeloid
neoplasms or prior ESKD. Myeloid CH (n= 3330) was weakly
but significantly associated with ESKD incidence (n= 307,
β= 0.002, P= 0.006). Specifically, 0.33% (11 out of 3330) of
participants with myeloid CH developed ESKD after study entry
compared with 0.16% of controls (296 of 184,811).

MR analysis to test causal effect of CH on kidney function
The possibility of a causal relationship between CH and kidney
function was assessed using MR. In a liberal analysis, 380
independent SNPs associated with CH at (P < 0.001) [31] were
used to estimate the effect of CH on CKD (Supplementary Table 2).

-1.5    -1     -0.5       0      0.5      1

eGFR.cys Discovery 2735

eGFR.cys Valida�on 2714

Meta-analysis

eGFR.creat Discovery 2735

eGFR.creat Valida�on 2714

Meta-analysis

eGFR.creat.cys Discovery 2735

eGFR.creat.cys Valida�on 2714

Meta-analysis

β coefficient

-0.87 0.006

-0.64 0.05

-0.75 2.37x10-4

0.46 0.12

0.39 0.2

0.43 0.03

-0.25 0.44

-0.16 0.64

-0.21 0.33

ROsesaCtrohoCrotciderP P

Fig. 2 CH is specifically and negatively associated with eGFR estimated from cystatin-C. eGFR.cys: eGFR estimated from cystatin-C, eGFR.
creat: eGFR estimated from creatinine, eGFR.creat.cys: estimated from both creatinine and cystatin-C. Square sizes represent the precision of
each eGFR score.

CH
CH-free

(A) eGFR.cys

(B) eGFR.creat

(C) eGFR.cys.creat

0 50 100 150

0 50 100 150

0 50 100 150

CH
CH-free

CH
CH-free

Fig. 1 CH is associated with lower eGFR scores. Meta-analysis of discovery and validation cohorts (cases with CH, n= 5449; controls without
CH, n= 185,038). A eGFR.cys: CH, median= 84.4; CH-free, median= 88.6 (P < 0.001; Mann–Whitney test), B eGFR.creat: CH median= 88.7; CH-
free, median= 90.7 (P < 0.001), C eGFR.creat.cys: CH, median= 87.2; CH-free, median= 90.4 (P < 0.001).
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To test the different assumptions and scenarios, several MR
methods were used as recommended and the results corrected
for multiple testing [33]. Only the MR-RAPS method, which is
adapted to test weak instrumental variables as applicable to our
study, identified a positive causal relationship [OR= 1.01; P=
0.029]. However, this relationship failed to reach significance (P=
0.81) in a more conservative analysis that applied stricter
threshold (P < 1 × 10–5) to select 28 SNPs associated with CH
(Fig. 3). Due to the potential limited overlap between cohorts used
to select instrumental variables, we performed a sensitivity
analysis using a subset of samples with European American
ancestry which yielded similar results for the causal association
between CH and CKD [OR= 1.02; P= 0.029]. Detailed results are
presented in Supplementary Table 9.

Prediction of adverse outcomes by myeloid CH in CKD
As expected, established risk factors (myeloid CH, age, sex,
ethnicity, smoking status, cholesterol, HbA1C, HDL, LDL, blood
pressure, BMI, uACR, hs-CRP and eGFR scores) were associated on
univariate analysis with an adverse outcome as defined by a
composite endpoint of death, MI, or stroke (Supplementary
Table 10).
To understand the influence of myeloid CH and CKD on adverse

outcomes, we focused on participants without prevalent myeloid
neoplasms (n= 320) or any prior history of CVD (n= 8459).
Initially, Cox proportional-hazard analysis was used to identify risk
factors unrelated to CH and CKD (Supplementary Table 11), and
then these factors were added into the model. To determine
which of the three eGFR scores was most appropriate to use in the
model, we tested the linearity of each score in relation to outcome
using a restricted cubic spline test, as described previously [45].
Although all three scores were associated with adverse outcomes,
eGFR.cys was more linear and negative compared to the scores
that used creatinine in both the discovery and validation cohorts
(Supplementary Fig. 2). Focusing on eGFR.cys, the risk of adverse
outcomes was higher in subjects who had CKD (HR= 1.9,
n= 1180/6970) compared to CKD free participants (n= 8295/
172,857; P= 8.4 × 10–65) (Supplementary Table 12). The risk of

adverse outcomes was estimated to be 1.56-fold higher (P= 1.4 ×
10–11) in cases with myeloid CH (n= 338/3078) compared to
myeloid CH-free participants (n= 9137/176,749). Testing each
component of adverse outcomes confirmed the previously
reported features of UKB cohort [46] that CH was associated with
all-cause mortality (HR= 1.91, P= 2.5 × 10–10) but did not reach
significance for MI (HR= 1.13, P= 0.38) or stroke (HR= 1.28,
P= 0.15) considered independently, in accordance with previous
findings [44, 47] (Supplementary Table 12).
ROC analysis was used to assess the predictiveness of

multivariable models that incorporated myeloid CH, eGFR.cys
and uACR. The baseline model consisting of age, sex, smoking
status, HDL, HbA1c, systolic blood pressure, hs-CRP, BMI (Supple-
mentary Table 12) and corrected for 10 genetic principal
components had an AUC of 73.3% (72.8–73.9%). The addition of
myeloid CH as a binary factor or eGFR.cys as a continuous trait
improved the predictiveness of the model to an AUC of 73.4% and
74%, respectively, and including both further improved the AUC
to 74.1% (73.5–74.6%), with very similar results achieved in both
the discovery and validation cohorts (Fig. 4, Supplementary
Table 13).
To further investigate the relationship between CH and adverse

outcome in participants with CKD, we stratified the cohort
(excluding prior CVD and prevalent myeloid malignancies), into
participants with moderate renal impairment (eGFR.cys ≥15 to
<60), mild impairment (eGFR.cys ≥60 to <90) and normal kidney
function (eGFR.cys ≥90). We then tested the effect of CH in each
subset using Kaplan–Meier survival analysis. CH increased the
risk of adverse outcome in all groups but was particularly marked
(HR= 1.6, 95% CI 1.2–2.14, P= 0.002) for participants with
moderate CKD (n= 59/226 with myeloid CH compared to
n= 1121/6744 without myeloid CH) (Figs. 5 and 6; Supplementary
Table 14). Much of the risk of adverse outcomes was related to
incident myeloid neoplasms which were diagnosed in 19
participants at a median of 3.6 years after study entry. Of these,
11 (58%) had adverse outcomes in comparison to 48/207 (23%)
who did not develop a myeloid neoplasm during the study period.
Excluding the incident cases reduced but did not eliminate the
risk of adverse outcomes (HR= 1.4, P= 0.05).

Relationship between myeloid CH and SPS
We identified 966 (0.5%) UKB participants with potential SPS
(eGFR.cys/eGFR.creat ratio ≤0.6). Of these, 58 (6.0%) had myeloid
CH compared to 2.9% (n= 5391) of participants with eGFR.cys/
eGFR.creat ratio > 0.6 (OR= 2.2, 95% CI= 1.6–2.9; P= 2.9 × 10–7

Fisher’s exact test), but after eliminating these cases myeloid CH
was still associated with an adverse prognosis in CKD (HR= 1.61,
95% CI 1.17–2.21, P= 0.003) and remained most pronounced for
participants with moderate renal impairment (Supplementary
Fig. 3).

DISCUSSION
In this study we identified that CH, and specifically myeloid CH, is
associated with CKD. The association was not seen with all
markers of CH and, strikingly, not with mutations in DNMT3A or
ASXL1, two of the most common drivers of clonality, although
there was an overall association with clone size. These findings
confirm previous observations that that not all CH is equal
[9, 25, 31], as well as the importance of having sufficiently large
studies to understand the granularity of CH with respect to clinical
outcomes.
We found that myeloid CH is specifically associated with eGFR.

cys but not eGFR.creat and only marginally with eGFR.cys.creat.
Similarly, recent studies have reported the superior utility of eGFR.
cys in predicting the incidence of CVD and mortality in patients
with CKD [45, 48, 49]. In the UK, the cost to measure cystatin C is
10-fold higher than that to measure serum creatinine, and

Table 2. Association between myeloid CH subtypes and eGFR.cys
score after removing participants with prevalent myeloid neoplasms.

Predictor Cases β CI 2.5% CI 97.5% P

myeloid CH 3330 −1.05 −1.54 −0.57 8.80 × 10–5

myeloid mCA 148 −3.36 −5.65 −1.07 9.11 × 10–3

myeloid genes 3241 −1.08 −1.57 −0.60 6.25 × 10–5

DNMT3A 1446 0.14 −0.59 0.87 0.73

TET2 778 −1.74 −2.74 −0.73 1.84 × 10–3

ASXL1 283 −1.59 −3.21 0.03 0.09

JAK2 92 −4.69 −7.56 −1.82 3.21 × 10–3

GNB1 86 −3.51 −6.40 −0.62 0.04

SRSF2 67 −2.42 −5.94 1.11 0.27

TP53 62 −0.01 −3.30 3.29 1.00

PPM1D 61 −5.87 −9.43 −2.31 3.08 × 10–3

SF3B1 52 −2.37 −6.27 1.52 0.32

FLT3 36 −0.65 −5.49 4.19 0.81

GNAS 33 1.89 −2.61 6.40 0.49

NF1 28 −1.03 −6.07 4.01 0.73

CBL 28 −12.14 −17.40 −6.88 3.44 × 10–5

STAG2 27 3.90 −1.37 9.16 0.23

PRPF40B 26 2.96 −2.29 8.21 0.35

CREBBP 24 −3.10 −8.49 2.30 0.34

KDM6A 22 −2.68 −8.49 3.14 0.45

BRCC3 21 −1.72 −7.70 4.27 0.66

IDH2 14 −5.56 −13.78 2.67 0.28

KMT2D 13 −3.43 −10.54 3.69 0.44

59 participants had both myeloid mutated genes and mCA.
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consequently eGFR.creat is widely used for initial assessment of
possible CKD. Although eGFR.cys is recommended to confirm CKD,
this is not believed to be common practice, at least in the UK [45].
Our findings provide further weight to the argument that eGFR.cys
is more informative than eGFR.creat to define CKD.
The finding that myeloid CH is associated with eGFR.cys also

provides further evidence for the importance of chronic
inflammation in CH-related disorders. Levels of cystatin C

correlate generally with oxidative stress and inflammation
[45, 50], a well-recognized feature of CKD [19] that is also
associated with an elevated risk of development of CVD [51, 52].
Other biomarkers of chronic inflammation have been associated
with CH, e.g. C-reactive protein and IL-6. [20, 31] CH predisposes
to haematological malignancies, particularly myeloid neoplasms
[5], and both CKD and chronic inflammation have been described
as features of myeloproliferative neoplasms [53, 54]. Our data
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show that myeloid CH increases the risk of adverse outcomes in
the context of CKD and that this increase is only partly explained
by incident myeloid neoplasms or SPS, a recently described
phenomenon that may be observed in both children or adults
with normal or reduced eGFR and is associated with increased
mortality and morbidity in a variety of settings [28]. Although our
analysis was corrected for hs-CRP, it is possible that part of the
increase in adverse outcomes is due to chronic inflammation
induced by CH.
MR uses genetic variation as a natural experiment to estimate

causality in observational data [33] and has, for example, been
used to detect a causal effect of cystatin C on risk of stroke [55].
Our initial analysis of 380 SNPs that predispose to CH provided
suggestive evidence for a causal relationship between CH and
CKD (P= 0.03), but this link was not supported by a more
conservative analysis of 28 SNPs that are more strongly associated
with CH. Given that two of the most common CH genes (DNMT3A
and ASXL1) were not associated with CKD, and that the 380 SNPs
only explain 3.6% of the heritability of CH [31], the use of MR in
this context is clearly challenging, and may be compounded the
possibility of other factors such as horizontal pleiotropy but these

concerns are partly mitigated by the large sample size of the
GWAS used for CH and CKD.
In summary, the role of CH in the pathogenesis of benign

diseases varies widely and depends on intrinsic factors that define
the clone as well as extrinsic factors that impact the inflammatory
environment [25, 56]. In this study, we have shown that CH is
associated with CKD and confers an adverse prognosis over and
above conventional risk factors for this common disorder. Our
findings suggest that screening for CH in CKD may be of clinical
value to help predict outcomes.
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