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Abstract
Brain network analysis is one efficient tool in exploring human brain diseases and can differentiate the alterations from

comparative networks. The alterations account for time, mental states, tasks, individuals, and so forth. Furthermore, the

changes determine the segregation and integration of functional networks that lead to network reorganization (or recon-

figuration) to extend the neuroplasticity of the brain. Exploring related brain networks should be of interest that may

provide roadmaps for brain research and clinical diagnosis. Recent electroencephalogram (EEG) studies have revealed the

secrets of the brain networks and diseases (or disorders) within and between subjects and have provided instructive and

promising suggestions and methods. This review summarized the corresponding algorithms that had been used to construct

functional or effective networks on the scalp and cerebral cortex. We reviewed EEG network analysis that unveils more

cognitive functions and neural disorders of the human and then explored the relationship between brain science and

artificial intelligence which may fuel each other to accelerate their advances, and also discussed some innovations and

future challenges in the end.
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Introduction

The human brain is a more complex and dynamic network

(Boccatetti et al. 2006). The corresponding structural and

functional connectivity varies with lifespan (Betzel et al.

2016; Gilmore et al. 2018), cognitive activity (Liu et al.

2017b), memory, intelligence (Tang et al. 2010; Tanimizu

et al. 2018), emotion (Chai et al. 2019; Li et al. 2019c),

mental status, such as fatigue (Zhang et al. 2020c), and

disorders. Brain network analysis has been demonstrated to

be an effective tool that helpfully explores the connectivity

patterns to uncover related features and phenomena con-

cerning different brain functions and diseases.

Brain connectivity is usually divided into structural

connectivity for the anatomical link, functional
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connectivity (FC) for statistical dependencies, and effective

connectivity (EC) for casual interaction. FC and EC can

reflect functional integration and anatomical segregation of

the brain (Friston 2009) and have been suggested to be the

accurate representations of the human brain. Moreover, EC

is the more efficient connectivity basestone that is capable

of predicting subjects’ neural states and future activities for

the sake of its causality and directed information flow

(Friston et al. 2003).

The alterations in brain network connectivity are usually

expressed with related network features of affected regions,

such as topological centrality (Zhuge and Zhang 2010),

degeneracy (Friston and Price 2001), which can provide

promising biosignatures for identifying, classifying, or

predicting brain disorders (Du et al. 2018; Fornito et al.

2015) or neural responses (Si et al. 2020). Consequently,

the brain needs to reconfigure its network organization

dynamically, selectively, and adaptively when it confronts

with changing cognitive demands to achieve an optimal

balance between segregation and integration (Parr and

Friston 2018) and unfolds its plasticity (Merzenich et al.

2014).

Frankly, it is one core task to construct a more reliable

and time-varying FC or EC network. According to a mass

of clinical-psychological and neurological studies (An-

ticevic et al. 2015; Brislin and Patrick 2019; Gratton et al.

2018; Wahbeh et al. 2016), signal patterns for network

analysis mainly include functional magnetic resonance

imaging (fMRI), positron emission tomography (PET),

magnetoencephalogram (MEG), and electroencephalogram

(EEG), etc. MEG readily suffers from environmental

interferences (Brookes et al. 2011) and is highly expensive

(Singh 2014), while PET is an invasive nuclear imaging

technique and lacks high temporal resolution (Catana et al.

2012). Comparatively, high spatial-resolution fMRI

(Buckner et al. 2009; Liang et al. 2012; Pasquale et al.

2016) and high temporal-resolution EEG (Brookes et al.

2011) are noninvasive and quite popular, but EEG is quite

low cost and convenient.

Notwithstanding, fMRI is extremely helpful in charac-

terizing the network connectivity in a specific cognitive

task from different brain regions (Contreras et al. 2019),

but just non-linear function of blood volume and deoxy-

hemoglobin (deoxygenated hemoglobin) content (Stephan

and Friston 2010), that is hemodynamic model, which does

not directly measure oscillatory behavior of the brain

electrical activity time-sequentially (Vico Fallani et al.

2008), and is nonmovable. Although relatively poor spatial

resolution, EEG can monitor the brain’s spontaneous

electrical activity, as recorded from low-cost multiple

electrodes precisely placed on the scalp, and possesses high

temporal resolution with about one millisecond. Besides,

EEG can also measure the mixture of several underlying

base frequencies to reflect certain cognitive, affective, or

attentional states. These frequencies vary slightly in indi-

vidual factors, stimulus properties, and internal states, and

have fruitful features, such as amplitude, latency, phase,

frequency tag, and spectral peak, etc., which dynamically

depict the variation of cognitive task, cortical regions, and

thickness (van der Meij et al. 2016). Third, the brain-

computer interface (BCI) auxiliary treatment and rehabil-

itating instruments, such as motor imagery-based (MI-BCI)

(Zhang et al. 2020b) developed in recent decades (Kabbara

et al. 2016; Zhang et al. 2016), highly rely on the EEG

signals. Additionally, to identify reproducible large-scale

networks across neural populations, EEG paves one

hopeful way for high temporal dynamics of the network at

source space (Li et al. 2019d; Sockeel et al. 2016). Ana-

lyzing such time-varying and nonstationary brain networks,

EEG is one irreplaceable candidate in the view of the

temporal- and spectral-phase domain and has been applied

to demystify more and more psychological and mental

functions (Li et al. 2020a; Zhang et al. 2020a).

Our current review collected papers of EEG-based net-

work analysis and applications that focused on the EEG

and time-variant EEG networks. Concretely, after intro-

ducing acquiring and preprocessing data concisely, we

described some major methods of recent advances to

construct stable network connectivity which can effectively

capture the reliable relationships between networks and

EEG recordings in sensor and source space and explored

the reconfiguration mechanism of functional networks in a

specific environment. Thereafter, we reviewed related

studies that investigated the relationships among cognitive,

emotion, diseases, and artificial intelligence (AI) which

originates from brain network, and finally identified the

role of EEG network analysis in all fields, and hoped this

review may provide one promising roadmap of accelerat-

ing brain science and AI.

The rest of this review is structured as follows. Sec-

tion II brings laconically out related work of collecting raw

EEG signals, preprocessing, and extracting features. Sec-

tion III reviews and generalizes some popular methods of

network construction about different types of connectivity

networks. Section IV revisits the applications of network

analysis on cognition and diseases and also discusses the

relationship between AI and the biological brain which is

also an important part since AI is the fuel of brain science.

Section V discusses our understanding of EEG network

analysis, innovations, as well as its potential challenges in

the future. Moreover, to help understand this review

clearly, we gave its roadmap as Fig. 1.
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Data and useful information

The acquisition of raw samples, preprocessing, and feature

extraction cannot be been slighting those are the begin-

nings of the pipeline of network analysis on brain science

compared with network construction, although it is not our

concern in this review.

Acquisition of EEG data

Before modeling of network connectivity, the acquisition

of raw EEG samples must be accomplished. In terms of

different specific tasks and requirements, researchers

should design experimental tasks, and then recruit some

related subjects and collect their data. For instance, Fig. 2

depicts the corresponding experimental procedure of MI to

gather left and right hands and feet of subjects with cere-

bral stroke.

Preprocessing and feature extraction

The aim of preprocessing step is to get reliable and useful

information of subjects, including baseline correction,

bandpass filtering, the removal of some outliers and bad

trials, data segmentation, and denoising with EEGLab

(Delorme and Makeig 2004) and wavelet toolkit. Then,

according to the target of the study, features, such as ERPs

(P300, N100) (Li et al. 2018a), delta, gamma rhythms, or

others, should be extracted from preprocessed data with

primary component analysis (PCA) or other methods.

To understand the above three steps clearly, the tech-

nical contribution (Si et al. 2019) may provide more

details.

Methods of network construction

The brain network topology changes adaptively and tempo-

spatially (Jirsa et al. 2010) when responding to a certain

environment or factor. This is called neuroplasticity of the

brain, and this phenomenon is called reconfiguration or

reorganization which needs to update the ongoing network

connectivity with transient and heterogeneous (various)

connections from resting-state or default mode network

(DMN) connectivity (de Oliveira 2020; Wang et al. 2017).

A large number of academic advances have been pub-

lished to back up the above statement according to long-

and short-term alternations of network topology, where

long-term changes are related to age, damage, intelligence,

or diseases, and short-term changes characterize tempo-

rality and specificity (Wig 2017; Zhang et al. 2020c).

Review (Gilmore et al. 2018) tracks the brain develop-

ment of childhood and remarks that structural and func-

tional brain networks have matured and in latter childhood

are much slower. Conversely, older adults show larger

changes in network organization between resting-state and

task and have increases in between-module connectivity,

related to faster task performance and greater fractional

anisotropy of the superior longitudinal fasciculus (Gallen

et al. 2016). An opinion article (Barbey 2018) has

expressed network topology and dynamics that originate

from individual differences in general intelligence. Cell

report (Griffis et al. 2019) surveys focal brain lesions

reflect the network disconnections of white matter path-

ways rather than the destruction of gray matter regions.

Damage to network hub regions, especially those con-

necting different subnetworks, have been found to cause

the largest disturbances in network organization, lesions,

and the significant alternations in global network topology

regardless of lesion location (Aerts et al. 2016). Scientific

experiments further verify that these diseases contribute to

Fig. 1 The roadmap of our current review. Some subfigures are adapted from the material (Si et al. 2019)
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FC alternations (He et al. 2018; van den Heuvel and Sporns

2019) that visual, sensorimotor, auditory, and language

resting-state connectivity networks are changed in long-

standing type-1 diabetes with degree centrality (Joyce et al.

2010) and eigenvector centrality (Lohmann et al. 2010;

Zhuge and Zhang 2010) mapping, but not disease pro-

gression (van Duinkerken et al. 2017).

Short-term change is the functional network-level inte-

gration altering dynamically and mostly spatially in terms

of tasks and task difficulty, as well as the increased struc-

tural segregation (Cohen and D’Esposito 2016; Hearne

et al. 2017; Simony et al. 2016; Wen et al. 2015). Short-

term change in network connectivity results in short-term

automatization of functional networks. Compared with

long-term learning processes, short-term automatization

(Mohr et al. 2016) is accompanied by decreasing activation

of the frontoparietal network, indicating a release of high-

level cognitive control, and segregation of the DMN from

task-related networks. The short-term task automatization

is activated by the brain’s ability to rapidly reconfigure its

large-scale network organization involving complementary

integration and segregation processes.

This finding (Guo et al. 2018) indicates that an external

periodic visual stimulus can induce the modification of

intrinsic oscillatory activities different from the resting-

state activity at the network level. The further evidence

uncovers how the brain reconfigures from rest idle to task

state (Li et al. 2015a, 2020d; Song et al. 2019) and these

factors on inter-subject’s reconfiguring variability (Li et al.

2020c), which guarantees the brain to efficiently process

the information of the specific MI tasks (Caravaglios et al.

2015; Shine and Poldrack 2018; Zhang et al. 2019) (e.g.,

right or left MI) with ERD (Li et al. 2019d), or provides

one stable and successful auditory control network for

listening (Alavash et al. 2019). Moreover, the reconfiguring

phenomenon also occurs in the DMN under task (Zuo et al.

2018).

The efficiency of brain reconfiguration differs across

individuals. Higher intelligence leads to more efficiency in

network reconfiguration (Cary et al. 2017; Hilger et al.

2020; Schultz and Cole 2016), and high-performing sub-

jects exhibit more efficient brain connectivity which up-

dates in the form of smaller changes in FC from idle-rest to

task (Li et al. 2019a; Zhang et al. 2018). With higher

reasoning ability, such a subject’s brain reorganization

completes more immediately and efficiently (Hearne et al.

2017), and has more language fluency and more increasing

language control network (Schultz and Cole 2016). Like-

wise, memory encoding performance impresses fatally on

connectivity reorganization (Wu et al. 2019).

Concerning the above factors, network analysis is one

reasonable and effective choice to explore how the brain

reconfigures or reorganizes nowadays. Factually, network

construction is one quite important step.

Network construction is to compute the network con-

nectivity matrices from EEG time courses with statistics.

Currently, the graphical theory is one major mathematic

model of the complex network (Liu et al. 2017a). In this

section, it is the concern of how to construct brain FC or

EC networks. Generally, the FC network is undirected

while the EC one is directed that can elucidate the infor-

mation flow and transmission among brain regions, and

accordingly, these methods of network construction will be

divided into two classes.

Fig. 2 One experimental

procedure about MI to gather

left and right hands and feet of

subjects with cerebral stroke
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FC networks

These construction methods of FC networks can be divided

into bivariate and multivariate measures (Jalili 2016; Jou-

daki et al. 2012).

Correlation and coherence are bivariate measures and

linear dependency. Correlation includes cross-correlation,

Pearson’s correlation, and partial correlation. Cross-corre-

lation measures the similarity between two series as a

function of the lag/lead of one relative to the other, and is

suitable to signal epochs of long-term EEG records (Chu

et al. 2012).

Pearson’s correlation measures the temporal-domain

linear dependency of one sensor on another and is impar-

tial. Partial correlation measures the conditional depen-

dency between two sensors that may reduce the prediction

of indirect functional connectivity at the expensive cost

compared with Pearson’s correlation (Jalili and Knyazeva

2011). While coherence measures the frequency-domain

linear dependency between two sensors in a certain fre-

quency whose derivatives are amplitude coherence, phase

coherence (Liu and Zhang 2018), and imaginary coherence

(Nolte et al. 2004; Sanchez Bornot et al. 2018).

The Pearson correlation coefficient between sensors l

and k can be gained as

rlk ¼
covðl; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðlÞvarðkÞ
p ð1Þ

Partial correlation is obtained as

rlkjm ¼ rlk � rkmrlm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2lmÞð1� r2kmÞ
p ð2Þ

where covðl; kÞ is the covariance between sensors (or

nodes) l and k, varðlÞ is the variance of l, rlk as the

impartial correlation between l and k.

For coherence measure, the first step is computed the

cross-spectrum between l and k,

SlkðfnÞ ¼
2

K

X

K

m¼1

Flkðf nÞF�
mkðfnÞ; n ¼ 1; . . .; N=2 � 1 ð3Þ

And then the coherence at each frequency can be nor-

malized form of cross-spectrum Eq. (3).

r2lmðf Þ ¼
Slmðf Þj j2

Sllðf ÞSmmðf Þ
ð4Þ

where K is noted as the epoch number in each brain status,

N as the frequency number, Flkðf nÞ as complex-valued

coefficients of the sensor pair ðl; kÞ, * is the transposition

operation.

Phase order and synchronization likelihood are also

bivariate but nonlinear dependencies between sensors.

Phase order measures phase synchrony between two time

series. Suppose the instantaneous phase of the time

sequences SlðkÞ; k ¼ 1; . . .;M of senor l which has M

samples are written as

hlðkÞ ¼ tan�1 HiltðSlðkÞÞ
SlðkÞ

� �

ð5Þ

Then, the phase synchronization index is denoted as

PS ¼
1

M

X

M

k¼1

expðihlðkÞÞ þ expðihmðkÞÞð Þ ð6Þ

where Hiltð�Þ is the Hilbert transformation, i is the imagi-

nary unit.

Synchronization likelihood measures the conditional

likelihood that the distance between two values differs in

different moments for the same time course. First M

sequences sl kð Þ are combined into state-space vector Sil, the

same as sequences sm kð Þ.

SL ¼ 2

NðN � ThÞ
X

N

i¼1

X

N�Th

j¼i�Th

C dl � Sil � S j
l

�

�

�

�

� �

ð7Þ

where N is the number of vectors, Th is the Theiler cor-

rection number for autocorrelation, and C(�) is the step

function.

S-estimator is a multivariate and related-entropy mea-

sure and gauges the inter-group synchronization between

groups (sensors located in one network as a group) based

on the eigenvalues of the correlation matrix formed by

inter- and between-group correlation matrix (Joudaki et al.

2012; Yi et al. 2020). The S-estimator is defined as

Se ¼ 1þ
PM

i¼1 k
0
ilogðk

0Þ
logðMÞ ð8Þ

where k
0

i is the normalized eigenvalue of the correlation

matrix of time series S.

Its derivative is the S-Renyi estimator which is based on

Renyi entropy and more robust (Sizemore and Bassett

2018). Compared with the front amplitude-synchrony ones,

multivariate phase synchronization measures the mean

phase coherence, which extends Eq. (6) with vectors and

matrix. To compare with these methods, computational

stimulation (Jalili 2016) has been done and demonstrated

that coherence is more robust for increasing noise, but

cannot capture the nonlinear interconnections as the same

as correlation, compared with synchronization and phase

order which are sensitive to volume conduction effect.

More novel algorithms are also applied to construct reliable

networks, for instance, visualization of the coherence

matrix (Ji et al. 2018) for improving spatial performance,

median coherence estimator robust against artifacts (Dukic

et al. 2017).
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EC network

EC network can articulate information flow (or causal

influence of neuronal populations) with directions and

time-stages for dynamical brain structural and functional

organization under different tasks, and so it is widely used

in clinical and neurological analysis. There are several

popular methods to model EC networks.

Dynamical causal modeling

Compared with structural equation modeling for static

dependencies of brain regions (Friston 2011), dynamical

causal modeling (DCM) based on Bayesian framework was

first proposed to analyze nonlinear brain network connec-

tivity with a deterministic causal model of neuronal

responses to external perturbation (Friston et al. 2003) for

first fMRI data then EEG (David et al. 2006; Fastenrath

et al. 2009), and reveals how neural activity is generated

and neuronal variables fluctuate over separable timescales

(Cooray et al. 2016). DCM can provide more promising

and helpful psychological and neuropsychological signa-

tures, such as on schizophrenia (Fogelson et al. 2014;

Friston et al. 2016a; Zhou et al. 2018), Alzheimer’s disease

(Penny et al. 2018), epileptic seizures (Bomela et al. 2020;

Cooray et al. 2016), stroke (Bönstrup et al. 2016, 2018),

drug-abstinent (Zhao et al. 2017), psychotic disorders (Dı́ez

et al. 2017) and so on.

DCM is computed according to EEG signals’ state

equations and their responses,

_s ¼ f ðs; e; hÞ
h ¼ gðs; hÞ

(

ð9Þ

where s denotes the neuronal states of cortical sources

which must be transformed from scalp-level EEG signals,

e denotes external stimuli, and h denotes free parameters

which can optimize the difference between the predicted

and the observed EEG series.

And then the responses are convoluted to obtain its

vectorized forms and associated likelihood,

z ¼ vecðhðhÞ þ ShSÞ þ e

pðzjh; cÞ ¼ NðvecðhðhÞ þ ShSÞ; diagðcÞ � EÞ

(

ð10Þ

Last, the Bayesian inference model is expressed as

pðhjz; vÞ ¼ pðzjh; vÞpðh; vÞ
pðzjvÞ ð11Þ

where S is made of one block diagonal matrix with base

components of the EEG responses, e denotes the Gaussian

white noises and its vector as c which is convoluted (�)

with E the error’s temporal auto-correlation matrix, v is the

predicted cortical signal’s model. The optimized �h will be

gained while the variational free energy of Eq. (11) is

convergent and minimal.

Bayesian inversion in DCM serves to identify the

structure of the brain connectivity network. Such conver-

gence and speedup of the inversion issue should be got

attention (Friston et al. 2003; Sengupta et al. 2014; Wang

et al. 2013; Yao et al. 2018). Besides, Bayesian inference

algorithms in group DCM analysis are mostly based on

Laplace assumption which violates the robustness, but

Bayesian model reduction (Friston et al. 2016b) is verified

that makes an effect on the robustness, and group DCM

with empirical Bayes (Friston et al. 2015) also differenti-

ates the insignificant variability between subjects (Litvak

et al. 2015) and estimates efficiently. To further uncover

the relationships between intrinsic fluctuations in activity-

dependent neuronal coupling and contextual factors, three-

level hierarchical parametric empirical Bayes is proposed

to assess such fluctuations in DCM connectivity parameters

(van de Steen et al. 2019).

Granger causality and partial directed coherence

Granger causality (GC), based on linear vector autore-

gressive models of stochastic time-series data, precedes

and predicts the effects among variables (Granger 1969) in

both time and frequency domains. Partial directed coher-

ence (PDC) is a GC measure in the frequency domain and

can be combined with graph theory to analyze EC networks

under different mental tasks (Huang et al. 2016) and rest-

ing-state brain data (Biazoli et al. 2013). To improve the

robustness in estimating inaccuracy related to finite time-

series samples, generalized PDC keeps the normalizations

of PDC and achieves its variance stabilization (Baccala

et al. 2008). PDC combined with multivariate empirical

mode decomposition reveals that discriminates EC exis-

tence of bilateral hemisphere and contralateral lateraliza-

tion during MI tasks (Liang et al. 2016). Compared with

bivariate GC analysis, conditional multivariate Granger

causality (cMVGC) is less sensitive to false indirect con-

nections (Olejarczyk et al. 2017). Based on informatics

theory for modeling EC networks, symbolic transfer

entropy is verified to be more reliable and robust irre-

spective of sessions when comparing to vector autore-

gression or MVGC (Ye et al. 2020).

EEG recordings are usually fatally contaminated by

artifacts or outliers (e.g., eye movement (Brunner et al.

2016)) which may lead to network distortion. These algo-

rithms with EEG network analysis can suppress the influ-

ence of outliers and capture reliable causal relationship by

Lp (0\ p\ 1)-norm Granger Causality (Lp-GA) (Li et al.

2017), least absolute Lp (0\ p\ 1) penalized sparse

Granger (Bore et al. 2020), Lp-norm PDC (Li et al. 2018c)

given the temporal and frequency domain respectively.
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There is an example to explain the network construction for

EEG raw signal with outliers, shown in Fig. 3. The meth-

ods in these publications ( Bore et al. 2020; Li et al. 2018c)

are derivatives from Lp (Li et al. 2017). Hence, we give

some technical details here.

Lp (0 < p < 1)-norm Granger causality for outlier removal
in EEG recordings Supposing M brain signals

S1; S2; . . .; SM as joint stationary random processes,

whose observed values at time point k are denoted as

Sit 2 R, i ¼ 1; 2; � � � ;M; t ¼ 1; 2; . . .; T . In the linear

regressive model, each process can be predicted by its past

information and past information of other variables, and

described by

S1ðtÞ ¼
X

q

i¼1

a11ðiÞS1ðt � iÞ þ
X

q

i¼1

a21ðiÞS2ðt � iÞþ � � �

þ
X

q

i¼1

aM1ðiÞSMðt � iÞþg1ðtÞ; varðg1ðtÞÞ ¼ R1

S2ðtÞ ¼
X

q

i¼1

a12ðiÞS1ðt � iÞ þ
X

q

i¼1

a22ðiÞS2ðt � iÞþ � � �

þ
X

q

i¼1

aM2ðiÞSMðt � iÞþg2ðtÞ; varðg2ðtÞÞ ¼ R2

..

.

SMðtÞ ¼
X

q

i¼1

a1MðiÞS1ðt � iÞ þ
X

q

i¼1

a2MðiÞS2ðt � iÞþ � � �

þ
X

q

i¼1

aMMðiÞSMðt � iÞþgMðtÞ; varðgMðtÞÞ ¼ RM

ð12Þ

where q is the maximum number of past observations in the

model, and aijði ¼ 1; . . .;M; j ¼ 1; . . .;MÞ is the coefficient
vector, which quantitatively describes the influence of the

activity of SiðtÞ on SjðtÞ. Rkðk ¼ 1; . . .;MÞ is the covari-

ance of the residuals between the expected Sk and the

predicted bSk.

Let Wk ¼ ½a1kð1Þ; . . .; a1kðqÞ; . . .; aMkð1Þ; . . .; aMkðqÞ� be
the multivariate autoregressive (MVAR) coefficients, with

M being the number of time series and Ck ¼ ½Skðqþ
1Þ; Skðqþ 2Þ; . . .; SkðNÞ�T be the N � q variables to be

predicted for Sk, with N being the length of the signal.

Set A 2 RðN�qÞ�ðM�qÞ, the design matrix, as

A ¼ B1 B2 � � � Bk � � � BM½ �

with Bi ¼

SiðqÞ Siðq� 1Þ � � � Sið1Þ
Siðqþ 1Þ SiðqÞ � � � Sið2Þ

..

. ..
. . .

. ..
.

SiðN � 1Þ SiðN � 2Þ � � � SiðN � qÞ

2

6

6

6

6

4

3

7

7

7

7

5

ð13Þ

To clearly understand the causality linkage for the time

series, taking a system with a three-time series as the

example, the outlier covariance matrix can be written as

R ¼
R11 R12 R13

R21 R22 R23

R31 R32 R33

2

6

4

3

7

5

¼
varðg1Þ covðg1; g2Þ covðg1; g3Þ

covðg2; g1Þ varðg2Þ covðg2; g3Þ
covðg3; g1Þ covðg3; g2Þ varðg3Þ

2

6

4

3

7

5

ð14Þ

where all gi are the residuals estimated from the MVAR

parameters. The noise covariance matrix from the restric-

ted model of the system to measure the influence from S2
on S1 can be written by

R� ¼ R�
11 R�

13

R�
31 R�

33

� 	

¼ varðg�1Þ covðg�1; g�3Þ
covðg�3; g�1Þ varðg�3Þ

� 	

ð15Þ

where all g�i are the noises estimated from the autoregres-

sive model omitting S2. Then, the influence from the pro-

cess S2 on S1, conditioned on the process S3, is obtained by

F2!1j3 ¼ ln
R�
11

R11

ð16Þ

and the statistical significance for both Si to cause Sj and Sj
to cause S can be determined by the F-statistic.

Then, we obtain the solutions of Eq. (12) from the

optimization function defined in Lp (p� 1) norm space to

improve the GA’s robustness to the outlier effects as

W� ¼ argmin
W

f �k ðWÞ ¼ argmin
Wk

Ck � AWkk kpp

¼ argmin
Wk

X

N�q

i¼1

Skðqþ iÞ � Aði; :ÞWkj jp
ð17Þ

where �k kp denotes the Lp (p� 1) norm of a vector. The

gradient for the function is
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g ¼ p
X

N�q

i¼1

Skðqþ iÞ � Aði; :ÞWkj jp�1
sgnðiÞð�ATði; :ÞÞ

ð18Þ

where the polarity function sgnðiÞ is set as

sgnðiÞ ¼ 1 Skðqþ iÞ � Aði; :ÞWk [ 0

�1 Skðqþ iÞ � Aði; :ÞWk � 0




ð19Þ

By the iteration of computing the gradient g, we can find

the optimal parameter W� and obtain the predicted process

Ck under different p.

Lp (p� 1)-GA is verified that it can also capture the

intrinsic information of the time series rather than fitting

the outliers.

Directed transfer function

Directed transfer function (DTF) is evolved from a multi-

variate connectivity estimator for GC analysis that can

discriminate subtle variability between subjects with the

neuronal disorder and healthy controls (Blinowska et al.

2017; Maharathi et al. 2016), but improper preprocessing

may result in misleading results because DTF is insensitive

to volume conduction (Kaminski and Blinowska 2014).

Time-varying network

The above methods of network construction are ignorant of

the temporal-variability feature of neural signals. Markov

chain is a mathematical model that can describe the

Fig. 3 Lp norm PDC for EC

network analysis. A Raw

signals. B The actual network

model, the green line for

monodirectional connectivity,

and the red one for bi-

directional connectivity. C The

connectivity networks are

estimated under different

artifacts or outliers by different

PDC algorithms (least square

PDC, Lasso-PDC, Lp-norm

PDC, where p values are set as

1.0, 0.8, 0.4), and the results are

shown as (C-a)–(C-e). D The

valuation performances of these

PDCs are displayed as (D-a)–
(D-e). Adapted from the

reference (Li et al. 2018c)

24 Cognitive Neurodynamics (2022) 16:17–41

123



transition from one state to another under certain proba-

bilistic rules and just be suitable for such stochastic-like

neural activities and useful for the construction of both FC

and EC. The Markov-based framework can infer the time-

varying networks from EEG data (Williams et al. 2018),

and also unveil the fast sub-second network dynamics of

EEG allied with fMRI data (Hunyadi et al. 2019), and

microstates (Dimitriadis et al. 2015) and corresponding

micro-FC networks (Duc and Lee 2020). However, the

Markov-based model infers that the transitions between

networks are not random (Vidaurre et al. 2017) with fMRI

biomarker. If it is possible in the future, whether the EEG-

based Markov model also attains the consistency of such

transition nonrandom should be of interest.

The time-varying network is computed in term of nor-

malized multivariate adaptive autoregressive (MVAAR)

equations:

ZðtÞ ¼
X

M

i¼1

lði; tÞZðt � iÞ þ eðtÞ ð20Þ

where l i; tð Þ is the coefficient matrix of the time-varying

model, e tð Þ is the Gaussian noise. And then Eq. (20) is

transformed into a frequency form, while Kðf ; tÞ is the

form of in frequency domain, and m is the order of the

MVAAR model, and Kij as the element of Kðf ; tÞ describe
the flow direction between the ith and the jth element at

moment t as,

eðf ; tÞ ¼ lðf ; tÞ � Zðf ; tÞ
Zðf ; tÞ ¼ l�1ðf ; tÞ � eðf ; tÞ ¼ Kðf ; tÞ � eðf ; tÞ

ð21Þ

The directed causal flow between the ith and the jth

element at moment t and frequency f is normalized as

d2ijðf ; tÞ ¼
Kijðf ; tÞ
�

�

�

�

2

Pn
k¼1 Kikðf ; tÞj j2

ð22Þ

For one single node, from which the total information

flow can be obtained between the concerned frequency

range ½f 1; f 2� as,

q2ijðtÞ ¼
Pf2

f1
d2ijðf ; tÞ

f2 � f1
ð23Þ

For the former any multivariate autoregressive model, if

its parameters are estimated by Kalman filters, it belongs to

time-varying modeling (Pagnotta and Plomp 2018). Dif-

ferent Kalman filters correlate with the dipole selection of

EEG (Ghumare et al. 2018). To prevent fallacious signals,

an adaptive Kalman filter (Rubega et al. 2019) can estimate

accurately the parameters of the time-variant network

model. To make the network topology robustness from

noise, optimized Kalman filter proposed gets clearer and

hidden information in real EEG recording (Pascucci et al.

2019). Time-varying network connectivity exactly reveals

more latent information, such as, all states of behavioral

microsleep (Toppi et al. 2016), epilepsy (Lehnertz et al.

2017), than static network connectivity.

Source-level or cortex connectivity networks

The above connectivity networks are modeled on the sen-

sor or scalp space directly. But wide-area overlapping of

scalp channels leads to volume conduction for EEG

recordings (Brunner et al. 2016), which is also why it has a

poor spatial resolution. Such that, sensor-level network

connectivity cannot interpret the connectivity measure

briefly and maybe is unreliable to analyze brain networks,

and doesn’t allow to infer about interacting regions (Pa-

padopoulou et al. 2019), or the scalp-level results are less

reliable than source-level ones (Lai et al. 2018). Therefore,

source-level or cortex connectivity and source localization

are of interest and importance.

Publication (Athanasiou et al. 2017) demonstrates that

cortex activation network connectivity makes the infor-

mation flow on cortical areas more clear and finds the

similarity of motor execution and MI. The coupling

between cortical brain dynamics partially is due to white

matter connectivity across multiple brain rhythms and may

provide some evidence for segregation and integration at

fast time scales for neural information processing (Chu

et al. 2012). Recent studies also find that higher integration

in the theta band and lower segregation in the alpha band

during working memory (Dai et al. 2019), and the imbal-

ance of brain segregation and integration for patients with

disorders of consciousness (Rizkallah et al. 2019). By

reconfiguring the EEG source-level functional network

connectivity, there is a negative correlation between psy-

chological resilience and functional network flexibility

(Paban et al. 2019), and this research (Li et al. 2018d) also

reveals some significant differences of functional network

connectivity between- and within-subject groups. Addi-

tionally, some advances (Lai et al. 2018; Seeber et al.

2019) as well demonstrate that the effect of scalp-level

topology analysis or diagnosis of neural disorders is similar

to cortical- or subcortical-level ones by EEG source

localization or reconstruction from high-density scalp

recordings. Certainly, either source- or sensor-level net-

work analysis depends on specific research and

applications.

Before constructing source-level connectivity or source

localization, preprocessing must be done, such as spatial

filters or blind spatial source separation (Michel and Brunet

2019; Oosugi et al. 2017), which is the same as scalp-level

connectivity. And then, the inverse problem is of concern.

Notwithstanding, about three factors decide on the pro-

cessing (Hassan et al. 2015): (1) the number of scalp
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electrodes; (2) EEG inverse problem and algorithm used to

measure the undirected or directed connectivity; (3) fre-

quency bands to estimate FC or EC among neocortical

sources. As a result, low-, mid-, and high-density EEG

must match appropriate modeling algorithms to improve

the performance of source-space connectivity (Barzegaran

and Knyazeva 2017; Hassan et al. 2015; La Foresta et al.

2019). EEG inverse problem is ill-posed for that the

number of variables observed is remarkably smaller than

causal factors (the number of points in the brain where this

surface activity could come from). Hence, some additional

constraints (e.g., statistical or physiological (Muñoz-

Gutiérrez et al. 2018), and non-statistical ones (Asadzadeh

et al. 2020)) should be posed to make sure the EEG inverse

problem well-posed. For parametric inverse problems, the

empirical Bayes framework with one data-driven estimator

is the most popular to solve cost-function (Hu et al. 2018;

Jatoi et al. 2016; Le Cam et al. 2017; López et al. 2014).

Certainly, it is worth heeding that these problems include

convergence, computational load, and global or local

minima which affect the accuracy of source reconstruction

or localization (Wipf and Nagarajan 2009).

Source Y tð Þ can be reconstructed from the measured

EEG data SðtÞ with N channels and expressed as,

SðtÞ ¼
s1ðtÞ
..
.

sNðtÞ

2

6

4

3

7

5

¼ L �
y1ðtÞ
..
.

yNðtÞ

2

6

4

3

7

5

þHðtÞ ¼ L � YðtÞ þHðtÞ

ð24Þ

where L 2 RN�K is the lead field matrix and HðtÞ as the

measurement noise. And the EEG inverse problem is to

find the optimal estimated value �YðtÞ ¼ W � SðtÞ with get-

ting best W ¼ L�1 by Bayesian inference.

Eventually, network connectivity well-constructed cer-

tainly furthers help scientists or doctors to explore more

things in the brain, such as cognitive function, neural

disorder.

Applications of network analysis

Cognition and network connectivity

Cognition subserves a set of mental processes referring to

gaining knowledge and comprehension, which includes

learning, thinking, remembering, judging, problems-solv-

ing, and attention, and relates to several brain regions, such

as portions of the superior and lateral frontal cortex, medial

parietal cortex, the cingulated and the insula (Petersen and

Sporns 2015). Various cognitive activities are depicted by

different cognitive networks, such as semantic network,

synaptic network, informational network, and social

network (Siew et al. 2019), which dynamically vary in

anatomical segregation and functional integration. There-

fore, one effective tool should be a need. Network con-

nectivity has the great potential to reveal dynamic

interdependencies between regions during cognitive activ-

ity with time-series EEG signals (Li et al. 2018a) (shown in

Fig. 4).

In these papers (Xu et al. 2014b; Zhang et al. 2013a, b),

experiments demonstrate that periodic visual stimuli can

activate parietal-occipital and frontal regions, and there

exists obvious directed information flow between visual

and frontal cortices (Li et al. 2015b, 2016), and so do

further second harmonic responses of steady-state visual

evoked potential (SSVEP) (Zhang et al. 2015). Musical

experiment (Tian et al. 2013) uncovers that music is related

to multi-oscillatory neural rhythms and tempo-transfor-

mation can indeed change the strength of theta and alpha

power in bilateral occipital-parietal regions. Accordingly,

visual and auditory stimuli can activate the occipital and

parietal regions.

MI or movement involves multiple regions, such as the

primary motor cortex (M1), supplementary motor area

(SMA), premotor cortex (PMC), and dorsal-lateral pre-

frontal cortex (DLPFC), and correlates with the perfor-

mances of related functional networks. Studies (Kim et al.

2018; Li et al. 2019c; Zhang et al. 2016) find that one more

efficient frontal-parietal attention network will perform

better on MI. Visual-motor coordination is an essential

function of movement control which requires interactions

of multiple brain regions to realize different visual-motor

coordination states. Factually, changes between successive

states and the smoothness of these changes further

demonstrate that brain functional connectivity takes on

such meta-stable dynamics (Li et al. 2020b; Liu et al.

2017b).

The emotional-recognition network realizes the combi-

nation of comprehensive activation and connection infor-

mation for emotion recognition, which relates to neural

rhythms, especially beta and gamma, or higher frequency

bands in parietal, frontal, and occipital lobes (Li et al.

2019c). For the emotion response network, neural activity

in emotional-response-related brain regions is found that it

is significantly associated with prefrontal EEG asymmetry

which can be measured with amplitude and entropy (Daly

et al. 2019). Color stimuli also have significant impacts on

the subject’s emotion and cognition, which results in

forming a larger number of brain hubs and increasing

frontal-parietal connectivity (Chai et al. 2019).

Word processing activates mainly semantic networks,

also form similarity and synaptic networks. Hnazaee et al.

(Fahimi Hnazaee et al. 2018) found that functional regions

can orderly and differently engage in word processing

depending on the type of information retrieved. And the
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higher-level abstract representation of info concepts acti-

vates bilateral anterior temporal lobes easily (Farahibozorg

Feb/2018). In the word comprehension experiment, these

results show that verifying features from the same modality

(visual or auditory) network is faster than doing ones from

across modalities, and integrating multimodal semantic

network induces theta oscillation in the left anterior tem-

poral lobe. For picture naming, there are six brain network

states involved which are featured by high synchronization

of gamma rhythm (30–45 Hz) and dynamically and trans-

fer between each other (Giahi Saravani et al. 2019; Hassan

et al. 2015).

Social concept representation and retrieval, domain-

general semantic integration, and domain-specific integra-

tion of social semantic contents involve in Theory of Mind

and discourse comprehension (Lin et al. 2018). Different

discourse topics heavily can fire different brain regions.

More detailed cognitive functions are described in Table 1.

Diseases and network connectivity

Neural disorders and diseases mean brain dysfunction

which results in abnormal network connectivity. Different

neural diseases take different abnormalities on their

responding functional connectivity.

A seizure is a sudden and uncontrolled bioneural change

in the brain, while epilepsy is a disorder. Clinical analysis

reveals that children with epilepsy commonly have cogni-

tive impairment (Kinney-Lang et al. 2019). To investigate

how seizure is generated, Cooray (Cooray et al. 2016) used

DCM and Bayesian belief updating to reveal that seizure

dynamics change over time and space. The synchronization

Fig. 4 One example of EEG network analysis on cognitive functions.

a and b The event-related potentials (ERPs) of ST and TT sequences

during the P300 task respectively, where P300 originates from the

positive peak latency of ERP wave is so 300 ms. c P300 amplitude

evoked by the ST and TT sequences. d Network topology of ST

sequence, the red lines describe the stronger edges of T than that of S

stimulus, while the line width does the quantitative variances of edge

strengths. e Network attributes of two sequences, the blue bar denotes

the network feature of the first stimulus, and the red one does that of

the second one. f Network topology: the blue lines describe the

weaker edges of T2 in TT than that of T in ST, and the line width does

the quantitative variances of edge strengths under those conditions.

g Network attributes, the red and blue bars describe the network

attributes of T2 in two stimuli, respectively. h Task activation.

Adapted from the paper (Li et al. 2018a)
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Table 1 Cognitive functions

Cognitive

function

Description Involved neural regions

Attention and

consciousness

Attention is the ability to choose and concentrate on relevant

stimuli. Attention function correlates significantly with

cognitive control or executive control (Mackie et al. 2013).

Consciousness is a self-sustaining process with varying in

vigilance and arousal, and a precondition to putting

voluntary control on behavior. Attention is different from

consciousness but strictly related to consciousness (Nani

et al. 2019; Tallon-Baudry 2011)

The attention mainly activates sensory regions, and

attentional control focuses on the posterior parietal cortex

(lateral intraparietal area, superior parietal lobule) and

prefrontal cortex (frontal eye field, and supplementary eye

field, superior colliculus) (Yantis 2008), as well as

dorsolateral prefrontal cortical regions (Sarter et al. 2001)

Working

memory

Working memory is a cognitive system with a limited

capacity that can maintain information provisionally.

Working memory is important for reasoning and the

guidance of decision-making and behavior (Eriksson et al.

2015). Multiple behavioral and health elements contribute

to working memory (Moser et al. 2018)

Working memory can activate the fronto-parietal cortices and

subcortices, such as the midbrain and cerebellum (Chai

et al. 2018; Eriksson et al. 2015; Moser et al. 2018)

Learning and

memory

Learning means to acquire new information or knowledge, it

aims to memorize the info and knowledge. Learning &

memory execute on three basic phases including encoding

(acquisition and consolidation), storage, and retrieval

(Gazzaniga et al. 2019). Short-term memory (STM) is

different from long-term memory (LTM). STM (primary

memory) is merely a temporary and short-lasting conscious

maintenance while LTM (secondary memory) is maintained

by stable and permanent changes in neural connections

spread through the brain, including consolidation and

storage (Brem et al. 2013)

The different aspects of learning and memory involve

different brain systems, but the cerebellum, hippocampus,

and amygdala play indispensable roles in the processes of

learning and memory (Thompson and Kim 1996)

Sensation &

Perception

Sense-perception is to select and identify information from

the environment by sensory receptors—sense organs, such

as eyes, nose, tongue, hands, and skin (Mesulam 1998;

Morenko 2014). The sensorimotor contingencies (SCs)

differentiate sensation from perception. If SC is determined

by the feature of the visual appearance itself, it thus is taken

for sensation. If SC is resolved by visual attributes, it is

deemed as perception (O’Regan and Noë 2001)

The neural regions involved in sensory and perceptive

processing are complex and transmodal. After haptic inputs

are transferred into neural biological signals are sent

through the thalamus to the primary somatosensory cortex

for further processing (shown as Fig. 5) (Privitera 2020)

Speech &

Language

Language is made up of social rules including semantics or

meanings, make-new-word, grammar, and social context;

while speech is the verbal means of communicating

involving articulation, voice, fluency, and prosody. Broca’s

area and Wernicke’s area are the primary neural regions, as

well as angular gyrus and insula (Blank et al. 2002; Romeo

et al. 2018)

Language is processed through two distinct pathways, i.e. the

dorsal and the ventral stream, to realize phonological and

semantic processing. Phonological processing is mainly

made with the superior longitudinal fasciculus of the dorsal

stream, while semantic processing is done dominantly with

the ventral stream including inferior fronto-occipital

fasciculus and the intra-temporal networks. Speech is

probably related to the frontal aslant tract (Fujii et al. 2016)

Emotion Emotion emerges when livings make sense of sensory inputs

from the body and the world using empirical knowledge

(Lindquist et al. 2012). Positive or negative emotion is

activated in the left or right hemisphere that is in dispute.

The asymmetry of emotional processing is still on the way

(Alves et al. 2008)

Emotion is implemented by amygdale and affects cognition

(e.g., perception, attention, memory, and decision-making),

vice versa (Brosch et al. 2013; Gray et al. 2002; Salzman

and Fusi 2010). Their relationship tie is the anterior

cingulated cortex (Stevens et al. 2011)

Object

identification

Object identification is the ability of discerning objects via a

series of reflexive feedforward computations in the brain

(DiCarlo et al. 2012). The invariant object recognition

(relying on view-invariant diagnostic features) can be

achieved by the human brain, not by advanced machine

vision methods (Karimi-Rouzbahani et al. 2017; Roldan

2017)

Object recognition will fire the neural regions including

mainly mid-temporal and temporopolar cortices, and right

frontal regions, and the left occipitotemporal cortex which

can speed up the prediction of objects (Rizkallah et al.

2018)

Executive

control

Executive functions (EFs) are a set of cognitive processes that

are necessary for the cognitive control of behavior to

complete the chosen goals

EFs are located primarily in the frontal, parietal, and

cerebellar. Temporal lobes are only related to EFs for the

patient with dementia (Nowrangi et al. 2014)

Social

cognition

Social cognition depends on the medial prefrontal cortex,

superior temporal sulcus, temporal-parietal junction, and
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of network connectivity increases from interictal to preictal

states during the transition of brain activity before epileptic

seizures (Li et al. 2019e).

Psychogenic non-epileptic seizures (PNES) can appear

outwardly like epileptic seizures, but not epilepsy and their

cause is psychological (Alsaadi and Marquez 2005). For

subjects with PNES or epilepsy, their network topology in

the gamma band of the brain has decreased long linkage

between the frontal region and posterior brain areas com-

pared with healthy controls (Xu et al. 2014a; Xue et al.

2013), and but the spatial pattern of the network topology

in beta band significantly differentiates from each other.

Alzheimer’s disease (AD) is a neurodegenerative dis-

order that has the characteristic of disturbance of higher

cortical cognitive functions such as memory, comprehen-

sion, learning capacity, language, thinking, reasoning, and

so forth (Tsolaki et al. 2014). EEG biomarkers of the

network topology of AD’s subjects change greatly and

obviously in different progress stages (preclinical,

prodromal, and dementia for AD) (Dubois et al. 2016). In

the preclinical stage of AD, the amyloid burden has one

non-linear relationship with EEG metrics (e.g. frequency

oscillations and spectral entropy) (Gaubert et al. 2019; Poil

et al. 2013). In the prodromal stage, there is a higher a3/a2
(high alpha band/low alpha band) EEG power ratio in

subjects with shrinkage and cutdown perfusion inside the

temporoparietal projections which will result in AD

dementia (Moretti 2016). From prodromal to dementia, the

number of edges of AD subject’s connectivity networks

gradually reduces and local–global efficiency loses (Fran-

ciotti et al. 2019). Measurements (Hata et al. 2016; La

Foresta et al. 2019) also demonstrate that most cortical

regions keep the phase desynchronization or disconnection

for AD subjects, as the same as between the right dorso-

lateral prefrontal cortex and the right posterior-inferior

parietal lobule. Their brain reproducibility and robustness

have also been decreased greatly in alpha and beta bands of

EEG signals with amplitude envelope correlation by leak-

age correction (AEC-c) functional connectivity which is a

more effective measure in AD (Briels et al. 2020).

Schizophrenia (SZ) is a serious and chronic mental

disorder that has psychotic and cognitive problems. People

with schizophrenia have different brain structures, func-

tions, and interactions among neurotransmitters compared

with normal ones (Karlsgodt et al. 2010). DCM analysis

(Li et al. 2018e) explained that SZ subjects showed the

disconnectivity in their brain structure during the related

cognitive process, which was found the dysfunctions

among the anterior cingulated cortex, prefrontal cortex

(PFC), DLPFC, and intraparietal sulcus, etc. Similarly,

SZs’ functional connectivity alters (Liu et al. 2019; Naim-

Feil et al. 2018; Yin et al. 2017). Therefore, the spatial

patterns of these effective networks can differentiate SZs

from healthy controls (Harmah et al. 2019; Li et al. 2019b)

(shown as Fig. 6). Certainly, EEG network analysis is also

applied to other popular brain disorders, shown in Table 2.

As such, the altering connectivity profiles in the brain

can provide informative help to diagnose and treat patients

(Contreras et al. 2015, 2017), such as ADHD (Cary et al.

2017), AD (Contreras et al. 2019), and so on.

Fig. 5 The mapping skeleton of the somatosensory cortex in the brain

and the human body. The somatotopic map describes that the

reverberatory cortical regions and the responding parts of the human

body correspond to each other under tactile stimuli. Adapted from the

material (Privitera 2020)

Table 1 (continued)

Cognitive

function

Description Involved neural regions

Social cognition in humans characterizes psychological

processes that permit us to infer or determine others’

imminent mental states (Adolphs 2009)

precuneus, and attributes to affect social decision-makers

(Lee and Harris 2013)
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Artificial intelligence and biological brain

AI is the simulation of human intelligence processes by

machines that involves multiple brain cognitive skills:

perceiving, learning, reasoning, and self-adjustment, etc.,

and therefore indeed is associated with human cognition

according to the nature of brain cognition (van der Velde

and Kamps 2010). AI has solved huge quantities of

engineering questions and difficulties. Especially, in med-

ical and neurological projects, AI is helping researchers

and doctors to explore the complex brain.

Shreds of evidence verify that AI algorithms can esti-

mate reliable causal relationships among multi-layer neural

perceptrons in memory recognition tasks with considered

time-lag and different initial conditions (Talebi et al. 2018),

and detect strong synchronization and potential pre-seizure

Fig. 6 One example of EEG network analysis on neural disorders

with DCM effective network. a The distribution of specific 8 DCM

nodes from the top, bottom, left, and right. b Constructs 6 DCM

connectivity from the 8 specific nodes via the existing P300

knowledge. c Averaged P300 waveforms for SZs and health controls

(HCs), the red line for P300 of SZs, and the blue one for that of HCs.

d The causal relationship in SZs and HCs with DCM. The top left

model is for HCs and the top right one for SZs, the down graphs

denote the direction of the information flow between two nodes and

the strength of information flow. Adapted from the reference (Li et al.

2018e)
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phenomena (Bomela et al. 2020). Massive amounts of

papers on signal processing propose types of AI algorithms

to solve EEG signal processing and network construction.

The deep convolutional neural network, one of AI, can

learn to extract useful rhythm features and decode specific

task-related EEG signals (Schirrmeister et al. 2017; Zeng

et al. 2018), thus effectively applies on feature-extraction,

classification of EEG signals (Cecotti and Gräser 2011;

Chandani 2017; Gao et al. 2020; Li et al. 2018b; Moon

et al. 2020) and predict, evaluate EEG parameters (Ortolani

et al. 2002), and monitor all states of patients with anes-

thesia (Acharya et al. 2018; Gu et al. 2019). AI can also dig

hidden-deeper information to give one hand to doctors (Liu

et al. 2017c) for diagnosis and treatment. For the sake of

EEG signals with various and multiple rhythms, multi-

scale neural networks were proposed to extract multiple

frequency signatures (Raghu et al. 2020). Frankly, AI

algorithms are boosting up network analysis in the brain

science and neural medical field.

But AI has no capability of cooperating with self-un-

derstanding, self-control, self-consciousness, and self-

motivation as the human brain does. The brain intelligence

model is proposed to extend and advance contemporary AI

in the light of human memory function (Lu et al. 2018).

Additionally, the big gap between AI and neuroscience is

the culture to communicate with each other which will be

solved to extend them further (Chance et al. 2020). More

reviews and reports remark and analyze that AI has been

developing from brain science and also expedites it (Fan

et al. 2020; Hassabis et al. 2017; Savage 2019; Shapshak

2018).

Discussion and future challenges

Network analysis is one vital tool in neuroscience and

cognition, which opens the door to spy the brain and pro-

vide more helpful information for medical purposes. For a

dynamic and time-variant brain, it is so important to select

neural signal patterns. Certainly, EEG is nowadays an

irreplaceable signal pattern for its high-temporal resolution

to process time-series courses and explore more complex

Table 2 Brain diseases and network connectivity

Brain diseases Responding network connectivity

Parkinson’s disease (PD) PD results in cognitive and executive deficits related to changed functional brain connectivity among the

old group (Gao and Wu 2016; Yi et al. 2017). The cognitive deficits reflect on the alpha rhythm,

especially in frontotemporal regions (Hassan et al. 2017). The executive deficits contribute to

frontoparietal connectivity decrease (Teramoto et al. 2016). While one scientific paper finds that those

subjects with PD have higher bilateral gamma and left alpha2 rhythms, and alpha2-gamma coupling in

the right posterior parietal compared with peer healthy controls (Bin Yoo et al. 2018)

Autism spectrum disorder (ASD) ASD occurs mainly in children. The connectivity dramatically cuts down in alpha and theta band for

children with ASD (Bosl et al. 2011; Zeng et al. 2017), and also low long-range connectivity (O’Reilly

et al. 2017). Especially, the dynamic connectivity can be measured obviously in sensorimotor and

advanced cognitive networks (Mash et al. 2019)

Attention-Deficit/Hyperactivity

Disorder (ADHD)

Subjects with ADHD behave abnormally and pay inattention. Rhythmical experiments reveal that

ADHDers have low clustering in hyperactivity while augmented segregation degree (Ghaderi et al.

2017; Michelini et al. 2019)

Amyotrophic Lateral Sclerosis

(ALS)

ALS is one neurodegenerative illness that causes mainly motor cortex, and also cognitive networks

(Dukic et al. 2019). Nodal assortativity of the alpha band in ALS patients is increased and the clustering

coefficient also has greatly higher values in all neural frequencies (Fraschini et al. 2016; Iyer et al.

2015)

Auditory disorder Tinnitus is one of the auditory disorders and still perceives the sound without external auditory stimuli.

The auditory network with tinnitus has a comparatively different level of segregation and integration in

most rhythm bands (Mohagheghian et al. 2019). The connectivity in the superior frontal cortex has

various degrees of reduction for all frequency bands during the development stage of tinnitus (Lan et al.

2020). Sudden deafness also is one auditory disease that has inhibited the alpha2 band in the left frontal

regions and strengthens the attention or emotional function networks (Cai et al. 2019)

Stroke The connectivity of after-stroke patients has more new connections to unfold the neuroplasticity of the

brain (Hordacre et al. 2018; Li et al. 2014). Moreover, the changing functional and structural topology

can predict different deficits (Siegel et al. 2016)

Major depressive disorder (MDD) MDD is one mental illness that is companied by a depressed mood. The resting-state connectivity indices

(strength, clustering coefficient, path length, centrality, etc.) differ significantly from normal healthy

controls (Saeedi et al. 2021; Shim et al. 2018). Simultaneously, MDD also affects MDD patients’

cognitive and motivational functions (Damborská et al. 2019)
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time-variant brain network dynamics. FC and EC of net-

work connectivity can depict the segregation and integra-

tion of brain neuronal regions under specific tasks or neural

disorders opposite to healthy controls. But EC with direc-

ted connectivity expresses more perfectly the causal rela-

tionship between different cortices, subcortices, and

brainstem. To explore the secret of the brain neural system,

it is the first place to construct useful and stable network

connectivity. Although statistical or nonstatistical algo-

rithms of network construction are plentiful, suitable ones

are still on the way. On the other hand, EEG network

analysis indeed is lifting the mysterious veils of the brain

and its cognitive functions layer by layer, and having

provided valuable biomarkers or signatures for brain neural

diseases or auxiliary rehabilitation.

But raw EEG signals are filled with eye movement and

electromyographic artifacts, it is one future trend to pursue

interdisciplinary denoise advances, such as EEGDenoise-

Net (Zhang et al. 2020a, b, c). Certainly, neural networks

or AI algorithms for denoising EEG recordings need as

huge data samples as possible. However, the subject

resource is still a big matter. But the bad side gradually

turns into a good one. Once the more secret of the brain is

being unveiled, the farther and wider induced brain com-

putation and applications go. After all, brain network and

AI is the catalyzer for each other (Savage 2019).

The brain is also one subtle small-world and marvelous

parallel system (Braga and Buckner 2017; Sigman and

Dehaene 2008), future research would like to change focus

on parallel subnetworks to deal with specific cognitive

function or neural disorder, and find the relationship among

these subnetworks or between a subnetwork and other

secondary ones, which may uncover some unknown things.

On the other side, graphic theory (Chen et al. 2018) is a

mathematical tool but plays an indelible role in brain net-

work analysis. Graphic challenges may activate the field of

unknown brain functions or hidden information (Kao et al.

2017; Kepner et al. 2019): (1) Deep neural network or AI

algorithm may work effects on graph representation and

infer different types of the sparse subnetwork in a large

whole network; (2) Subgraph block partition from one

nonstationary and dynamic network may demystify the

state-flow relationship among subnetwork and find the

main or optimal subnetwork. Additionally, the brain neural

system is a hierarchical and complex system, like an army,

social group (Hilgetag and Goulas 2020), whether does

control theory affect it? The answer is YES (Chen 2017;

Gu et al. 2015; Lynn and Bassett 2019) and but is groping.

In the future, the modeling and analysis of neural systems

may be based on control theory and engineering which may

unveil the mask of the neural-regulation mechanism of the

brain and provide useful and accurate information for

medical and auxiliary treatment.

Further to dig out more hidden information, recent

network dynamics are developed for psychiatric illnesses

which may play one important part in medical diagnosis

and treatment (Durstewitz et al. 2020; Ouyang and Zhou

2020) based on the traditional network analysis. Zheng

et al. (2020) also referred that the multiple-scale connec-

tivity is the characteristics of brain network, and studied

multiscale network analysis to recover the similarity

among different brain cerebral regions under different

scales. Additionally, the temporal feature runs through the

whole brain neural system, Rabinovich et al. (2020)

developed sequential network dynamics to study and ana-

lyze the cognitive function and neural diseases. Hence, the

dynamics of the complex network will accelerate network

analysis and network theory, and provide an interesting

focus and direction to solve brain science in the future. In a

nutshell, EEG network analysis has started and given its

plentiful fruits by interdisciplinary technology in brain

science.
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