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Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder that, in addition to inattention,

excessive activity, or impulsivity, makes it difficult for children to process facial emotions and thus to interact with their peers.

Here we analyze neuronal networks of children with this disorder by means of the phase-locking value (PLV) method. In

particular, we determine the level of phase synchronization between 62 EEG channels of 22 healthy boys and 22 boys with

ADHD, recorder whilst observing facial emotions of anger, happiness, neutrality, and sadness. We construct neuronal

networks based on the gamma sub-band, which according to previous studies, shows the highest response to emotional stimuli.

We find that the functional connectivity of the frontal and occipital lobes in the ADHD group is significantly (P-value\0.01)

higher than in the healthy group. More functional connectivity in these lobes shows more phase synchronization between the

neurons of these brain regions, representing some problems in the brain emotional processing center in the ADHD group. The

shortest path lengths in these lobes are also significantly (P-value\0.01) higher in the ADHDgroup than in the healthy group.

This result indicates less efficiency of information transmission and segregation in occipital and frontal lobes of ADHD

neuronal networks, responsible for visual and emotional processing in the brain, respectively. We hope that our approach will

help obtain further insights into ADHD with methods of network science.
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Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is one of

the most common childhood disorders which creates many

problems in children’s lives and usually lasts into

adulthood. It is associated with low social and educational

functioning. This behavioral disorder, which is more

common in males, affects about 8–10% of school-age

children and is characterized by inattention, hyperactivity,

and impulsive behavior (Rubia 2018). The exact causes of
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ADHD are not yet known. Some of this disorder’s physi-

ological factors include decreased dopamine in the brain’s

striated and anterior regions as well as a connectivity dis-

order in the cerebral cortex’s frontal areas. Therefore, it can

be said that behavioral disturbances in these children are

not only due to abnormalities in different regions of the

brain but also due to abnormal changes in the structural and

functional connectivity of these areas (Ahmadlou and

Adeli 2010). Another effect of ADHD is the difficulty in

recognizing others’ emotions, which leads to social unrest

in this group. Most children who suffer from this disorder

experience depression, anxiety, and a lack of self-confi-

dence in life. In this regard, recognizing non-verbal cues

(such as facial expressions) that convey others’ feelings is

especially important because it helps them behave towards

others (Razavi et al. 2017).

In recent years, much attention has been paid to the

dynamical analyses of neural processes. These dynamical

analyses can be divided into three main categories: analysis

of neural processes based on (1) neuronal signals, (2)

neuronal models, and (3) a combination of these two

methods (Parastesh et al. 2019; Zhang et al. 2013). One of

the techniques used to investigate ADHD disorder is to

measure the degree of synchronization between individu-

als’ neuronal signals with this disorder. Several studies

have used measuring the synchronization between neuronal

signals of healthy and ADHD individuals using different

modalities such as MEG, fMRI, and EEG. According to

these studies, the EEG signal can be considered as a better

choice to examine the ADHD disorder, especially in chil-

dren, due to its non-invasiveness and high temporal reso-

lution (An et al. 2013; Dockstader et al. 2008; Yu 2013).

One well-known approach that researchers have con-

sidered in recent years to study ADHD disorder is to

measure the synchronization in dynamical neuronal net-

works, modeled with the help of neuronal signals such as

EEG signals of both healthy and ADHD groups. There are

many methods to estimate neuronal networks with the help

of EEG signals, including Pearson correlation coefficient,

coherence coefficient, phase lag index (PLI), and phase-

locking value (PLV) (Wang et al. 2020). Linear analysis

based on Pearson correlation coefficient and coherence

coefficients methods is useful for estimating stationary

signals. However, EEG signals are practically nonstation-

ary during emotional processing, so analysis based on these

methods is limited (Wang et al. 2020). Among the tech-

niques for measuring brain signals’ synchronization, PLV

can reflect the amount of phase interactions between time

series and has a low computational cost (Dasdemir et al.

2017). So far, this method is used in several studies to

investigate brain behavior. For instance, Dasdemir et al.

conducted a study to examine the brain’s functional con-

nectivity under positive and negative emotions using the

phase-locking value. In this study, three different emo-

tional stimulation types, audio-only, video-only, and audio-

video, were used. The results showed a significant differ-

ence (at a significance level of 0.01) between phase-locking

values, only under negative and neutral emotions for all

types of video-only and audio-only stimuli (Dasdemir et al.

2017). Wang et al. used a combination of functional inte-

gration and functional segregation to analyze individuals’

neuronal networks under positive and negative emotions

using the phase-locking value. This study showed that

phase synchronization between EEG signals under negative

emotions is higher than positive emotions. According to the

results of this study, the gamma frequency band has shown

the highest response during emotional stimulation of the

face (Wang et al. 2020). In a study conducted by Gong

et al., the neuronal networks of professional and non-ath-

lete shooters in the delta, theta, alpha, and beta frequency

bands were examined using the phase-locking value. The

results showed significant differences in clustering coeffi-

cient and small-world characteristics of professional ath-

letes compared to non-professional ones (at a significant

level of 0.01) (Gong et al. 2019). Many studies have

reported gamma frequency band activity in the study of

facial emotion perception (Razavi et al. 2017; Balconi and

Pozzoli 2009). Sato et al. reported more gamma band

activity in response to emotional faces than in neutral ones

(Sato et al. 2011).

In the present study, the complex dynamics of the

neuronal network of ADHD children are investigated

during facial emotion processing. EEG signals are recorded

from 22 healthy boys and 22 age and sex-matched ADHD

children while observing four types of emotions anger,

happiness, neutrality, and sadness. After dividing the sig-

nal’s frequency band into five frequency sub-bands, all

analyses are performed on the gamma band as an appro-

priate band according to previous studies (Razavi et al.

2017; Balconi and Pozzoli 2009; Sato et al. 2011). Based

on the results of these studies, the gamma band is more

sensitive to facial emotional stimuli. Then the PLVs

between every electrode channel pairs are used to construct

neuronal networks. Graph characteristics, including clus-

tering coefficient and shortest path length, are extracted

from the weighted neuronal networks. At last, using the

Repeated Measure ANOVA test, significant differences in

functional connectivity and graph features between two

healthy and ADHD groups in four types of emotion are

examined.
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Materials and methods

Participants

In this study, EEG signals recorded from 22 untreated boys

diagnosed with ADHD (7 to 11 years old) as the experi-

mental group and 22 healthy children of the same age and

sex as the control group are investigated. All participants

are assessed using criteria such as the Conner’s Parent

Rating Scale Questionnaire (CPRS) (Conners et al. 1998)

and the Child Symptoms Inventory-4 Questionnaire (CSI-

4) (Gadow and Sprafkin 1997) for initial screening of

ADHD. Also, clinical evaluations are performed based on

the DSM-V criterion, and finally, individuals are assigned

to each of the two groups.

Data collection and experimental procedure

In this study, recorded signals in (Razavi et al. 2017) are

used. Signals were obtained by a 62-channel electrode cap

based on the standard 10–20 system with a sampling fre-

quency of 512 Hz. The recording process was such that the

participant sat in a chair in front of the monitor. Four facial

expressions (anger, happiness, neutrality, and sadness)

were displayed on the screen. In this phase, to assess the

individual’s ability to understand the face’s emotions and

then recognize and provide the answer, the participant,

after observing the stimulus, presented his response by

pressing the relevant key. A total of 80 images, including

four facial expressions (anger, happiness, neutrality, and

sadness), were selected from the Cohn-Kanade Database

(Lucey et al. 2010). The pictures were shown to forty

healthy children, then each of them determined their

response using a questionnaire. Finally, 24 images (in-

cluding both men and women) were selected. The record-

ing protocol was shown by displaying the word ’’start’’ on

the screen for 2000 ms. Each trial consisted of an image of

a facial expression that was randomly selected from four

facial expressions. A time interval of 1500–1700ms was

considered between the trials. Therefore, the duration of

each trial was 2000þ 1500� 1700ms¼ 3500 � 3700ms.

Preprocessing

After recording the EEG signals, a third-order Butterworth

filter with cut-off frequencies of 1 and 80 Hz is used to

remove the low and high-frequency artifacts. A notch filter

with a cut-off frequency of 50 Hz is applied to remove the

power line noise. To remove ocular artifacts, the Inde-

pendent Component Analysis (ICA) method is used. Con-

sidering the stationary assumption, the signal is held in

each trial for 1 second before and 2 seconds after visual

stimulation. Finally, epochs with statistical characteristics

more than five standard deviations far from the rest of the

epochs are identified. At the expert’s diagnosis, inappro-

priate epochs are discarded as outlier data, and the

remaining epochs are used for further analysis. The entire

signal frequency band is subdivided into five sub-bands,

delta, theta, alpha, beta, and gamma, using the Daub7

wavelet transform.

Volume conduction effect

One of the fundamental issues in studying brain connec-

tivity using EEG signals is the volume conduction effect.

Due to this effect, each neural source’s activity is recorded

by electrodes at different locations on the scalp and causes

fake connectivity between different channel signals. To

degrade the impact of volume conduction, the current

source density (CSD) method is used. In the CSD method,

each channel’s spatial properties are obtained using the

second spatial derivative while ignoring the effect of other

channels. In this research, the CSD toolbox is used to

reduce the volume conduction effect (Perrin et al. 1989).

Functional connectivity

This section aims to investigate ADHD disorder by con-

structing neuronal networks of both healthy and ADHD

groups in the gamma band under four types of emotions.

The number of nodes, edges, and the weights of each edge

should be determined to this end. In this study, the number

of EEG recording electrodes shows the number of the

network’s nodes. There are many different methods to

characterize the number of network edges and to calculate

the weights between each node. The phase-locking value is

one of the most common approaches to determine the

weights between each node using the phase synchroniza-

tion between EEG signals (Kong et al. 2017). Fluctuations

in brain signals are expected to contain more important

information than their amplitude. By establishing the

relationship between the phase synchronization of EEG

signals and the neuronal network’s physiological charac-

teristics, it is possible to analyze the phase synchronization

between all possible pairs of electrode channels and form a

neuronal connectivity matrix (Kong et al. 2019).

In this study, the phase-locking value method is used to

measure the phase synchronization between EEG signals,

which show a kind of chaotic behavior. This method is

based on calculating the instantaneous phase difference

between two signals regardless of their amplitude. As a

result, this method is sensitive to signal fluctuations and is

not based on the signal’s stationary assumption, so fewer

restrictions are on its usage. An unavoidable phenomenon

in real signals is the effect of noise on the signal, which
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mainly affects the signal amplitude. Since the PLV method

is based on the phase difference of the signals, it is much

more resistant to noise, and the resulting estimate is more

accurate than the methods based on the signal amplitude.

This method is also simple and has a low computational

cost, so it is especially suitable for calculating whole brain

connectivity (Kong et al. 2019; Lowet et al. 2016). The

PLV between two time series is calculated based on the

following definition:

PLV ¼ j\ðjf/xðtÞ � /yðtÞgÞ[ j; j ¼
ffiffiffiffiffiffiffi

�1
p

ð1Þ

The Hilbert transform is applied to calculate the instanta-

neous phase of a time series. In this study, the PLV is

extracted between all electrodes’ pairs under the gamma

band with a time window of 3 seconds. Then the PLV

matrix is formed. Each EEG electrode channel of this

experiment consists of sixty epochs (N ¼ 60), so the

overall PLV is the mean of N PLV corresponding to its

epochs. The average PLV is calculated as

PLVavg ¼
1

N
j
X

N

n¼1

\ expðjD/Þ[ j; j ¼
ffiffiffiffiffiffiffi

�1
p

ð2Þ

where D/ is the phase difference between /xðtÞ and /yðtÞ,
i.e.,D/ ¼ /xðtÞ � /yðtÞ and n ¼ 1; 2; :::;N is the number of

the epochs. The value of the calculated PLV between two

electrode channels is between 0 and 1, which indicates the

lack of synchronization and complete synchronization of

the two signals, respectively. Since the PLV is the absolute

value of the mean phase difference between two signals,

any PLV value lying in the interval (0, 1) shows the degree

of phase synchronization between the two signals. In other

words, a large PLV value in the interval (0, 1) indicates

that the instantaneous phase difference between the two

signals over time is more constant, and as a result, the two

signals are more synchronous. Conversely, a small PLV

value represents less constancy of the instantaneous phase

difference between the two signals over time and results in

less synchronization between the two signals.

Topological feature extracting

Two principal features are extracted from the weighted, not

thresholded neuronal networks to compare two ADHD and

healthy groups. These features include the clustering

coefficient and shortest path length, representing two

neuronal network integration and segregation characteris-

tics, respectively. Each group’s clustering coefficient is

calculated based on the average of the edges connected to

one node and each other two nodes that form a triangle

with that node. Using the clustering coefficient, it is pos-

sible to understand how the network separates information

or how subnets are composed of a general network. The

shortest path length is calculated by averaging all path

lengths between every two nodes in the networks. This

feature helps to understand how information is dissemi-

nated in neuronal networks (Rubinov and Sporns 2010).

Statistical analysis

The data of this study are divided into two general cate-

gories of healthy and ADHD children. EEG signals are

recorded under four different types of emotion. This

research’s first independent variable is ’’disease’’, which

has two categories: ADHD and healthy. Another indepen-

dent variable is ’’emotion,’’ which has four compartments:

anger, happiness, neutrality, and sadness. The PLVs and

graph features are the characteristics extracted based on

functional connectivity analysis in this study. In this

research, the significant differences in functional connec-

tivity and extracted graph features are investigated between

ADHD and healthy groups. Due to the dependence of

different groups in this study, a Repeated Measure

ANOVA test is used to evaluate the effect of ’’disease’’

regardless of the ’’emotion’’ types and the interaction

effects of ’’emotion � disease.’’ These analyzes include

both whole-brain analysis and investigation of different

brain regions. In this research, all figures are obtained using

MATLAB software version 2020.

Results

Functional connectivity analysis

Figure 1 shows the average gamma band’s connectivity

matrix for happy emotion in Healthy and ADHD groups.

The Repeated Measure ANOVA test is used to find pairs of

channels with significant differences between groups. The

main effect of ’’disease’’ and the interaction effect of

’’disease�emotion’’ are investigated using Dunn-Sidak

post hoc tests. Table 1 shows 12 pairs of common channels

in the gamma band that show a significant difference in

terms of the main effect ’’disease’’ as well as the interaction

effect ’’disease�emotion’’ in healthy and ADHD groups. In

this table, the columns ’’diff ’’ show the differences

between the mean connectivity of the related channel pairs

in two ADHD and healthy groups (ADHD-healthy). The

columns ’’P’’ represent the P-value results from the Dun-

Sidak post hoc test showing significant differences between

the connectivity of the relevant channel pairs in two ADHD

and healthy groups. These pairs of significant channels are

found mainly in the Frontal and Parietal-Occipital regions

of the brain. There are also significant differences between

the channels in the Frontal and Occipital regions (AF3-

PO5) between the two groups. In this table, except for the
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pairs of (CP6-C6) and (P3-P1) channels, the connectivity is

significantly ðp\0:01Þ higher in the ADHD than in the

healthy group in other pairs. Figure 2 shows the pairs of

channels that were significantly different in the two groups

in the study of the main effect ’’disease’’ and the interaction

effect ’’disease�emotion’’. Finally, the whole-brain con-

nectivity is calculated by averaging all the connectivity

matrix elements related to each group’s individuals. The

ANOVA test results do not show any significant differ-

ences in whole-brain connectivity analysis in all four types

of emotion between the two groups of healthy and ADHD,

as shown in Fig. 3. The mean, standard deviation, and

calculated P-values for whole-brain analysis are listed in

Table 2.

Feature analysis of neuronal networks

As mentioned in the previous sections, the shortest path

length (L) between two nodes is calculated by averaging all

the edges between the two nodes. The clustering coefficient

(C) for each node is obtained by averaging all the edges

connected to that node and every two other nodes that form

a triangle with that node. Finally, for each participant, a

matrix of 62�62 and a vector of 62�1 are calculated for

the features of L and C, respectively. Table 3 shows 12

pairs of common channels for L that show a significant

difference in terms of the main effect ’’disease’’ and the

interaction effect ’’disease�emotion’’ in the two groups of

healthy and ADHD. These pairs of channels are located

mainly in the Frontal and Parietal lobes of the brain. In this

table, except for three pairs of (CZ-F5), (F5-FC3), and

Fig. 1 Average PLV matrices in the gamma band of Happy emotion

in a ADHD and b Healthy groups. The figures are 62 �62 matrices

which dimensions show the number of electrode channels for

recording EEG signals. According to the color bar, the color of each

matrix element expresses the level of phase synchronization between

the relevant pairs of electrodes. In these matrices, regions with warm

colors show high values of PLV and, as a result, high phase

synchronization between channel pairs. Cold color areas indicate low

PLV values and low phase synchronization. Comparison of fig-

ures (a) and (b) shows more mean phase synchronization in the

ADHD group than in the healthy one in some channel pairs

Fig. 2 Channel pairs with significant connectivity differences in main

effect disease and interaction effect ’’disease�emotion’’ for all types

of emotions. The spheres represent 62 electrode channels in different

brain areas. The pink spheres show electrode channels with significant

connections in functional connectivity between the two ADHD and

healthy groups. The other spheres show the electrode channels that do

not have significant connections. The colored lines represent the

significant edges between the pairs of electrode channels. The

corresponding colors express the level of PLV differences between

two healthy and ADHD groups. Edges with warm colors show

connections with high connectivity differences between two ADHD

and healthy groups. Cold color edges indicate low connectivity

differences between the two groups. Details of common edges in all

four emotional types are presented in Table 1. All these connections

(except CP6-C6 and P3-P1) are significantly (P-value) stronger in the

ADHD group than in the healthy one representing more phase

synchronization of the related channel pairs in ADHD neuronal

networks\ 0.01
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(PO3-PO7) channels, in the other pairs of channels, the

value of L in the ADHD group is significantly ðp\0:01Þ
higher than the healthy group. Figure 4 shows the pairs of

channels that are significantly different in the two groups in

the study of the main effect ’’disease’’ and the interaction

effect ’’disease �emotion’’ for all types of emotions. This

figure represents that the shortest path length in the ADHD

group is higher, particularly in the occipital and occipital-

central brain connections. Also, it is shown in the fig-

ure that P4-PO7 and P3-F1 channel pairs have the highest

value of the shortest path length differences in all emo-

tional types, which are related to the parietal-occipital and

parietal-frontal connections of the brain, respectively. Then

by averaging L’s value in all pairs of channels in each

group, the whole brain’s shortest path length is calculated.

As shown in Fig. 5b and Table 2, the results do not show

any significant differences in terms of whole-brain shortest

path length between the healthy and ADHD groups. All

similar calculations are performed to investigate the main

effect ’’disease,’’ and the interaction effect ’’dis-

ease�emotion’’ on the clustering coefficient, and results

(Fig. 5a and Table 2) show no significant differences in the

four types of emotion between the two groups of healthy

and ADHD.

Discussion

In this study, the EEG signals of 22 children diagnosed

with ADHD and 22 healthy children while observing facial

emotions of anger, happiness, neutrality, and sadness were

examined. After the preprocessing stage and removing

noise and artifacts from the raw signals, the CSD method

was applied to the signals to reduce the volume conduction

effect. The signal was then divided into the delta, theta,

alpha, beta, and gamma sub-bands using the Daub7

wavelet transform. The gamma-band was selected as an

appropriate frequency band during facial emotion pro-

cessing based on previous studies (Razavi et al. 2017;

Balconi and Pozzoli 2009; Sato et al. 2011). As a result, all

subsequent analyses were performed on the gamma band.

Graph features, including clustering coefficient and short-

est path length, and the connectivity feature, including PLV

for all participants in four different emotional groups, were

calculated. To investigate significant differences in the

main effect ’’disease’’ and the interaction effect ’’dis-

ease�emotion’’, a Repeated Measure ANOVA test was

used. Finally, using graph features as well as functional

connectivity and comparing them between different

groups, the following results were obtained:

(1) In this study, stronger functional connectivity of

ADHD children in the Frontal lobe of the brain was

observed, which is consistent with the results

observed in (Barttfeld et al. 2014; Dini et al. 2020).

(2) Significant differences were observed in the con-

nectivity of the central regions to the occipital areas

of the brain (FC5-PO4) in all types of emotions,

Fig. 3 Average of whole brain connectivity in all types of emotions.

In each bar graph, the center of the drawn error bar is the average of

the functional connectivity. The lines drawn with the same length

above and below the center of the error bar show the standard

deviation related to each group in different types of emotions. Details

of the bar graphs are presented in Table 2. No significant differences

are found in all emotional types between two ADHD and healthy

groups (P-value[ 0.01)

Fig. 4 Channel pairs with significant differences in shortest path

length in main effect disease and interaction effect ’’disease�emo-

tion’’ for all emotions. The spheres represent 62 electrode channels in

different brain regions. The pink spheres show electrode channels

with significant connections in the shortest path length between the

two ADHD and healthy groups. The other spheres show the electrode

channels that do not have significant connections. The colored lines

represent the significant edges between the pairs of electrode

channels. The corresponding colors express the level of shortest path

length differences between two healthy and ADHD groups. Edges

with warm colors show high shortest path length differences between

two ADHD and healthy groups. Cold color edges represent connec-

tions with low differences. Details of the common significant

connections are presented in Table 3. The shortest path length of all

these connections (except CZ-F5, F5-FC3, and PO3-PO7) is higher in

the ADHD group than the healthy one indicating less segregation of

information in the related channel pairs in ADHD neuronal networks
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consistent with the results obtained in (Barttfeld

et al. 2014).

(3) The significant differences observed in the brain

connectivity of healthy and ADHD individuals

during facial emotion processing in gamma-band

oscillations within the brain’s occipital regions

(PO3-PO7) are consistent with the findings of

(Razavi et al. 2017; Garcia-Garcia et al. 2010). It

has been reported that the activity of the occipital

areas of the brain in gamma-band oscillations is

higher than other regions of the brain while observ-

ing facial emotions in two groups of healthy and

ADHD.

(4) In this study, significant differences were observed

in the left regions of the occipital lobe and the right

and left areas of the brain’s parietal lobe, which is

accordant with the findings in (Ahmadlou and Adeli

2011). There was a significant difference on the

occipital lobe’s left side and the right side of the

brain’s parietal lobe. Still, there was no significant

difference on the left side of the parietal lobe

between the two groups.

(5) Findings in (Dini et al. 2020; Ahmadlou and Adeli

2011) indicated a defect in transferring of informa-

tion from the occipital lobe to the brain’s frontal lobe

in the ADHD group. The present study results also

Table 1 Common channel pairs

with significant connectivity

differences (ADHD-Healthy) in

all types of emotions

Channel Angry Happy Neutral Sad

pairs diff P diff P diff P diff P

FP2-AF8 0.1185 0.0056 0.1230 0.0048 0.1175 0.0057 0.1202 0.0051

FP2-FC4 0.1020 0.0029 0.0974 0.0033 0.0890 0.0072 0.0989 0.0026

FC1-AF3 0.1241 0.0053 0.1239 0.0049 0.1240 0.0056 0.1210 0.0049

CP6-C6 - 0.1724 0.0018 - 0.1761 0.0020 - 0.1713 0.0027 - 0.1699 0.0022

P3-P1 - 0.1710 0.0016 - 0.1818 0.0006 - 0.1769 0.0007 - 0.1777 0.0007

AF3-PO5 0.1274 0.0040 0.1288 0.0038 0.1229 0.0054 0.1256 0.0036

AF3-PO6 0.1283 0.0050 0.1392 0.0022 0.1286 0.0043 0.1315 0.0033

AF3-PO7 0.1362 0.0026 0.1446 0.0017 0.1378 0.0026 0.1372 0.0020

AF3-PO8 0.1352 0.0020 0.1385 0.0016 0.1325 0.0023 0.1340 0.0018

AF8-FC4 0.1216 0.0022 0.1181 0.0036 0.1132 0.0051 0.1199 0.0020

FC5-PO4 0.1596 0.0010 0.1565 0.0024 0.1554 0.0016 0.1566 0.0020

PO3-PO7 0.1711 0.0052 0.1770 0.0013 0.1681 0.0007 0.1696 0.0031

Fig. 5 Average of whole-brain a clustering coefficient and b shortest

path length in all types of emotions. In each bar graph, the center of

the drawn error bar is the average of the clustering coefficient/shortest

path length. The lines drawn with the same length above and below

the center of the error bar show the standard deviation related to each

group in different types of emotions. Details of the bar graphs are

presented in Table 2. No significant differences are found in all types

of emotions between two ADHD and healthy groups (P-value

[ 0:01)
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showed that the shortest path length in ADHD is

significantly higher than healthy individuals in the

pair of channels related to the occipital-frontal lobe

(OZ-F3).

(6) Studies (Lin et al. 2014; Liu et al. 2015) based on

fMRI and EEG data have shown that the L feature is

significantly higher in the ADHD group than in

healthy individuals, which is consistent with the

findings of this study.

In several studies, the functional and structural con-

nectivity analysis patterns have shown that healthy human

neuronal networks follow the small-world characteristics.

In small-world networks, the amount of information dis-

semination and segregation is efficient (Liao et al. 2017).

High clustering coefficient (C) and low shortest path length

(L) are considered as two main hallmarks of small-world-

ness in a healthy brain. Some studies have claimed these

two features change abnormally under different brain dis-

orders, and deficiency in small-world networks is related to

brain function defects (Ahmadlou and Adeli 2010; Bart-

tfeld et al. 2014; Ahmadlou and Adeli 2011). The present

study showed no significant differences in the average of

whole-brain clustering coefficient and shortest path length

between ADHD and healthy groups in gamma-band

oscillations, as shown in Fig. 5 and Table 2). However, the

Repeated Measure ANOVA test results represented sig-

nificant differences between the two groups in terms of

shortest path length for some channel pairs that are mainly

related to the brain occipital, occipital-central, and occip-

ital-frontal connections. These results may indicate less

information propagation in the ADHD neuronal networks,

resulting in high L as a criterion of small worldness. More

research is needed to evaluate deficiency in small world-

ness and other features with specific tools and more special

task designs.

Conclusions

Numerous studies have reported the influential role of

gamma-band oscillations in analyzing brain signals during

facial emotion processing ( Balconi and Pozzoli 2009;

Garcia-Garcia et al. 2010). According to these studies’

findings, the occipital lobe activity in this band is higher

Table 3 Common channel pairs

with significant differences

(ADHD-Healthy) of shortest

path length in all types of

emotions

Channel Angry Happy Neutral Sad

pairs diff P diff P diff P diff P

CZ-F5 - 1.2617 0.0015 - 1.2894 0.0011 - 1.2373 0.0027 - 1.3285 0.0009

CP1-FC4 1.0895 0.0014 1.0608 0.0014 1.0398 0.0015 1.0044 0.0016

CP6-P1 1.2913 0.0059 1.3371 0.005 1.2844 0.0062 1.3449 0.0072

P7-OZ 1.4137 0.0026 1.4079 0.0021 1.3844 0.0028 1.3537 0.0046

P7-O2 1.1269 0.0030 1.1341 0.0026 1.0851 0.0029 1.1176 0.0028

P7-P2 1.4397 0.0051 1.5692 0.0042 1.5381 0.0040 1.5532 0.0045

P3-F1 1.6374 0.0026 1.6849 0.0021 1.5918 0.0032 1.5857 0.0051

P4-F1 0.7058 0.0021 0.7599 0.0008 0.7445 0.0009 0.7119 0.0011

P4-PO7 1.6991 0.0037 1.7460 0.0033 1.7473 0.0034 1.6650 0.0041

F5-FC3 - 1.1634 0.0091 - 1.3216 0.0025 - 1.1952 0.0065 - 1.1398 0.0099

PO3-PO7 - 1.1026 0.0053 - 1.1610 0.0041 - 1.0906 0.0066 - 1.0463 0.0089

F3-OZ 1.2087 0.0033 1.2013 0.0029 1.1439 0.0040 1.1730 0.0014

Table 2 The statistics (Mean ±

standard deviation) of

calculated whole brain

connectivity, shortest path

length, and clustering

coefficient in all types of

emotions

Angry Happy Neutral Sad

ADHD 0.2859 ± 0.0834 0.2875 ± 0.0831 0.2863 ± 0.0830 0.2871 ± 0.0832

connectivity Healthy 0.2734 ± 0.0885 0.2742 ± 0.0886 0.2745 ± 0.0884 0.2744 ± 0.0885

P value 0.6959 0.6780 0.7116 0.6869

ADHD 4.1503 ± 0.8817 4.1348 ± 0.8809 4.1494 ± 0.8786 4.1314 ± 0.8778

L Healthy 4.1519 ± 0.8841 4.1504 ± 0.8855 4.1409 ± 0.8812 4.1407 ± 0.8791

P value 0.9960 0.9618 0.9793 0.9770

ADHD 0.2704 ± 0.0142 0.2721 ± 0.0145 0.2707 ± 0.0139 0.2716 ± 0.0141

C Healthy 0.2564 ± 0.0088 0.2570 ± 0.0088 0.2574 ± 0.0088 0.2573 ± 0.0088

P value 0.6760 0.6568 0.6931 0.6676
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than other brain areas during facial emotion processing,

which is consistent with the present study’s findings. More

functional connectivity in the occipital lobe of the brain of

the ADHD group indicates more phase synchronization of

the brain neurons in these areas. The occipital lobe is the

center of visual processing (Pitcher et al. 2011), and

defects in these areas’ connectivity indicate a brain func-

tion defect during visual processing. This can be due to

excessive inattention of ADHD children to visual stimuli.

The whole-brain analysis results did not show significant

brain connectivity, and the extracted graph features (L and

C) differences in healthy and ADHD groups. However, a

separate examination of different brain areas showed that

in some areas, especially the Frontal lobe, the brain con-

nectivity in the ADHD group is significantly ðp\0:01Þ
stronger than in the Healthy group. Also, the analysis of the

graph features showed that the shortest path length in these

areas is significantly higher ðp\0:01Þ in ADHD, which is

consistent with the findings in (Lin et al. 2014; Liu et al.

2015). The frontal lobe is responsible for the processing of

human emotions (Stuss and Knight 2013). The present

study results showed that the phase synchronization of

neurons in this lobe is significantly higher in the ADHD

group than the healthy one, indicating a defect of the brain

performance in this lobe. This result can be interpreted as

more functional connectivity is associated with defects in

facial emotion processing in individuals with ADHD.

Higher L in the ADHD group, especially in the occipital-

frontal region’s connectivity, may indicate a defect in

transferring information from the visual center to the

emotional processing center. This study used the method,

phase-locking value (PLV), between EEG signals to ana-

lyze the brain’s functional connectivity in two healthy and

ADHD groups. Methods based on measuring the phase

interactions between EEG signals may better analyze the

brain’s complex dynamics. This research can help better

understand the brain’s behavior and its dysfunction in

individuals with ADHD.

Acknowledgements Matjaž Perc was supported by the Slovenian

Research Agency (Grant Nos.P1-0403 and J1-2457).

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Ethical approval This study was approved by the ethics committee of

the Iran University of Medical Sciences (Number:

IR.IUMS.REC.1394.92133070).

References

Ahmadlou M, Adeli H (2010) Wavelet-synchronization methodology:

A new approach for eeg-based diagnosis of adhd. ClinEEG

Neurosci 41:1–10

Ahmadlou M, Adeli H (2011) Fuzzy synchronization likelihood with

application to attention-deficit/hyperactivity disorder. Clin EEG

Neurosci 42:6–13

An L, Cao QJ, Sui MQ, Sun L, Zou QH, Zang YF, Wang YF (2013)

Local synchronization and amplitude of the fluctuation of

spontaneous brain activity in attention-deficit/hyperactivity dis-

order: a resting-state fmri study. Neurosci Bull 29:603–613

Balconi M, Pozzoli U (2009) Arousal effect on emotional face

comprehension: Frequency band changes in different time

intervals. Physiol Behav 97:455–462
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