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Age-related differences in immune dynamics during
SARS-CoV-2 infection in rhesus macaques
Emily Speranza1,* , Jyothi N Purushotham2,3,*, Julia R Port2 , Benjamin Schwarz4, Meaghan Flagg2 ,
Brandi N Williamson2 , Friederike Feldmann5, Manmeet Singh2, Lizzette Pérez-Pérez2 , Gail L Sturdevant2,
Lydia M Roberts4, Aaron Carmody6, Jonathan E Schulz2, Neeltje van Doremalen2 , Atsushi Okumura2, Jamie Lovaglio5,
Patrick W Hanley5 , Carl Shaia5, Ronald N Germain1, Sonja M Best2, Vincent J Munster2, Catharine M Bosio4,
Emmie de Wit2

Advanced age is a key predictor of severe COVID-19. To gain
insight into this relationship, we used the rhesus macaque model
of SARS-CoV-2 infection. Eight older and eight younger macaques
were inoculated with SARS-CoV-2. Animals were evaluated using
viral RNA quantification, clinical observations, thoracic radio-
graphs, single-cell transcriptomics, multiparameter flow cytom-
etry, multiplex immunohistochemistry, cytokine detection, and
lipidomics analysis at predefined time points in various tissues.
Differences in clinical signs, pulmonary infiltrates, and virus rep-
lication were limited. Transcriptional signatures of inflammation-
associated genes in bronchoalveolar lavage fluid at 3 dpi revealed
efficient mounting of innate immune defenses in both cohorts.
However, age-specific divergence of immune responses emerged
during the post-acute phase. Older animals exhibited sustained
local inflammatory innate responses, whereas local effector
T-cell responses were induced earlier in the younger animals.
Circulating lipid mediator and cytokine levels highlighted in-
creased repair-associated signals in the younger animals, and
persistent pro-inflammatory responses in the older animals. In
summary, despite similar disease outcomes, multi-omics profiling
suggests that age may delay or impair antiviral cellular immune
responses and delay efficient return to immune homeostasis.
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Introduction

Increased rates of severe and fatal coronavirus disease 2019
(COVID-19) have been reported in individuals >65 yr of age, males,
and those with comorbidities, including hypertension, type II

diabetes, cardiovascular disease, obesity, lung disease, and renal
disease (1, 2). Aging results in numerous changes to cells and me-
diators of the immune system, which alter susceptibility to infection,
disease progression, and clinical outcomes. Defining features of this
process, termed immunosenescence, include cytokine dysregulation,
an accumulation of senescent cells leading to chronic inflammation,
a loss of naı̈ve T- and B cells, and defective responses by innate
immune subsets (3, 4). A contribution of age-associated changes in
the immune landscape to increased disease and tissue damage has
been described for a variety of viral respiratory pathogens, including
influenza A virus and respiratory syncytial virus (5, 6, 7). These studies
implicate faulty or poorly regulated interactions between the im-
mune system and the local cellular environment (e.g., respiratory
epithelium) in the breakdown of protective responses to infectious
agents. Ultimately, the confluence of these events may result in
greater accrual of tissue damage, sustained local inflammation,
severe clinical disease, and suboptimal induction of immune effector
and memory responses.

In patients, the effects of age on the immune system have been
studied, but these investigations have had to rely solely on profiling
of circulating responses, whereas the complications of COVID-19
mainly occur in the lower respiratory tract. Analyses performed
within the respiratory tract are typically restricted to samples
collected post mortem. Also, it is rare to have access to pre-
infection samples in patients and to subsequently follow these
same individuals through the course of disease. Finally, the impact
of age on clinical versus subclinical aspects of severe acute re-
spiratory syndrome-coronavirus-2 (SARS-CoV-2) infection is an
area in need of additional investigation. Animal models are an
important tool for understanding the immunopathogenesis of
SARS-CoV-2 because they enable concurrent assessment of im-
mune responses at the primary site of infection, the lungs, and in
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circulation through multiple phases of disease progression and
recovery. The effects of age on disease outcome after SARS-CoV-2
infection have been explored in nonhuman primate species (8, 9, 10,
11, 12). Consistent with findings in humans, these studies suggest
that advanced age may also be associated with poorer outcomes to
SARS-CoV-2 infection in these models. However, these studies have
largely not addressed the relative roles of dysregulated immune
responses versus virus-induced damage in driving differences in
outcomes related to age. Furthermore, a potential link between
underlying, age-associated immunological changes and subclinical
effects of infection has not been described in detail.

To further characterize the relationship between age and host im-
mune responses to SARS-CoV-2 infection, we conducted a time-resolved
evaluation of disease in age-stratified cohorts of rhesus macaques. We
performedextensive local and systemic sampling throughout the course
of disease through swabbing and collection of blood, tissue, and
bronchoalveolar lavage fluid (BALF). Doing so facilitated the detection of
immune-related differences, using single-cell and bulk approaches, at
the site of infection during critical stages of disease progression: the
acute phase, the post-acute phase, and the transition point between the
two. Age-related divergences in inflammation, immune regulation, and
adaptive immunity appeared several days after inoculation and were
exacerbated over time. Our study represents a unique, in-depth kinetic
evaluation of the interaction between infection and the aging immune
system in a nonhuman primate model.

Results

Multi-omics assessment and baseline stratification of rhesus
macaque cohorts

We used a multi-omics approach to profile local and systemic
immune responses to SARS-CoV-2 infection in aged (mean age =
18 yr) and sub-adult (mean age = 3.4 yr) rhesus macaques. Animals
were inoculated with 2.6 × 106 TCID50 of SARS-CoV-2 and clinical,
virological, and immunological parameters were monitored over
time using multiple modes of assessment on various sample types
(Fig 1A). Four animals from each age-group were euthanized at
7 and 21 days post inoculation (dpi) to perform tissue-specific
analyses during the acute and post-acute stages of infection.

The older animals were classified as overweight according to
body weight and body condition scores (BCS) (Fig 1B). We charac-
terized the circulating lipid content at baseline because lipid mediators
(LMs) are important immune regulators that have been shown to in-
fluence COVID-19 severity in humans (13). Liquid chromatography tan-
demmass spectrometry (LC-MS/MS)was used to target ~1,200 individual
lipid species across glycerolipids, cholesterol-esters, sphingolipids,
phospholipids, and free fatty acids. Upon comparison of the summation
of signals from each lipid class, we noted that the older animals dis-
played elevated levels of neutral (P = 0.03), phospho- (P = 0.03), and lyso-
phospho- (P = 0.03) lipid classes (Fig 1C). However, we did not detect the
disruptionof sphingolipid species (P = 1), whichwere aprimarymarker of
circulating lipid disruption in obese nonhuman primates (14) suggesting
the older animals were overweight but not obese.

Altered immune states in older individuals may include the
development of a chronic inflammatory phenotype (also known as

“inflammaging”) characterized by a persistent elevation of pro-
inflammatory cytokine levels (15). Consistent with this phenotype,
concentrations of serum IL-6 (P = 0.03) were increased in older
versus younger animals at pre-infection (Fig 1D). However, con-
centrations of other cytokines associated with chronic inflamma-
tion, like TNF-α (P = 0.70) and IL-1RA (P = 0.88), were not increased
(Fig S1) (16, 17). Although not as strongly differentiated, IL-5 (P = 0.12)
and IL-8 (P = 0.07) were detected at lower concentrations in the
older than in younger animals (Fig 1D), which may reflect a reduced
capacity for regulating innate cell chemotaxis (18).

Declining adaptive immunity is another hallmark of immuno-
senescence. A reduction in thymic and bone marrow function
contributes to a loss of naı̈ve T- and B cells and the accumulation of
terminally differentiated effector cells (19, 20, 21, 22). Consistent with
other aging models, the older rhesus macaques exhibited lower
frequencies of circulating naı̈ve (CD28+CD95lo) CD4+ (P = 0.0006) and
CD8+ (P = 0.0002) T cells, as well as naı̈ve (IgD+ CD27− CD21+) (P = 0.005)
and total CD20+ (P = 0.01) B cells. Corresponding elevated frequencies
of effector/effectormemory (CD28− CD95+) CD4+ (P = 0.01) andCD8+ (P =
0.001) T cells, along with plasma cells (CD20− CD38+ CD138+) (P = 0.005)
were also observed in the older animals (Fig 1E and F). The collective
results of our baseline sampling revealed age-related differences in
body condition, lipid metabolism, cytokine regulation, and adaptive
immunity with the potential to impact responses to infection.

Moderate age-related differences in clinical and virological
outcomes after SARS-CoV-2 inoculation

To assess differences in the progression of SARS-CoV-2 infection,
we conducted standardized clinical scoring, scoring of pulmonary
infiltrates on radiographs, and virological measurements in re-
spiratory tract samples. Older animals displayed slightly elevated
clinical scores over the course of infection (area under the curve
[AUC] = 150.2 ± 16.86 in older animals versus AUC = 75.25 ± 9.45 in
younger animals; P < 0.0001) (Fig 2A). By 21 dpi, three of four younger
animals had fully recovered, whereas mild clinical signs could still
be observed in all older animals (Table S1). Increased pulmonary
infiltrates were observed on radiographs in the older than in the
younger animals (AUC = 19.88 ± 6.3 in older animals versus 7 ± 2.53 in
younger animals; P = 0.06) (Fig 2B). Pulmonary infiltrates were no
longer detected in either cohort by 10 dpi, suggesting that respi-
ratory disease was limited to between 1 and 7 dpi (Fig 2B).

Virus replication in the upper and lower respiratory tract was
assessed using nose swabs, throat swabs, BALF, and lung tissue.
Viral loads were quantified using qRT-PCR for the detection of
genomic RNA (gRNA) and subgenomic RNA (sgRNA) as a measure of
recent virus replication. gRNA and sgRNA clearance in nose and
throat swabs over the time course did not differ between groups
(Fig 2C and D). In the lower respiratory tract, viral gRNA clearance
from BALF was relatively consistent between the younger animals
(mean of change = −1.6, SD of change = 0.3), whereas substantial
variability was observed within the older cohort, as evidenced by
high variance in the mean change in viral load between 3 and 7 dpi
(mean of change = −1.3, SD of change = 1.13) (Fig 2E). Meanwhile,
detection of sgRNA in BALF revealed similar control of virus rep-
lication, regardless of age (Fig 2E). Likewise, although comparison of
gRNA in lung tissue at 7 dpi suggested that the younger animals
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Figure 1. Multi-omics data collection and baseline comparison between old and young rhesus macaques.
(A) Overview of samples collected. Sampling time points are depicted across the timeline as days post inoculation (dpi). The colored arrows indicate sampling
performed on animals necropsied at 7 dpi (pink) or animals necropsied at 21 dpi (orange). BALF = bronchoalveolar lavage fluid, IHC = immunohistochemistry. (B) Summary
of age, weight and body condition score divided by sex. (C, D, E, F) Baselines of total lipid signal by lipid class (C), serum cytokines (D), circulating T-cell subsets (naı̈ve and
effector/effector-memory [TEEM]) (E), and circulating B-cell subsets (F) present at different concentrations (C, D) or frequencies (E, F) pre-inoculation (−7 or 0 dpi). Grey
represents older and green represents younger rhesus macaques. P-values were calculated using the Mann–Whiney U test.

SARS-CoV-2 age-related immune dynamics Speranza et al. https://doi.org/10.26508/lsa.202101314 vol 5 | no 4 | e202101314 3 of 21

https://doi.org/10.26508/lsa.202101314


cleared virusmaterial (gRNA P = 0.15) slightlymore efficiently, levels of
sgRNA did not differ between age cohorts (sgRNA P = 0.8) (Fig 2F).
Despite the lack of a difference in viral clearance, older animals
showed amore rapid induction of circulating IgG responses (Fig S2) as
early as 14 dpi (P-value = 0.001). However, circulating IgG titers were
low or undetectable in the animals of both cohorts until after the virus
was cleared from the respiratory tract (beginning at 10 dpi).

Divergence in immune and lung parenchymal cell transcriptional
responses begins at the transition to the post-acute phase of
SARS-CoV-2 infection

Weperformed single-cell RNA sequencing in BALF (n = 4 animals per
age-group at −7 dpi, n = 8 animals per age-group at 3, and 7 dpi), and

lung tissue (n = 4 animals per age-group at 7 dpi) (Fig 1A) to profile
responses to SARS-CoV-2 infection in the lower respiratory tract. All
major cell types were identified in BALF and lung tissue using a
computational identification algorithm (23) (Figs 3A and S3A and B).
Of note, we did not detect enough reads mapping to the viral
genome to determine which cell types are productively infected.
Changes in cell frequencies over time were calculated in BALF;
increases in the frequencies of B- and T cells in BALF were observed
at 3 dpi as compared to baseline (P = 0.03 for both) and were
maintained to 7 dpi. The frequency of plasmacytoid dendritic cells
(pDCs) in BALF peaked at 3 dpi (P < 0.0001) and returned to baseline
levels by 7 dpi, suggesting a rapid resolution of type I interferon
response–stimulated cell recruitment in the lungs. Macrophage/
monocyte frequencies were depressed in BALF at 3 dpi (P = 0.01) and

Figure 2. Comparison of clinical and virological outcomes after SARS-CoV-2 inoculation.
(A) Comparison of clinical scores (y-axis) over the time course of infection (x-axis). Data from individual animals are indicated by dashed lines, group means are shown
using solid lines, and the area under the curve is represented by shading. (B) Ventro-dorsal and lateral radiographs were taken on clinical examination days and scored
for the presence of pulmonary infiltrates by a clinical veterinarian according to a standardized scoring system. (A) Individual lobes were scored and scores per animal per
day were totaled and displayed in the same format as panel (A). (C) Genomic RNA (gRNA, top) and subgenomic RNA (sgRNA, bottom) detected in nasal swabs after
inoculation. Data points indicate the geometric mean; error bars represent SD. (D) gRNA and sgRNA quantification in throat swabs. (E) gRNA and sgRNA quantification in BALF.
Matched values for individual animals at 3 and 7 days post inoculation are indicated by a connecting line. (F) gRNA and sgRNA quantification in lung samples collected at
7 days post inoculation. Points represent a single lung lobe section in an individual animal. Grey represents older (O) and green represents younger (Y) rhesus macaques.
(C, D, E, F) P-values were calculated using an unpaired t test comparing the area under the curve values (C, D), paired t test (E), or Mann–Whiney U test (F).
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Figure 3. Single-cell sequencing of BALF shows evidence of sustained inflammation in older rhesus macaques.
(A) Uniform manifold approximation projection (UMAP) of single-cell RNA sequencing from BALF. Each point is an individual cell colored by cell type (left), age (top
right), or sampling day post inoculation (dpi; bottom right). (B) Cell frequencies as a fraction of total BALF cells for individual animals over the course of infection for B
cells, T cells, pDCs, macrophages/monocytes (mac/mono), and dividing cells. Bars represent the median for each time point. P-values are calculated in a two-way ANOVA.
All P-values < 0.1 are shown. (C) Cell frequencies as a fraction of total BALF cells for individual animals over time separated by age-group for T cells, pneumocytes, and
ciliated cells. Bars represent the mean for each group. P-values are calculated in a two-way ANOVA and all P-values are shown. (D) Heat map of the median gene module
scaled expression value for the 10 computationally determined gene modules over the course of infection in macrophage/monocyte cells independent of age-group.
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7 dpi (P = 0.0001), which may have been due in part to a concurrent
substantial increase in the frequency of T cells (Fig 3B). A similar
pattern of changes in macrophage, lymphocyte, and neutrophil
frequencies was observed through flow cytometric analysis of BALF
(Fig S4A). Markers of activation and/or trafficking were present on
macrophages (CD86) and lymphocytes (HLA-DR, CD86, CD80, CD49d,
and CCR7), with peak expression observed at 3 dpi (Fig S4B), pro-
viding further evidence of the early amplification of local signals
associated with general immune cell activation and adaptive cell
priming.

Age-related differences in cell frequencies were observed at 7
dpi, with the older animals displaying higher frequencies of epi-
thelial populations, specifically ciliated cells (P = 0.0007) and
pneumocytes (P = 0.03) (Fig 3C) in BALF. As expected, frequencies of
pneumocytes in lung tissue did not change (P = 1) (Fig S3C). In
addition, the frequency of BALF T cells was elevated in the younger
versus older animals (P = 0.01), either due to enhanced expansion of
local populations or systemic recruitment (Fig 3C).

To evaluate changes in the transcriptional states of specific
immune cell subsets, we applied a clustering bias method to
identify cell types (or sub-clusters) in BALF that showed a strong
transcriptional shift after SARS-CoV-2 inoculation. We subsequently
selected the two cell types demonstrating the strongest tran-
scriptional shifts post inoculation, macrophages and dividing cells,
for further assessment (Fig S3D). We then conducted gene module
analysis to explore drivers of the observed transcriptional dif-
ferences, starting in the macrophages. Gene expression in the
macrophages/monocytes was averaged for each time point and
clustered using 1,000 iterations of k-means clustering into 10
distinct gene modules (Fig 3D). Gene modules 3 and 5 showed a
strong increase in expression post inoculation. Gene module 3
comprised type I interferon–responsive genes characteristic of
stimulated macrophages/monocytes reacting to an active viral
infection, such as ISG15, IFIT2, and IRF7 (Supplemental Data 1).
Gene module 5 was an expansion of this gene set, revealing a
pro-inflammatory state within the macrophages/monocytes (e.g.,
CXCL10, INFGR2, and CCL8), which peaked at 3 dpi and began to
return to baseline by 7 dpi (Fig S5 and Supplemental Data 1). This
gene set was similar to ones detected through bulk RNA se-
quencing, yet attribution of the signature to specific cell types was
not done previously (12). Individual gene module scores for the
cells derived from the older versus younger animals were calcu-
lated to compare differences in median expression. Differences in
expression between the older and younger animals were moderate
at pre-infection (estimated P-value for difference in medians of
1,000 iterations = 0.02). At 3 dpi there was an elevation in gene
module 3 in the older than in younger animals in the macro-
phages (estimated P-value for difference in medians out of 1,000
iterations = 0). This pattern persisted to 7 dpi (estimated P-value for
difference in medians out of 1,000 iterations = 0) (Fig 3E). A similar
age-related pattern was observed in gene module 5 (Fig S5).

To determine if the extended pro-inflammatory state in
macrophages/monocytes in BALF observed in the older animals
was a cell type–specific phenomenon or a consequence of general
inflammation in the lower respiratory tract, we monitored the
expression of genemodule 3 in all cell types detected in BALF. In the
older animals, there was elevated expression ofmodule 3 at 3 dpi in
all cell types, with macrophages/monocytes displaying the highest
expression of this gene set, suggesting generalized lung inflam-
mation. By 7 dpi, there was sustained expression of this gene
module in all immune cells of the older animals; however, the
nonimmune cells (ciliated cells and pneumocytes), had returned to
baseline values (Fig 3F). In the younger animals, there was up-
regulation of this gene module broadly across all immune cells;
however, little up-regulation of this gene module was observed at
3 dpi in the nonimmune cells (ciliated cells and pneumocytes). In
addition, all cell types had returned to near baseline levels by 7 dpi,
suggesting more efficient regulation of the inflammatory response
in the lungs of the younger animals (Fig 3F).

Efficient induction of cellular immune responses in the lungs of
younger animals at 7 dpi

Next, we analyzed the transcriptional changes occurring in dividing
cells in BALF, the second cell type identified in the clustering bias
analysis described above from the scRNA-Seq data. The dividing
cell cluster was defined as containing more than 98% of cells in
either the S or G2M phase of cell division. Six unique dividing cell
sub-clusters were identified: CD8+ T cells, CD4+ T cells, macrophages
with a tissue-resident phenotype, macrophages with a monocyte-
like or non-tissue resident phenotype, and plasma cells (Figs 4A
and S6). Cell dynamics in general showed a decrease in macro-
phage populations and an increase in T cells over time in the
dividing cluster (Fig 4B). Differentiating the changes occurring in the
dividing cell subset in the two age cohorts revealed slightly higher
levels of dividing macrophages in the older animals at baseline
(cluster 1, P = 0.04; Fig 4C). At 7 dpi, a moderate increase in
nonresident-like cells was observed in the older animals (cluster 4,
P = 0.07; Fig 4C), which is consistent with the data (Fig 3F) suggesting
prolonged inflammation in the lungs of the older cohort. Mean-
while, an increase in the frequency of dividing CD8+ T cells was
selectively detected in the younger animals at this time (cluster 0,
P = 0.01). Together, this suggests that in addition to achieving better
control over inflammation, the younger animals may also dem-
onstrate more efficient local induction or systemic recruitment of
T cells than the older animals.

To determine if there was indeed amore rapid induction of T-cell
responses in the younger animals as suggested by the sequencing
data, we used multiparameter flow cytometry to profile T cells
isolated from lung tissue at 7 dpi. Consistent with observations from
single-cell sequencing, at 7 dpi, the younger animals exhibited
higher frequencies of total (CD3+) T cells than the older animals

Blue colors represent low expression and pink colors represent high expression values. (E) Gene module score for gene module 3 for individual cells over the course of
infection in the macrophages/monocytes separated by age-group. (F) Median gene module score for gene module 3 over the course of infection separated by age-group
(O: older animals; Y: younger animals), across all cell types. The brighter the color, the higher the expression value. Columns are grouped by dpi and rows are clustered
based on Euclidian distance (dendrogram right).
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Figure 4. Single-cell RNA sequencing and flow cytometric analyses demonstrate an age-dependent divergence in T-cell responses at 7 dpi.
(A) UMAP projection of the dividing cells in BALF. Individual points represent a single cell with color determined by Seurat clusters (0–5). Labels represent the broader
cell classification. Cluster 0: CD8+ T cells; cluster 1: macrophages with a tissue-resident phenotype; cluster 2 and 3: CD4+ T cells; cluster 4: macrophages with a monocyte-
like or non-tissue resident phenotype; cluster 5: plasma cells. (B) Change in frequency of the total dividing cells for each of the Seurat clusters separated by sampling time
point. Bars represent the median value. Blue boxes represent cell type groups. P-values are calculated in a two-way ANOVA. Only P-values < 0.1 are shown for clarity.
(C) Cell frequency separated by age-group at –7 dpi (left), 3 dpi (middle), and 7 dpi (right) across the Seurat clusters as a percentage of the total dividing cell cluster. Bars
represent the mean and error bars represent the SEM. P-values are calculated in a one-way ANOVA. Only P-values < 0.1 are shown. (D) Flow cytometric evaluation of single
cell suspensions from lung tissue collected at 7 dpi. Frequencies of T cells as a percentage of lymphocytes are shown (left panel) as well as frequencies of CD4+ (middle
panel) and CD8+ T cells (right panel) as proportions of total T cells. Bars depict median frequencies. P-values are calculated using Mann–Whiney U tests. (E) Visualization
of concatenated T-cell subsets in lungs on 7 dpi across animals by t-SNE analysis. Density plots (left) show the distribution of T cells derived from each age cohort. Dot plot
depicts individually color-coded FlowSOM meta-clusters overlayed onto total combined T cells (right). (E, F) Stacked bar chart depicting the cumulative proportion of
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(P = 0.03), although this could not be completely attributed to
differences in CD4+ or CD8+ T cells in either group (P = 0.2 for both)
(Fig 4D). We compared phenotypic or functional states within the
T-cell compartment to elucidate potential age-related trends. Data
from a randomly down-sampled subset of CD3+ T cells was con-
catenated across animals and visualized by t-distributed stochastic
neighbor embedding (t-SNE). The unbiased identification of 15
meta-clusters was carried out using the FlowSOM algorithm based
on the inclusion of 17 markers (Fig 4E) (24). The composition of each
cluster according to the frequency of cells derived from each age
cohort, was defined (Fig 4F).

To differentiate phenotypes present in the older versus younger
animals, we selected clusters from the flow cytometry data in which
at least 60% of cells were derived from either older or younger
animals and distinguished these as demonstrating cohort-specific
enrichment. Application of this threshold yielded five clusters
enriched in cells from the older animals, six clusters enriched in
cells from the younger animals, and four clusters not notably
enriched for the cells in either cohort (Fig 4F and G). The major
T-cell subset classifying each cluster was delineated according to
the relative frequency of CD4+ (CD4+ CD8−), CD8+ (CD4− CD8+), double
negative (DN, CD4− CD8−), and double positive (DP, CD4+ CD8lo) T
cells. Older cohort clusters were primarily CD4+ T-cell populations
and one DP T-cell population. Meanwhile, clusters ascribed to the
younger cohort consisted of CD8+, DN, and DP T cells (Fig 4G). The
median fluorescent intensities (MFIs) of 15 phenotypic markers
were determined within each cluster and z-scores calculated to
compare relative expression across clusters. The clearest trend
differentiating the clusters enriched in cells from each age cohort,
was the relative increased expression of markers associated with
proliferation (Ki67), antigen experience (CD95), and effector func-
tion (CD49d and to some extent CXCR3) in the clusters enriched for
younger animals’ cells, half of which were identified as CD8+ T-cell
populations (Figs 4G and S7A). These patternsmay reveal expansion
and differentiation occurring within the T-cell compartment of the
younger animals at 7 dpi, particularly in CD8+ T cells, that were not
concurrently apparent in that of the older animals. Trends iden-
tified from the clustering analysis were confirmed to be repre-
sentative of broader age-specific differences in T-cell phenotypes
by direct comparison of the fluorescence intensities of markers on
total CD8+ T cells aggregated across all animals in each age cohort.
The median of the fluorescence intensities of CD95, CD49d, Ki67,
CXCR3, and PD-1 were greater on the CD8+ T cells of younger
compared with older animals (P < 0.0001) (Fig S7A). We also
compared frequencies of populations of CD8+ T cells displaying an
antigen-experienced effector phenotype and undergoing active
proliferation. As a percentage of non-naı̈ve (CD95+) cells, CD49d+

Ki67+, CXCR3+ Ki67+, and PD-1+ Ki67+ populations were present at

higher frequencies in CD8+ T-cell subsets of the younger animals in
comparison with the older animals (P = 0.03 for all comparisons)
(Fig 4H) consistent with the results from previous analyses that
were suggestive of a more robust, early CD8+ T-cell response in the
younger animals. Finally, to gauge whether these differences re-
flected the activities of bystander or virus-specific T cells, we
performed an activation induced marker (AIM) assay to estimate
the frequencies of SARS-CoV-2 spike protein-responsive CD4+ and
CD8+ T cells using a combination of OX40 and CD137 surface
markers. In support of our previous findings, we detected elevated
frequencies of AIM+ (OX40+ CD137+) T cells, particularly CD8+ T cells
(P = 0.03), in the lungs of the younger animals at 7 dpi in comparison
with the older animals (Fig S8).

Pronounced age-related divergence in cellular immune
responses in the lungs at 21 dpi

We next investigated the dynamic shifts in the T-cell response in
the lungs in the period following virus clearance, at 21 dpi. Median
T-cell frequencies in the older animals at 21 dpi appeared to in-
crease relative to those observed at 7 dpi, potentially indicating a
late expansion of local T cells or influx of T cells from peripheral
blood in this cohort. Conversely, between 7 and 21 dpi, the fre-
quency of T cells in the lungs of younger animals reduced to levels
lower than those present in the older animals (P = 0.03; Fig 5A). The
frequency of CD4+ (P = 0.48) and CD8+ (P = 0.69) T cells within the
total CD3+ population was similar between cohorts (Fig 5A).

Applying the same FlowSOM clustering analysis described above
to the 21 dpi datasets, we identified six clusters enriched for cells
from the older animals and six clusters enriched for cells from the
younger animals (Fig 5B and C). Notably, at this later time point, the
segregation of cells from each age cohort into distinct clusters was
more exaggerated than at 7 dpi (Fig 5C). The clusters composed of
cells from the older animals spanned all major subsets: CD4+, CD8+,
DN, and DP (Fig 5D). T cells in the younger animals were again largely
found in CD8+ or mixed CD8+ and DN clusters (Fig 5D). Comparisons
of the z-scores of phenotypic marker MFIs revealed the increased
expression of Ki67, CD95, and CD49d in older animals (Figs 5D and
S7B). This combination of markers matched those demonstrating
increased intensity of expression on the clusters enriched for cells
from the younger animals at 7 dpi, further supporting the occur-
rence of an age-associated delay in the acquisition of an expanded
pool of antigen-experienced effectors.

Comparison of the fluorescence intensity of these markers
across total CD4+ and CD8+ T cells from each age cohort confirmed
that intensities of CD95, CD49d, and Ki67 were elevated for the CD4+

T cells of the older versus younger animals (P < 0.0001; Fig S7B).
This effect was also maintained for CD95 and CD49d on CD8+ T cells

cells from animals of the older and younger cohort comprising each meta-cluster from panel (E) (1–15). Vertical dotted lines represent (from left to right) the threshold
of 10% for enrichment of cells from younger animals, equal composition, and threshold of 10% enrichment of cells from older animals. P-values comparing the median
frequency of cells per animal within each cohort are listed to the right of the stacked-bars for each cluster and are calculated using Mann–Whiney U tests. (G) Heat map
representation of meta-cluster phenotypes. The clusters enriched for the cells of the older (grey), younger (green), and neither (black) are indicated (left column). The
major T-cell subset characterizing each cluster is shown by depicting the frequencies of CD4+, CD8+, double negative (DN), and double positive (DP) T cells composing each
cluster (middle), as well as a phenotypic comparison of clusters by calculation of the z-score of the median fluorescence intensity of 15 markers across clusters (right).
(H) Frequencies of expanding, effector T-cell populations as a percentage of non-naı̈ve (CD95+) and CD8+ T cells. Bars depict median frequencies. P-values are
calculated using Mann–Whiney U tests. In panels separated by the age-group, grey represents older (O) and green represents younger (Y) rhesus macaques.
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Figure 5. Age-related differences in T-cell memory–associated phenotypes and lymphoid tissue formation are apparent in the lungs at 21 dpi.
(A) Flow cytometric evaluation of single cell suspensions from lung tissue collected at 21 dpi. Frequencies of CD3+ T cells as a percentage of lymphocytes, and
frequencies of CD4+ and CD8+ T cells as proportions of CD3+ T cells are shown. Bars depict median frequencies. P-values are calculated using Mann–Whiney U tests.
(B) Data visualization by t-SNE analysis and depiction of meta-clusters generated by FlowSOM. Density plots (left) show the distribution of T cells derived from each age
cohort. Dot plot depicts individually color-coded FlowSOM meta-clusters overlaid onto total combined T cells (right). (C) Stacked bar chart depicting the cumulative
proportion of cells from animals of the older or younger cohort comprising each meta-cluster (1–15). Vertical dotted lines represent (from left to right) the threshold of
10% for enrichment of cells from younger animals, equal composition, and threshold of 10% for enrichment of cells from older animals. P-values comparing the median
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(P < 0.0001), but median intensities of Ki67 on CD8+ T cells, and
CXCR3 and PD-1 on CD4+ and CD8+ T cells were higher in the younger
animals (P < 0.0001; Fig S7B). Meanwhile, CD8+ T-cell clusters
enriched for cells from the younger animals featured elevated
expression of CCR7, CD103, CD69, and HLA-DR (Fig 5D). CCR7 is a
marker for lymph node homing, whereas CD103 and CD69 are up-
regulated on CD8+ T cells with a tissue-resident memory phenotype.
Cluster-specific trends were again confirmed by comparison of the
fluorescence intensity of these four markers on total CD8+ T cells
from the younger and older animals, which verified increased
expression on cells from the younger animals (P < 0.0001; Fig S7C).
Younger animals demonstrated elevated frequencies of non-naı̈ve
(CD95+) CD8+ T cells exhibiting a central memory phenotype (CD28+

CCR7+) in comparison with the older animals (P = 0.03, Fig 5E) (25, 26,
27, 28). We additionally detected elevated frequencies of CD8+ CD95+

T cells in the younger cohort that were also CD103+ (P = 0.03) or
CXCR3+ CD69+ CD103+ (P = 0.03), which may signify specific pop-
ulations of effector memory cells with a tissue-resident phenotype
(Fig 5E). Together, these data appear to indicate the establishment
of long-term memory populations in the CD8+ T-cell compartment
of the younger animals at an earlier time point than in the older
animals.

Extensive bronchus-associated lymphoid tissue (BALT) formation
in the lungs of young rhesus macaques

To further evaluate differences in the local cellular immune re-
sponse at 21 dpi, we performed multiplex immunohistochemistry
(mIHC) of lung tissue samples. We found evidence of enhanced
expansion of BALT structures in the lungs of the younger animals
compared with the older animals. Previous studies suggest that
BALT expansion may be induced shortly after pulmonary infection
(29, 30). BALT formation was primarily found around large airways
(denoted by EpCAM and aSMA; Fig 5F); within the BALT we identified
cells co-expressing CD3, HLA-DR, and Ki67, characteristic of acti-
vated and proliferating T cells (31). BALT structures were less
abundant in the older animals, and those present were generally
smaller in size and exhibited reduced proliferative activity (i.e., lower
Ki67 density), whereas younger animals showed a mixture of small
and larger BALT that contained germinal center-like structures with a
high density of HLA-DR+ CD3− Ki67+ cells (Fig 5F and G). Furthermore, in
contrast to those of the younger animals, the lungs of the older
animals did not exhibit signs of the advanced-stage development of
full lymphoid-like tissue structures, such as endothelial vessel

formation and CD3+ CD4+ cells surrounding clusters of CD3+ HLA-DR+

(representing activated T cells) and CD3− HLA-DR+ (comprising
antigen-presenting cells and B cells) populations (Fig 5F). However, it
is possible that similarly mature BALT would have appeared in the
lungs of older animals if given more time. In combination with the
kinetic differences identified by flow cytometry, these data provide
additional evidence of an age-associated delay or deficiency in
the local cellular immune response to infection in older rhesus
macaques.

Post-acute phase of infection highlights age-stratified systemic
immune responses

To expand on our findings from the lungs, we carried out a com-
parison of systemic immune responses during infection. We ob-
served age-related differences in the changes in circulating
frequencies of CD8+ and CD4+ T-cell memory classes post inocu-
lation (Fig S9A and B). Between 3 and 21 dpi, the younger animals
exhibited more salient reductions in the frequencies of memory
cells in peripheral blood samples, accompanied by a proportional
increase in the frequency of naı̈ve cells. This effect was strongest for
CD8+ TEEM cells and likely reflects the exodus of effector T cells from
the blood to site of infection and/or secondary lymphoid organs.
AUC analysis between 1 and 21 dpi confirmed that the reduction in
the frequency of this cell type in circulation was greater in the
younger animals compared with the older animals (P = 0.0006)
(Fig S9A). The principal decrease occurred between 1 and 7 dpi,
which aligned with data from the lungs at 7 dpi showing elevated
frequencies of T cells, particularly CD8+ T cells, in the tissue of
younger animals. Comparison of the frequencies of CXCR3+ cells as
a fraction of non-naı̈ve (CD95+) CD8+ and CD4+ T cells over time
provided further evidence of more efficient homing of T cells to the
site of infection in the younger animals (Fig S9C and D). The
augmented frequency of CXCR3 expression was evident on both
CD8+ CD95+ and CD4+ CD95+ cells post inoculation, although the
effect was stronger for the former (AUC of 1–21 dpi, P = 0.02 and P =
0.04, respectively). In addition, we observed an increase in the
frequency of Ki67+ CD8+ CD95+ and CD4+ CD95+ T cells between 7 and
21 dpi; this effect was greater in the younger animals between 14
and 21 dpi (AUC of 1 to 21 dpi, P = 0.03 and P = 0.05, respectively; Fig
S9C and D). In summary, these data suggest that the differences in
T-cell signatures observed in the lungs stemmed at least in part
from the enhanced recruitment of circulating CD8+ T cells to the site
of infection in the younger animals.

frequency of cells per animal within each cohort are listed to the right of the stacked-bars for each cluster and are calculated using Mann–Whiney U tests. (D)Heat map
representation of meta-cluster phenotypes. The clusters enriched for the cells of the older (grey), younger (green), and neither (black) are indicated (leftmost column). The
major T-cell subset characterizing each cluster is shown by depicting the frequencies of CD4+, CD8+, double negative (DN), and double positive (DP) T cells composing each
cluster (middle), as well as a phenotypic comparison of clusters by calculation of the z-score of the median fluorescence intensity of 15 markers across clusters (right).
(E) Frequency of CD8+ T cells exhibiting a lymph node homing memory phenotype (CD28+ CCR7+) as a percentage of non-naı̈ve CD8+ T cells; and frequencies of CD8+ T cells
demonstrating phenotypes associated with tissue-residency (from left to right: CD103+ and CXCR3+ CD69+ CD103+) as a percentage of non-naı̈ve CD8+ T cells are shown.
Bars depict median frequencies. P-values are calculated using Mann–Whiney U tests. (F) Representative multiplex immunohistochemistry (mIHC) of a region of a lung
section from an older (left) and a younger (right) rhesus macaque focusing on identified bronchus-associated lymphoid tissue (BALT); α-smooth muscle actin,
prosurfactant C, DAPI, HLA-DR, CD3, Ki-67, EpCAM, and CD4 are shown. Some features of the images are denoted such as a large airway (*), germinal center formation
(yellow arrow), high endothelial venule (HEV) (white arrowhead), and CD4+ T-cell accumulation (white arrow). Scale bars represent 60 μm. (G) Quantification of mIHC
images in older and younger animals. Graphs show the number of BALT found in the lung section for each animal (left), the density of Ki-67+ nuclei in all identified BALT
(middle), and the area of all identified BALT (right). The blue boxes show the cutoffs for immature BALT (outside shaded area) compared with more advanced BALT (inside
shaded area). In panels separated by age-group, grey represents older (O) and green represents younger (Y) rhesus macaques.
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Finally, we compared the functional profiles of antigen-specific,
systemic T cells at 21 dpi by intracellular cytokine staining of
splenocytes stimulated with SARS-CoV-2 spike protein–peptide
pools. In support of the above findings, the older animals demon-
strated weaker virus-specific pro-inflammatory CD8+ T-cell responses,
as evidenced by reduced frequencies of IFNγ- and TNFα-expressing
cells compared to those in the younger animals (P = 0.03 for both
comparisons; Fig S9E). A similar, but less notable effect was observed
for CD4+ IFNγ+ (P = 0.03) and TNFα+ (P = 0.11) T-cell responses (Fig S9F).
In conjunction with the previous findings, these data suggest that
virus-induced T-cell responses may not only be delayed, but also of
inferior quality in the older cohort.

Age-related differences in the immunomodulatory
signaling environment

The previous findings highlighted age-specific differences in in-
flammation and cellular changes within the lungs, along with ki-
netic and functional incongruity in T-cell responses. These results
prompted us to monitor patterns in the immunomodulatory sig-
naling environment during infection. To this end, levels of serum
cytokines were assessed during the acute (1–7 dpi) and the post-
acute phases of infection (10–21 dpi). Principal component analysis
(PCA) revealed little evidence of sample clustering according to age
through 7 dpi (F = 2.5, P = 0.04). However, from 10 dpi onwards, cohort
separation became clearer (F = 6.2, P < 0.0001), suggestive of the
development of distinct cytokine profiles (Fig 6A). We identified
seven cytokines representing the most likely drivers of the age-
associated variation observed between 10–21 dpi by applying a
loadings cutoff of 0.2 and selecting for high loading scores along
PC1: IL-2, IL-10, IL-17A, IL-13, IL-6, and macrophage inflammatory
protein (MIP)-1α (Fig 6B). To further examine the conclusions from
the PC analysis, we directly compared the concentrations of these
cytokines across the sampling time course. In alignment with the
PCA data, no dramatic differences in the levels of individual serum
cytokines were observed between the age cohorts from 1 to 7 dpi.
However, at 10 dpi, concentrations of circulating pro-inflammatory
cytokines IL-6, MIP-1α, TNFα, and IL-17A were elevated in the older
animals (P = 0.0002, 0.002, 0.06, and 0.05, respectively; Fig 6C).
Concurrent spikes in the concentrations of regulatory cytokines IL-
10 (P = 0.03) and IL-13 (P = 0.001) were also apparent in the older
animals, whereas being absent in the younger. Notably, elevations
in the levels of IL-6, IL-10, and IL-13 were sustained in the older
animals from 10 dpi through at least 21 dpi (10–21 dpi AUC com-
parison of old versus young: P = 0.009, 0.02, and 0.03 respectively),
suggesting prolonged systemic inflammation.

Because of their role in regulating the activation and resolution
phases of the inflammatory response, changes in immune LMs were
also assessed at 3, 7, and 21 dpi (Fig 1A). No acute changes in the
circulating LM profiles were observed within the first few days after
inoculation (3 dpi), although the nonspecific elevation of LMs
present in the older animals before infection was preserved (Fig
6D). At 7 dpi, the LM profile of the older animals remained un-
changed, but the younger animals began to display a trend of
higher LM levels across multiple LM families in agreement with the
observed inflection in cytokine behavior on 7 dpi. By 21 dpi, LM
levels continued to increase in the younger cohort, whereas

remaining unchanged in the older cohort (Fig 6D). The responsive
LMs in the younger animals were primarily localized to the
cyclooxygenase family and the 12- and 15-lipoxygenase families
(fold change versus 0 dpi and PCA loading) (Fig 6D–F). Increases in
similar LM and LM pathway signatures have been associated with
an up-regulation of tissue-repair processes. In combination with
the findings in the lungs, the differences in LM profiles suggest that
by 21 dpi the younger animals had efficiently transitioned away
from an acute antiviral response to a pro-resolving or repair-
promoting state, as would be expected during convalescence
(32, 33, 34).

Discussion

Increased age is a clear risk factor for severe COVID-19 in humans.
Although the mechanism underlying this susceptibility is not fully
understood, it is likely driven by impaired and/or dysregulated
immune responses to infection in older individuals (3). Investi-
gations into the effects of age on SARS-CoV-2 pathogenesis have
been conducted in COVID-19 patients; however, research in humans
is limited by sampling constraints and the lack of controlled in-
fection conditions. There is a paucity of data specifically monitoring
disease processes in the lungs, during both acute infection and the
juncture at which patients recover or proceed to develop more
severe disease. In addition, there is a gap in our understanding of
the correlates of disease severity in nonhospitalized COVID-19
patients. By using the rhesus macaque model and multi-omics
sample analyses, we were able to compare immune dynamics in
older and younger animals on a cellular level, with a particular
focus on the lungs during two key phases of infection: the acute
phase and the post-acute phase.

In our model, similar to previous studies in nonhuman primates
(8, 9, 35), clinical disease was mild in both age-groups with older
animals demonstrating a slight elevation in disease signs and a
longer time to recovery. Despite this limited effect of age on disease
outcome, we found several striking differences in the response to
SARS-CoV-2 infection through immunological and transcriptional
profiling (summarized in Fig 7). During the acute phase of SARS-CoV-
2 infection in the older animals, the local innate response was
up-regulated in both immune and nonimmune cell populations
through 7 dpi. By contrast, the younger animals appeared to better
control the innate inflammatory response in the lungs, as evi-
denced by the more attenuated induction of innate pathways
that occurred only in immune cells, and had nearly resolved by
7 dpi. During the post-acute phase of the disease, the two groups
diverged further, with older animals exhibiting a prolonged pro-
inflammatory circulating response, as well as a delay in the acti-
vation and/or differentiation of T cells isolated from the lungs.
Concomitant with these changes within the T-cell compartment, the
younger animals displayed a pro-resolving circulating milieu of LMs
and cytokines at later time points, whereas the older animals did
not (Fig 7). Collectively, our findings suggest that increasing age is
associated with a prolonged inflammatory state and the delayed or
subpar induction of cellular immune responses after SARS-CoV-2
infection.
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Figure 6. Circulating cytokines and lipid mediators (LMs) during the acute and post-acute phases of SARS-CoV-2 infection.
(A) Principal component analysis of serum cytokines in the acute phase of the disease (1–7 dpi) and the post-acute phase of disease (10–21 dpi). The first principal
component is on the x-axis and the second is on the y-axis. The f-statistic and P-value for clustering across all significant principal components (up to 99% explained
variance) is shown from a PERMANOVA test. Green points represent younger and grey represent older animals. (B) PC1 loading scores for serum cytokines in the post-acute
phase of the disease. The vertical dashed line represents the cutoff for the significant loading values highlighted in the yellow box. (C) Serum cytokine levels over the
course of infection in the older and younger animals for the cytokines that pass the threshold in panel (B). P-values in the acute phase of the disease (0–7 dpi, outside
blue box) and the post-acute phase of the disease (10–21 dpi, inside blue box) represent a comparison of the area under the curve between the older and younger animals
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The initiation of the innate immune response is vital to con-
trolling acute viral infections. Studies in humans suggest that
younger individuals achieve superior control of SARS-CoV-2 rep-
lication and reduced severity of disease through an earlier in-
duction of innate immune responses, especially in the upper
respiratory tract (36). In contrast, the rapid initiation of lung innate
responses was observed in both age cohorts in our study, with
elevated inflammatory signaling present in the older versus
younger animals. This finding may explain the self-limiting nature
of SARS-CoV-2 infection in the rhesus macaque model and the lack
of severe disease, even in aged animals. However, innate responses
resolved more slowly in the aged animals compared with the
younger macaques. Prolonged inflammation has been linked to the
dysregulation of adaptive immune responses, which play a critical
role in the resolution of disease (37). Together, these observations
suggest that rather than being dependent on the initiation of innate
responses, differences in infection dynamics in the rhesus ma-
caque model are driven by the inability to properly dampen the
initial innate inflammatory response and a failure to support rapid
adaptive responses.

Defective or dysregulated innate and adaptive immune re-
sponses may contribute to the worsening COVID-19 outcomes
observed with increased age (3). Elevated concentrations of cy-
tokines correlated with severe COVID-19, including IL-6 and IL-10
(38), were present for a longer duration in the older animals than in
the younger animals, along with protracted clinical signs. The
timing and quality of virus-induced T-cell responses are also
predictive of the outcomes of infection for multiple pathogens and
are vulnerable to age-related disruption (39). The efficient stimu-
lation of virus-specific IFN-γ–secreting T cells is associated with
decreased COVID-19 severity in humans (40). In addition, CD8+

T cells have been found to be among the first cells to enter the
lungs after influenza A virus infection and are important in the
resolution of disease (41). Indeed, rapid CD8+ T-cell responses
combined with efficient dampening of inflammatory responses are
linked to recovery from COVID-19 (42, 43). In alignment with this
observation (CD8+), effector T-cell frequencies were increased in
the lungs of the younger animals at 7 dpi, whereas frequencies of
phenotypically similar cells were not elevated in the older animals
until 21 dpi. Similarly delayed T-cell responses, measured in the
circulating immune pool, have been associated with secondary
waves of disease beyond the point of viral clearance in COVID-19
patients, especially when combined with pro-inflammatory sig-
natures (42). These immune dynamics observed in COVID-19 pa-
tients are present in our older rhesus macaque cohort. As such,
differences between older and younger animals during the post-
acute phase of infection may provide insight into contributing cell
populations and immune processes that define the continuous
scale of severity observed in mild-to-moderate COVID-19 and the
prolonged symptoms seen in many COVID-19 patients (42).

A direct relationship is evident between the mild features of
immunosenescence present in the older animals at baseline and
the immune dynamics after infection indicative of a moderate, but
not yet catastrophic, decline in immune responsiveness and ho-
meostatic control. The delay in local cellular immune responses
observed in the older animals may additionally be explained by
reduced priming capacity with advancing age because of a re-
duction in the size of the naı̈ve T-cell pool and intrinsic cellular
defects, an effect that may have a stronger toll on CD8+ T-cell
responses (44). Meanwhile, the sustained local and systemic in-
flammation in these animals may be explained by the progressive
tendency of aging immune systems to shift towards a pro-inflammatory
phenotype due to an imbalance of pro- and anti-inflammatory
cytokines and decreased efficiency of inflammation-resolving
mechanisms (15). In addition, 12- and 15-lipoxygenase pathways
have been linked to recovery of lung tissue after viral infection (45,
46), and loss of these LM classes has been linked to higher in-
stances of ICU admissions in COVID-19 patients (13). The observed
up-regulation of the LM pathways in the younger, but not older
animals in our study, may have contributed to lagging recovery
times and potentially to slower repair of lung tissue in the older
animals.

Our ability to significantly distinguish some of the age-related
immune dynamics discussed above was limited by the group size
(n = 8) used in our study, only half of which were monitored up to 21
dpi, and a male-only cohort of younger animals due to a lack of
available subadult females. Moreover, given that the study end
point did not extend beyond 21 dpi, we could not ascertain if the
differences in the immune responses identified between the age
groups resolved or became more pronounced over time. Finally, our
study did not include animals of exceedingly advanced age. Therefore,
and because additional comorbidities associated with more severe
COVID-19 in humans and linked with increased age (1) were absent in
the animals of our study, we cannot rule out the possibility that
significantly worse clinical outcomes would have been observed in
severely aged animals with compromised innate immune defenses.

Despite these limitations, the utilization of a large set of high-
parameter techniques in one study to generate a time-resolved,
multi-site profile of virus-induced innate and adaptive immune
responses, has resulted in a comprehensive characterization of
SARS-CoV-2 infection in the rhesus macaque model. A thorough
understanding of the immune response to SARS-CoV-2 infection in
the rhesus macaque model will be essential as we move forward to
the next phase of the pandemic. Novel SARS-CoV-2 vaccines and
treatments may need to be evaluated without the possibility of
performing large phase III efficacy trials because of a lack of cases
or most of the susceptible population being vaccinated already.
Detailed information from animal models, such as those presented
here, will become necessary to enable immunobridging. Impor-
tantly, our findings highlight essential differences and similarities

using an unpaired t test. Lines represent themean and error bars represent the SEM at each time point. (D) Circulating LM profiles for the older (left) and younger (right)
animals over the course of the infection (0, 3, 7, and 21 dpi). Each column represents a single animal, and the rows indicate specific LM. LMs are grouped by the synthesizing
lipoxygenase (LO) enzyme noted on the right of the heat map. LM species produced by multiple LO enzymes are listed with each family. Values represent the log2 -fold
change compared to day 0 with blue meaning a decrease and red meaning an increase. (E) PC1 loading values for the indicated LMs at 3 and 21 dpi. Boxes represent
groupings of different LM classes denoted to the right of each group. (F) PC1 values for individual animals at 3 and 21 dpi with old on the left of the line and young to the
right of the line.
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in the immune response to SARS-CoV-2 infection between rhesus
macaques and humans that may be affected by age. As such, our
study provides new insights into the age-related immune dy-
namics of SARS-CoV-2 infection and represents a substantial
advance in available models of age-associated changes in
immunity.

Materials and Methods

Study design

To evaluate the effect of age on the pathogenesis of SARS-CoV-2
infection, eight aged (16–23 yr) and eight subadult (3–5 yr) rhesus
macaques were inoculated with SARS-CoV-2. Of note, the lifespan of
rhesus macaques in captivity is around 35 yr (47) and the com-
parative age in humans would be 9–15 yr for the younger animals
and 48–69 for the older animals (48). All animals were inoculated
via a combination of intranasal (0.5 ml per nostril), intratracheal
(4 ml), oral (1 ml) and ocular (0.25 ml per eye) routes with a 4 × 105

TCID50/ml (3 × 108 genome copies/ml; total dose 2.6 × 106 TCID50 per
animal) virus dilution in sterile DMEM. The animals were observed
daily and scored for clinical signs using a standardized scoring
sheet (35); the same person assessed the animals throughout the
study. Clinical exams were performed under anesthesia on 0, 1, 3, 5,
7, 10, 14, 17, and 21 dpi. On examination days, clinical parameters
including body weight, body temperature, and respiration rate were
recorded, and ventro-dorsal and lateral chest radiographs ob-
tained. BCS was assessed by a clinical veterinarian during each
examination and was expressed on a scale of 1–9 (49). A BCS of 4–5
is considered ideal, with scores of 1–3 indicative of an underweight
condition and scores of 6–9 indicative of an overweight condition.
Of note, BCS is not incorporated in the daily scoring for clinical
signs. Blood and swabs (nasal, throat, and rectal) were collected
during all clinical exams. In addition, on −7, 3, and 7 dpi, animals

were intubated and bronchoalveolar lavages were performed using
10–20 ml sterile saline. Four animals from each age-group were
euthanized at 7 and 21 dpi. After euthanasia on 7 and 21 dpi,
necropsies were performed, and tissues were collected.

Ethics and biosafety statement

All animal experiments were approved by the Institutional Animal
Care and Use Committee of Rocky Mountain Laboratories, NIH, and
carried out by certified staff in an Association for Assessment and
Accreditation of Laboratory Animal Care International accredited
facility, according to the institution’s guidelines for animal use,
following the guidelines and basic principles in the NIH Guide for
the Care and Use of Laboratory Animals, the Animal Welfare Act,
United States Department of Agriculture, and the United States
Public Health Service Policy on Humane Care and Use of Laboratory
Animals. Rhesus macaques were housed in adjacent individual
primate cages allowing social interactions, in a climate-controlled
room with a fixed light–dark cycle (12-h light/12-h dark). Animals
were monitored at least twice daily throughout the experiment.
Commercial monkey chow, treats, and fruit were provided twice
daily by trained personnel. Water was available ad libitum. Envi-
ronmental enrichment consisted of a variety of human interaction,
manipulanda, commercial toys, videos, and music. The Institu-
tional Biosafety Committee (IBC) approved work with infectious
SARS-CoV-2 strains under Bio-safety level 3 (BSL3) conditions.
Sample inactivation was performed according to IBC-approved
standard operating procedures for removal of specimens from
high containment.

Virus and cells

SARS-CoV-2 isolate nCoV-WA1-2020 (MN985325.1) (50) (Vero passage
3) was kindly provided by the CDC and propagated once in VeroE6
cells in DMEM (Sigma-Aldrich) supplemented with 2% FBS (Gibco),

Figure 7. Summary of the immune dynamics in
younger and older rhesus macaques during SARS-
CoV-2 infection.
Graphical representation of the relative magnitude of
response over the course of SARS-CoV-2 infection in
younger (left) and older (right) rhesus macaques. The
white part of each graph indicates the acute phase of
the disease and blue is the post-acute phase. The
grey horizontal line is for reference between the two
graphs at the same point. The different curves represent
different local (lung innate and lung adaptive T cell)
and systemic (clinical disease, pro-inflammatory
cytokines, and pro-resolving lipid mediators) host
responses to SARS-CoV-2 infection.
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1 mM L-glutamine (Gibco), 50 U/ml penicillin, and 50 μg/ml
streptomycin (Gibco). Next generation sequencing using Illumina
MiSeq, showed that the virus stock used was 100% identical to the
initially deposited GenBank sequence (MN985325.1); SNPs were not
present in more than 5% of sequence reads and no contaminants
were detected. VeroE6 cells were maintained in DMEM supple-
mented with 10% fetal calf serum, 1 mM L-glutamine, 50 U/ml
penicillin, and 50 μg/ml streptomycin.

Quantitative PCR

RNA was extracted from swabs and BALF using the QiaAmp Viral
RNA kit (QIAGEN) according to the manufacturer’s instructions.
Tissues (30 mg) were homogenized in RLT buffer and RNA was
extracted using the RNeasy kit (QIAGEN) according to the manu-
facturer’s instructions. 5 μL of RNA were used in a one-step real-
time RT-PCR assay to detect gRNA and sgRNA (51, 52) using the
Rotor-Gene probe kit (QIAGEN) according to instructions of the
manufacturer. In each run, standard dilutions of counted RNA
standards were run in parallel to calculate copy numbers in the
samples.

Multiplex immunohistochemistry

Rhesus macaque tissues were fixed for a minimum of 7 d in 10%
neutral-buffered formalin and embedded in paraffin. Multiplex
immunohistochemistry (mIHC) was performed using the IBEX method
modification for over-fixed tissue samples (53). The middle right
lung lobe of each animal was selected for mIHC analysis. After
sectioning, slides were de-waxed according to a standard protocol
of two washes of Xylene (Newcomer Supply) for 10 min each, 100%
ethanol (Decon Labs Inc.) wash for 10 min, 95% ethanol wash for
10 min, 70% ethanol wash for 5 min, a rinse in water, 10% formalin
wash for 15 min, a rinse in water, and stored in TBST solution (1X TBS
with 0.05% tween). After de-waxing, antigen retrieval was performed
using AR6 buffer (Akoya Biosciences) in a standard microwave with
45 s at 100% power and 15 min at 10% power. Samples were left to
cool and rinsed in TBST. A single primary antibody was added at a
time. For each primary antibody, the following process was per-
formed. First, the antibody was reacted with the tissue using the
microwave method described in the IBEX method (53), then washed
in TBST. A mixture of anti-Mouse + anti-Rabbit HRP-conjugated
secondary antibodies (Akoya Biosciences) was added for 10 min
and then washed in TBST. Finally, the assigned Opal dye (Akoya
Biosciences) was added for 3–10 min (see antibody Supplemental
Data 2) and then washed in TBST. After Opal dye deposition, antigen
retrieval was performed again on samples and the process was
repeated using the next primary. At the end of this sequence using
a defined set of primary antibodies (“panel”), the slides were
mounted with Fluoromount-G (Southern Biotch) and imaged on the
Leica Thunder system using a 20× oil objective with an additional
autofluorescence channel collected to serve as a fiducial. After
imaging of each panel, the coverslips were removed by soaking the
slide overnight at room temperature in TBST. To remove fluorescent
signal, LiBH4 solution was added to the slides in three washes of
10min each. Tissue was then stained and imaged sequentially using
additional panels stained until all desired markers were evaluated.

DAPI was added to the final panel only. For list of antibodies used,
please see the Supplemental Data 2.

After imaging, image files from the different panels were aligned
based on autofluorescence using the Imaris Extension software
developed for IBEX (https://github.com/niaid/imaris_extensions).
Only linear modifications were made to all images as well as
Gaussian blurring to reduce noise in channels. All modifications
were applied to the entire image and never a single area alone.
Quantification of images such as selection of Ki67+ nuclei, seg-
mentation of DAPI signal, identification of cell types, and quanti-
fication of BALT structures was performed in Imaris V9.5.0.

Cytokine and chemokine data collection and normalization

Serum samples for analysis of cytokine/chemokine levels were
inactivated by γ-radiation (2 MRad) according to standard operating
procedures. Concentrations of granulocyte colony-stimulating factor,
granulocyte-macrophage colony-stimulating factor, IFN-γ, IL-1β,
IL-1 receptor antagonist, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12/23
(p40), IL-13, IL-15, IL-17, monocyte chemoattractant protein-1, MIP-
1α, MIP-1β, soluble CD40-ligand (sCD40L), TGF-α, TNF-α, VEGF, and
IL-18 were measured on a Bio-Plex 200 instrument (Bio-Rad) using
the Non-Human Primate Cytokine MILLIPLEX map 23-plex kit (Mil-
lipore) according to themanufacturer’s instructions. Care was taken
to ensure that all experimental conditions (various dpi and age-
groups) were distributed among three plates for the serum samples
to avoid introducing batch effects.

Spike-in controls were used to create standard curves for each
cytokine to convert the signal readout to cytokine concentrations.
For each spike-in control, the ratio of the expected value to the
predicted value was calculated. To account for batch effects across
plates, the variance of the ratio of observed:expected concentration
multiplied by 100 was calculated for the 156.25 pg/ml, 625 pg/ml,
and 2,500 pg/ml standards. Cytokines for which the summed
variance was greater than 100 were removed from the analysis.
Cytokine values were normalized across plates as follows. First, an
average of the values of the spike-in controls across plates was
calculated. Next, within each plate for each of the standards an-
alyzed, a scaling factor was calculated as the ratio of the standard
over the mean across plates. Then an average scaling value was
calculated across the factors for each cytokine in each plate. These
scaling factors were then applied to the experimental readouts for
each cytokine on each plate. For values that could not be deter-
mined based on the standard curve (below the limit of detection),
the readout value was set to zero.

LC-MS/MS materials

LC-MS/MS-grade water, methanol, isopropanol, chloroform, ammonium
acetate, and acetic acid were purchased through Thermo Fisher
Scientific. All LM standards were purchased from Cayman Chemical.

Sample processing for organic and LM extraction

Sample order was randomized throughout each extraction. For bulk
lipid extraction, 50 μl of serum was aliquoted directly into 400 μl of
ice-cold methanol and 500 μl of ice-cold chloroform was added.
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To induce layering, 400 μl of water was added. Samples were ag-
itated for 20 min at 4°C and centrifuged at 16,000g for 20 min at 4°C.
The organic (bottom) fraction was taken to dryness in a Savant
DNA120 SpeedVac concentrator (Thermo Fisher Scientific) and
stored at −80°C. For LC-MS/MS sample injection, dried samples
were resuspended in 500 μl of 5 μg/ml butylated hydroxytoluene in
6:1 isopropanol:methanol.

LMs sample processing and extraction

LMs were extracted from macaque serum as previously described
(13). Briefly 100 μl of serum was aliquoted on ice into 400 μl of ice-
coldmethanol containing 1 ng each of d8-5-HETE, d5-RvD2, d5-LXA4,
d4-LTB4, and d4-PGE2. Macromolecules were precipitated for
30min at −20°C followed by centrifugation at 10,000g for 10min. The
supernatant was collected in a fresh tube.

Oxy-lipid species were selectively extracted via solid phase
extraction columns (Sep-Pak 3 ml, 200 mg, C18; Waters Corporation)
as previously described (13). Eluted samples were dried under
nitrogen and resuspended in 200 μl of 1:1 water:methanol. For LC-
MS/MS analysis, 30 μl of each sample was injected.

LC-MS/MS analysis

Bulk lipid and LM samples were analyzed using a series of targeted
multiple-reaction monitoring methods. All samples were separated
using a Sciex ExionLC AC system and analyzed using a Sciex 5500
QTRAP mass spectrometer.

Lipid samples were analyzed using a previously established
HILIC method (13, 54). Samples were separated on a Water XBridge
Amide column (3.5 μm, 3 mm × 100 mm) and eluted using a 12-min
binary gradient from 100% 5 mM ammonium acetate, 5% water in
acetonitrile apparent pH 8.4 to 95% 5 mM ammonium acetate, 50%
water in acetonitrile apparent pH 8.0. Target lipids were detected
using scheduled multiple-reaction monitoring. Lipid signals were
divided into two methods using either negative mode or positive
mode and a separate injection was analyzed for each method.
Quality control sample injections were performed every 10th in-
jection to ensure instrument stability.

LMs were analyzed as previously described (13). Samples were
gradient-eluted from a Waters Atlantis T3 column (100 Å, 3 μm, 3 ×
100 mm) (A: 0.01% acetic acid in water; B: 0.01% acetic acid in
methanol). LM species were detected in negative mode and trig-
gered spectra were collected using enhanced-product ion scans
and rolling collision energy. A blank and a standard mix were
serially injected every 10 injections. The standard mix consisted of
each of the following compounds at 10 ng/ml: RvE3, LXA4, LXA5,
LXB4, PGE2, PGD2, PGF2a, TxB2, PD1, RvD5, Maresin 1, LTB4, 5,15-
DiHETE, 14-HDHA, 18-HEPE, AA, EPA, and DHA. Spectra and com-
parison to authentic standards were used to confirm signal identity.

All signals were integrated using MultiQuant Software 3.0.3. Bulk
lipid data were filtered with a 50%missing value cut-off and a 30%
quality control coefficient of variance. For LM datasets, signal
quality was judged visually and signals were normalized to in-
ternal standards based on the number of hydroxyl groups in the
molecule. For bulk lipid class analysis, signals within each class
were summed.

scRNA-seq sample collection

Lung tissue for single cell sequencing was processed in a manner
similar to a method described previously (23). In short, lung
samples were taken at the time of necropsy. Cell suspensions were
generated by manually dicing the tissue, followed by enzymatic
digestion, cell filtration, and ACK lysis to remove red blood cells. BALF
processing was performed as follows. Cells were washed, resus-
pended in DPBS, and strained using a 70-μm filter (Falcon). Samples
were split for use in single cell sequencing and flow cytometry. Once
the BALF and lung samples were in suspension, they were prepped
according to the 10X genomics protocol for gel bead in emulsion
creation. All samples were handled so that approximately 10,000 cells
were captured as 10X Genomics GEMs. The 10X Genomics version 3.1
chemistry was used to generate barcoded cDNA and to generate final
libraries according to the manufacturer’s protocol. After the final li-
braries were generated, the samples were removed from containment
following inactivation of the libraries. Inactivation involved combining
560 μl of AVL buffer (QIAGEN) with 560 μl of ethanol and 140 μl of final
library and incubating for a minimum of 10 min. Libraries were
extracted from AVL using the QIAGEN AllPrep DNA spin columns (Cat.
no. 80204). Samples were then quantified and sequenced using a
NextSeq550 using the 10X genomics’ suggested cycling conditions.

scRNA-seq data analysis

After sequencing, samples were demultiplexed using the cell-
Ranger pipeline. Alignments were done against the Rhesus Ma-
caque Genome (Mmul_10, GCA_003339765.3) with the SARS-CoV-2
genome added in (Wuhan-Hu-1, NC_045512.2) to parse out reads to
the host versus the virus. Samples were then read into R (v3.6.2)
using Seurat (v.3.1.5) (55). BALF and lung samples were processed
separately. To account for the differences in sample collection days
across the two groups, sample integration was performed to help
remove potential batch effects using the IntegrateData function in
Seurat. Cells were filtered in amanner similar to themethod described
previously (23). In short, cells were filtered for high mitochondrial
genes and abnormally high or low unique molecular identifier counts.
Cells that were likely doublets were relabeled and saved elsewhere.
The top 20 principal components of the data were calculated using the
2,000 genes with the highest variance across the dataset. These
principal components were used to calculated and UMAP projections
and were used to cluster cells. Gene set enrichment analysis was
performed using fgsea (56 Preprint) and the MSigDB gene sets.

Cell type identification was performed using the method de-
scribed in reference 23. Reference data used were from human lung
single-cell sequencing samples (57). Cell type identification was
performed at the individual cell and cluster level. To identify dividing
cells, the CellCycleScoring function in Seurat was used to assign the
most likely cell cycle phase of each cell. Dividing cell clusters were
then identified as having greater than 98% of the cells in the clusters
identified as either the S or G2M phase of the cell cycle.

Cell sample collection and processing for flow cytometry

PBMCs were isolated from EDTA-whole blood using Histopaque-
1077 density-gradient medium (Sigma-Aldrich) and Leucosep tubes
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(Greiner Bio-One) according to the manufacturer’s instructions. A
single cell suspension of lung cells was obtained by disrupting two
pieces of tissue per organ (1 cm) using the gentleMACS dissociation
system (Miltenyi) followed by enzymatic digestion with 0.5 mg/ml
collagenase type XI and 30 mg/ml DNase I, type IV in Roswell Park
Memorial Institute 1640 medium at 37°C for 30 min (Sigma-Aldrich).
Undigested tissue was removed by pressing the sample through a
70 mM cell strainer and washing with Roswell Park Memorial In-
stitute 1640 medium supplemented with 10% FBS, 1 mM L-glutamine,
50 U/ml penicillin, and 50 μg/ml streptomycin (R10 medium).
Erythrocyte removal was performed using RBC Lysis Buffer (Bio-
Legend) for 5 min at room temperature. Cells were subsequently
washed twice before resuspension in cryopreservation medium (FBS
containing 10% DMSO [Sigma-Aldrich]) and transferred to −80°C
storage.

Sample preparation for flow cytometry

Unless otherwise stated, preparation of cell samples for flow
cytometric analysis proceeded as follows. Cells were thawed in R10
medium at 37°C, washed in a buffer of 2% FBS/DPBS, and stained
with viability dye diluted in DPBS for 20 min at room temperature.
Cells were washed before staining for extracellular markers in 2%
FBS/DPBS for 30 min at room temperature. Human Fc Block (BD)
was added to all surface staining cocktails. After washing, cells were
fixed in 2.5% PFA (Biotium) overnight at 4°C. Cells were washed and
resuspended in 2% FBS/DPBS before cytometer acquisition. For
samples requiring intracellular staining, cells were permeabilized
with Cytofix/CytoPerm solution (BD) for 15 min at room temperature.
Intracellular staining was performed in 1X Perm/Wash Buffer (BD) for
45 min at room temperature. Finally, cells were washed and resus-
pended in 2% FBS/DPBS. Samples were acquired on a BD FACSym-
phony A5 instrument using BD FACSDiva version 8.0.1 software. Analysis
of raw data was performed using FlowJo (Treestar, version 10.6.2). For
complete list of antibodies, see Supplemental Data 2.

Immunophenotyping

PBMCs and lung cells were stained using the Zombie Red Fixable
Viability Kit (BioLegend), and BALF cells were treated with the LIVE/
DEAD Fixable Blue Dead Cell Stain (Thermo Fisher Scientific) before
phenotypic staining as described below.

For a depiction of the flow cytometry gating strategies used in
this study, see supplemental figures (Figs S10–S14). Briefly, lym-
phocytes were identified by gating on forward scatter area (FSC-A)
versus side scatter area (SSC-A), doublet discrimination was per-
formed using FSC-A versus forward scatter height (FSC-H), and LIVE/
DEAD-negative (and CD14− or CD16−) cells were selected (Fig S10).
Innate cells were identified from total BALF cells by debris exclusion
on FSC-A and SSC-A, doublet discrimination (FSC-A versus FSC-H),
and LIVE/DEAD-negative cell selection (Fig S12).

T-cell phenotyping of PBMC and lung cell samples

The T-cell surface staining cocktail contained the following anti-
bodies: CD3 BV650, CD4 BUV395, CD8 PerCP-Cy5.5, CD28 BUV661, CD38
FITC, CD69 AF700, CD25 BUV496, CD154 BV605, HLA-DR APC-Cy7,

CD45RA BUV563, CCR7 BV510, CD95 BUV737, CD49d PE-Cy7, CTLA4
BV785, PD-1 APC, CXCR3 BV421, CD14 PE-Dazzle594, and CD16 PE-
CF594. Intracellular staining was performed using Ki67 BV711 and
FoxP3 PE. T cells were identified by selecting cells negative for CD14,
and CD16 myeloid lineage markers and gating on CD3+ cells. CD3+ T
cells were further classified as CD4+ (CD4+ CD8−), CD8+ (CD4− CD8+),
double positive (CD4+ CD8lo), or double negative (CD4− CD8−). CD4+

and CD8+ T cells were characterized as exhibiting naı̈ve (CD28+

CD95lo), effector or effector memory (CD28− CD95+), or central
memory (CD28+ CD95hi) phenotypes (Figs S10A and S11A and B).

B-cell phenotyping of PBMC samples

B-cell surface staining was carried out using the following anti-
bodies: CD3 BV650, CD27 BUV805, CD38 FITC, CXCR3 BV421, CD19 PE,
CD20 BV510, CD21 BV786, CD24 APC-Cy7, HLA-DR PE-Cy7, CD95 BUV737,
CD138 PerCP-Cy5.5, IgD AF647, IgM BUV395, and IgG BUV563. Total B
cells were classified as CD3− CD20+. Within this gate, class-switched
memory, unswitched memory, and naı̈ve B cells were defined as IgD−

IgM−, IgD+ CD27+, and IgD+ CD27− CD21+, respectively, as previously
described (58). Plasma cells were defined as CD38+ CD138+ within the
CD3− CD20− population (Fig S10B).

Phenotyping of BALF cell samples

BALF cell immunophenotyping was performed using a surface
marker staining cocktail consisting of CD14 BV421, CCR7 BV510, CD11b
BV605, CD80 BV785, CD86 BV711, CD68 AF488, CD163 APC, CD206
BUV737, CD66abce PE, CX3CR1 PerCP-Cy5.5, CD49d PE-Cy7, HLA-DR
APC-Cy7, CD35 BUV615, CD63 PE-CF594, and CCR5 BUV496. Neutro-
phils (CD11b+ CD66abce+) and macrophages (CD11b+ CD66abce−

CD68+ HLA-DR+) were identified as previously described (59, 60).
Lymphocytes were isolated by gating on FSC-Alo and SSC-Alo cells
(Fig S12).

Intracellular cytokine staining of splenocytes

Freshly isolated splenocytes were plated at a concentration of 1.0 × 106

cells per well and were stimulated at 37°C for 6 h with SARS-CoV-2
spike protein, S1 or S2, peptide pools (GenScript) at a concentration of
2 μg/ml per peptide, or treated with DMSO (unstimulated control). The
above cocktails also contained CD28 BUV661 and CD49d anti-
bodies (each at 1 μg/ml), as well as 0.67 μg/ml of GolgiStop and
1 μg/ml of GolgiPlug (BD). Viability staining was performed
with the Zombie Red Fixable Viability Kit (BioLegend). Surface
markers were stained for with a cocktail of the following anti-
bodies: CD3 BV650, CD4 BUV395, CD8 PerCP-Cy5.5, CD95 BUV737,
CD45RA BUV563, CCR7 BV510, CD14 PE-Dazzle594, and CD16 PE-
CF594. Staining for intracellular cytokines involved IFNγ AF488,
TNFα BV785, Granzyme B APC, IL-2 PE, IL-4 BV421, and IL-10 BV711
(Fig S13A–C). Total responses to antigenic stimulation were
determined as follows: for each cytokine, the frequency of
positive cells after S1 and S2 stimulation were adjusted for
background, by subtraction of frequencies detected in corre-
sponding DMSO-treated control samples, and subsequently
summed. Cells stimulated with PMA/ionomycin (eBioscience Cell
Stimulation Cocktail) served as a positive control.
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AIM assay

The AIM assay was performed as previously described (61, 62).
Cryopreserved single-cell suspensions from lung tissue were
thawed and washed in R10 medium before plating at a concen-
tration of 1.0 × 106 cells per well. Cells were stimulated at 37°C for
18 h with a cocktail of either SARS-CoV-2 spike protein S1 or S2
peptide pools (GenScript) at a concentration of 2 μg/ml per peptide.
Unstimulated control wells were established for each sample by
treating cells with DMSO. Cells stimulated with PMA/ionomycin
(eBioscience Cell Stimulation Cocktail) served as a positive con-
trol. Co-stimulation with CD28 BUV661 and CD49d antibodies (each
at 1 μg/ml) was carried out for all wells. Viability staining was
performed with the Zombie Red Fixable Viability Kit. Surface
markers staining included the following antibodies: CD3 BV650, CD4
BUV395, CD8 PerCP-Cy5.5, CD95 BUV737, CD25 BUV496, CD69 AF700,
CD137 PE, OX40 BV711, CD154 BV605, PD-L1 BV421, CD14 PE-Dazzle594,
and CD16 PE-CF594 (Fig S14). AIM+ cells were identified as OX40+

CD137+. The frequency of positive cells after S1 and S2 stimulation
were adjusted for background, by subtraction of frequencies de-
tected in corresponding DMSO-treated control samples, and sub-
sequently summed.

Serology

Sera were analyzed by SARS-CoV-2 spike protein (S) ELISA as de-
scribed previously (35). Briefly, maxisorp (Nunc) plates were coated
overnight with 100 ng/well S protein diluted in PBS. Sera were
serially diluted in duplicate. SARS-CoV-2-specific antibodies were
detected using anti-monkey IgG polyclonal antibody HRP-conjugated
antibody (KPL), peroxidase-substrate reagent (KPL) and stop reagent
(KPL). Optical density was measured at 405 nm. The threshold of
positivity was calculated by taking the average of the day 0 values
multiplied by 3.

Data presentation for flow cytometry

For t-SNE and FlowSOM analyses, data from all animals were
down-sampled and concatenated. Subsequently, t-SNE analysis (63
Preprint) was performed in the FlowJo (Treestar, version 10.7) en-
vironment on compensated parameters (nearest neighbor = 15,
minimum distance = 0.5, iterations = 1,000), FlowSOM (version 2.9)
(24) analysis was conducted using compensated parameters and
fixed generation of 15 meta clusters (set speed = 3) (63 Preprint).
Comparison of absolute fluorescence intensity values across in-
dividual cells within major T-cell subsets was performed by con-
catenating data from CD4+ or CD8+ T cells across older or younger
animals and exporting it to ViolinBox (version 5.1.8) (64).

Statistics and data analysis

Most statistical analyses were performed in GraphPad V9. All sta-
tistical tests used are listed in figure legends. All P-values are listed
on graphs except in cases where it becomes difficult to read in
which case, we used a cutoff of 0.1 for all P-values. Rounded results of
statistical tests are also listed in text to add context to the strength of
all claims. When comparing directly between two groups, we used

nonparametric tests as estimation of underlying distributions was
not possible. When more than two groups were present, a two-way
ANOVA was used. Reported P-values are all Benjamin–Hochberg
corrected. For sequencing data comparison of genemodule scores, a
bootstrapping method to estimate P-values was used with 1,000
iterations.

Data Availability

All data for graphs containing fewer than 16 points per condition
have been deposited in Figshare: 10.6084/m9.figshare.16556745.
RNA sequencing data have been deposited in the National Cen-
ter for Biotechnology Information (NCBI) Gene Expression Omnibus
and are accessible through Gene Expression Omnibus Series ac-
cession number GSE183579.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101314.
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Meade-White K, Smith BJ, Lovaglio J, Martens C, Munster VJ, et al (2021)
Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in
lungs of African greenmonkeys. Sci Transl Med 13: eabe8146. doi:10.1126/
scitranslmed.abe8146

24. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P,
Dhaene T, Saeys Y (2015) FlowSOM: Using self-organizing maps for
visualization and interpretation of cytometry data. Cytometry A 87:
636–645. doi:10.1002/cyto.a.22625

25. Pitcher CJ, Hagen SI, Walker JM, Lum R, Mitchell BL, Maino VC, AxthelmMK,
Picker LJ (2002) Development and homeostasis of T cell memory in
rhesus macaque. J Immunol 168: 29–43. doi:10.4049/jimmunol.168.1.29

26. Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, Cauley LS (2014)
Lung-resident memory CD8 T cells (TRM) are indispensable for optimal
cross-protection against pulmonary virus infection. J Leukoc Biol 95:
215–224. doi:10.1189/jlb.0313180

27. Ogongo P, Porterfield JZ, Leslie A (2019) Lung tissue resident memory
T-cells in the immune response to Mycobacterium tuberculosis. Front
Immunol 10: 992. doi:10.3389/fimmu.2019.00992

28. Liu Y, Ma C, Zhang N (2018) Tissue-specific control of tissue-resident
memory T cells. Crit Rev Immunol 38: 79–103. doi:10.1615/
CritRevImmunol.2018025653

29. Wiley JA, Richert LE, Swain SD, Harmsen A, Barnard DL, Randall TD, Jutila
M, Douglas T, Broomell C, Young M, et al (2009) Inducible bronchus-
associated lymphoid tissue elicited by a protein cage nanoparticle
enhances protection in mice against diverse respiratory viruses. PLoS
One 4: e7142. doi:10.1371/journal.pone.0007142

30. Cesta MF (2006) Normal structure, function, and histology of mucosa-
associated lymphoid tissue. Toxicol Pathol 34: 599–608. doi:10.1080/
01926230600865531
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