Skip to main content
. 2021 Aug 20;101(2):158–165. doi: 10.1177/00220345211032524

Table 1.

Overview of the Model Performance of the Convolutional Neural Network When the Independent Test Set (n = 479 with 180 Healthy Tooth Surfaces, 216 Noncavitated Carious Lesions, and 83 Cavitations) Was Used for Overall Caries Detection.

True Positives True Negatives False Positives False Negatives Diagnostic Performance
Overall Caries Detection n % n % n % n % ACC SE SP NPV PPV AUC
Results from all the included teeth and surfaces (n = 479 test images)
 25% of the images 156 32.6 258 53.8 24 5.0 41 8.6 86.4 79.2 91.5 86.7 86.3 0.924
 50% of the images 148 30.9 280 58.4 32 6.7 19 4.0 89.4 88.6 89.7 82.2 93.6 0.950
 75% of the images 159 33.2 276 57.6 21 4.4 23 4.8 90.8 87.4 92.9 88.3 92.3 0.955
 100% of the images 163 34.0 280 58.5 17 3.5 19 4.0 92.5 89.6 94.3 90.6 93.6 0.964
Results from anterior surfaces—incisors/canines (n = 153 test images)
 25% of the images 63 41.2 65 42.5 4 2.6 21 13.7 83.7 75.0 94.2 94.0 75.6 0.911
 50% of the images 59 38.6 79 51.6 8 5.2 7 4.6 90.2 89.4 90.8 88.1 91.9 0.953
 75% of the images 64 41.8 73 47.7 3 2.0 13 8.5 89.5 83.1 96.1 95.5 84.9 0.947
 100% of the images 64 41.8 80 52.3 3 2.0 6 3.9 94.1 91.4 96.4 95.5 93.0 0.965
Results from posterior surfaces—molars/premolars (n = 326 test images)
 25% of the images 93 28.6 193 59.2 20 6.1 20 6.1 87.7 82.3 90.6 82.3 90.6 0.932
 50% of the images 89 27.3 201 61.6 24 7.4 12 3.7 89.0 88.1 89.3 78.8 94.4 0.945
 75% of the images 95 29.1 203 62.3 18 5.5 10 3.1 91.4 90.5 91.9 84.1 95.3 0.961
 100% of the images 99 30.4 200 61.3 14 4.3 13 4.0 91.7 88.4 93.5 87.6 93.9 0.964
Results from vestibular and oral surfaces—anterior/posterior teeth (n = 225 test images)
 25% of the images 65 28.9 126 56.0 8 3.6 26 11.5 84.9 71.4 94.0 89.0 82.9 0.910
 50% of the images 62 27.6 143 63.5 11 4.9 9 4.0 91.1 87.3 92.9 84.9 94.1 0.954
 75% of the images 67 29.8 137 60.9 6 2.7 15 6.6 90.7 81.7 95.8 91.8 90.1 0.952
 100% of the images 67 29.8 142 63.1 6 2.7 10 4.4 92.9 87.0 95.9 91.8 93.4 0.964
Results from occlusal surfaces—molars/premolars (n = 253 test images)
 25% of the images 91 36.0 131 51.8 16 6.3 15 5.9 87.7 85.8 89.1 85.0 89.7 0.943
 50% of the images 86 34.0 136 53.7 21 8.3 10 4.0 87.7 89.6 86.6 80.4 93.2 0.949
 75% of the images 92 36.4 138 54.5 15 5.9 8 3.2 90.9 92.0 90.2 86.0 94.5 0.961
 100% of the images 96 37.9 137 54.2 11 4.3 9 3.6 92.1 91.4 92.6 89.7 93.8 0.968

The calculations were performed for different types of teeth, surfaces, and training steps, which resulted in different subsamples.

ACC, accuracy; AUC, area under the receiver operating characteristic curve; SE, sensitivity; SP, specificity; NPV, negative predictive value; PPV, positive predictive value.