Skip to main content
. 2021 Aug 20;101(2):158–165. doi: 10.1177/00220345211032524

Table 2.

Overview of the Model Performance of the Convolutional Neural Network When the Independent Test Set (n = 479 with 180 Healthy Tooth Surfaces, 216 Noncavitated Carious Lesions, and 83 Cavitations) Was Used for Detection of Cavitations.

True Positives True Negatives False Positives False Negatives Diagnostic Performance
Detection of Cavitation n % n % n % n % ACC SE SP NPV PPV AUC
Results from all the included teeth and surfaces (n = 479 test images)
 25% of the images 382 79.7 53 11.1 14 2.9 30 6.3 90.8 92.7 79.1 96.5 63.9 0.916
 50% of the images 381 79.6 61 12.7 15 3.1 22 4.6 92.3 94.5 80.3 96.2 73.5 0.931
 75% of the images 382 79.8 61 12.7 14 2.9 22 4.6 92.5 94.6 81.3 96.5 73.5 0.948
 100% of the images 381 79.5 66 13.8 15 3.1 17 3.6 93.3 95.7 81.5 96.2 79.5 0.955
Results from anterior surfaces—incisors/canines (n = 153 test images)
 25% of the images 106 69.3 23 15.0 7 4.6 17 11.1 84.3 86.2 76.7 93.8 57.5 0.887
 50% of the images 108 70.6 29 18.9 5 3.3 11 7.2 89.5 90.8 85.3 95.6 72.5 0.916
 75% of the images 109 71.2 27 17.7 4 2.6 13 8.5 88.9 89.3 87.1 96.5 67.5 0.932
 100% of the images 109 71.2 33 21.6 4 2.6 7 4.6 92.8 94.0 89.2 96.5 82.5 0.951
Results from posterior surfaces—molars/premolars (n = 326 test images)
 25% of the images 276 84.7 30 9.2 7 2.1 13 4.0 93.9 95.5 81.1 97.5 69.8 0.941
 50% of the images 273 83.7 32 9.8 10 3.1 11 3.4 93.6 96.1 76.2 96.5 74.4 0.932
 75% of the images 273 83.7 34 10.4 10 3.1 9 2.8 94.2 96.8 77.3 96.5 79.1 0.967
 100% of the images 272 83.4 33 10.1 11 3.4 10 3.1 93.6 96.5 75.0 96.1 76.7 0.957
Results from vestibular and oral surfaces—anterior/posterior teeth (n = 225 test images)
 25% of the images 155 68.9 39 17.3 12 5.3 19 8.5 86.2 89.1 76.5 92.8 67.2 0.884
 50% of the images 156 69.3 43 19.1 11 4.9 15 6.7 88.4 91.2 79.6 93.4 74.1 0.923
 75% of the images 160 71.1 41 18.2 7 3.1 17 7.6 89.3 90.4 85.4 95.8 70.7 0.937
 100% of the images 159 70.7 47 20.9 8 3.5 11 4.9 91.6 93.5 85.5 95.2 81.0 0.943
Results from occlusal surfaces—molars/premolars (n = 253 test images)
 25% of the images 227 89.7 13 5.1 2 0.8 11 4.4 94.9 95.4 86.7 99.1 54.2 0.939
 50% of the images 225 88.9 17 6.7 4 1.6 7 2.8 95.7 97.0 81.0 98.3 70.8 0.914
 75% of the images 222 87.7 19 7.5 7 2.8 5 2.0 95.3 97.8 73.1 96.9 79.2 0.962
 100% of the images 222 87.7 18 7.1 7 2.8 6 2.4 94.9 97.4 72.0 96.9 75.0 0.966

The calculations were performed for different types of teeth, surfaces, and training steps, which resulted in different subsamples.

ACC, accuracy; AUC, area under the receiver operating characteristic curve; SE, sensitivity; SP, specificity; NPV, negative predictive value; PPV, positive predictive value.