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In a tumour microenvironment, tumour-associated neutrophils
could display two opposing differential phenotypes: anti-
tumour (N1) and pro-tumour (N2) effector cells. Converting N2
to N1 neutrophils provides innovative therapies for cancer
treatment. In this study, a mathematical model for N1-N2
dynamics describing the cancer survival and immune inhibition
in response to TGF-β and IFN-β is considered. The effects of
exogenous intervention of TGF-β inhibitor and IFN-β are
examined in order to enhance N1 recruitment to combat
tumour progression. Our approach employs optimal control
theory to determine drug infusion protocols that could
minimize tumour volume with least administration cost
possible. Four optimal control scenarios corresponding to
different therapeutic strategies are explored, namely, TGF-β
inhibitor control only, IFN-β control only, concomitant TGF-β
inhibitor and IFN-β controls, and alternating TGF-β inhibitor
and IFN-β controls. For each scheme, different initial
conditions are varied to depict different pathophysiological
condition of a cancer patient, leading to adaptive treatment
schedule. TGF-β inhibitor and IFN-β drug dosages, total
drug amount, infusion times and relative cost of drug
administrations are obtained under various circumstances.
The control strategies achieved could guide in designing
individualized therapeutic protocols.
1. Introduction
Cancer is the leading cause of death worldwide [1,2]. Various
immune cells including neutrophils [3], natural killer (NK)
cells [4] and macrophages [5] in tumour microenvironment
(TME) play a major role in regulation of tumour growth and

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.210705&domain=pdf&date_stamp=2022-02-02
mailto:ahyouhappy@gmail.com
http://orcid.org/
http://orcid.org/0000-0001-5418-4579
http://orcid.org/0000-0002-8905-8481
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:210705
2
anti-tumour treatment in many cancers including lung cancers. Copious neutrophils in the blood

constitute the first protection in innate immunity [6,7]. Approximately 1011 neutrophils are generated
in the bone marrow and released into the blood circulation every day [8]. Neutrophil recruitment at
sites of infection or injury is triggered by the release of pathogen- or damage-associated molecular
patterns from invading microorganisms or damaged and/or dead cells, respectively [9]. The process
of neutrophil extravasation comprises a complex multistep cascade that is tightly regulated by
coordinated sequence of adhesive and migratory events [6,10]. Neutrophils undergo a series of
mechanisms, including phagocytosis, and the development and regulation of neutrophil extracellular
traps (NETs) [11]. Furthermore, neutrophils release proteinases into the surrounding tissue damaging
the host [12], and produce cytokines and chemokines influencing inflammatory and immune
responses [13,14].

Aside from the traditional antimicrobial functions, there is increasing evidence suggesting that
tumour-associated neutrophils (TANs) play a major role in tumour progression from formation to
malignant state [15–19]. Several clinical and laboratory studies have indicated that the presence of
TANs has been assessed with poor prognosis in various tumours including metastatic melanoma [20],
bronchoalveolar carcinoma [21], renal carcinoma [22], and head and neck squamous cell carcinoma
(HNSCC) [23]. In these conditions, neutrophils exhibit a pro-tumour phenotype which is detrimental
to the host. TME controls neutrophil recruitment and thus, TANs promote tumour progression.
Hence, TANs display two differential phenotypes [15,16,24]: (i) an anti-tumourigenic role (called N1),
and (ii) pro-tumour progression (called N2).

There is mounting evidence that the immunosuppressive cytokine TGF-β skews neutrophil
differentiation towards N2 phenotype [24–26], while TGF-β inhibitor and type-1 IFN (α, β, ω)
therapy are recognized to alter neutrophils toward the N1 phenotype [27,28]. Several studies have
shown that IFN-β in tumour microenvironment interacts with key molecules in signalling pathways
activating its functions to stimulate anti-tumour activities [29–32]. Therefore, normalization of
TME by the N2→N1 transition can lead to better control of tumour growth. For example, injection of
IFN-β [29,31,33–35] or TGF-β inhibitor such as galunisertib [36–40] and LY2109761 [41,42] can be
a novel anti-tumour strategy due to their effective tumour killing and anti-tumour immune
response [43,44].

Mathematical modelling is a valuable tool in providing information to understand the complex
mechanisms and processes in cancer [45,46]. Models can generate theories and hypotheses on
quantitative grounds and provide reasonable predictions that could aid scientists towards the next
series of experiments [47]. Furthermore, mathematical modelling can help clinicians to evaluate
tumour microenvironment and develop anti-tumour strategies [48–52]. In addition, in silico models
could play a significant role in optimizing clinical trial design and patient stratification, suggesting
different treatment modalities, and alter risk prognoses [53–59].

In this work, we consider the following variables in a mathematical model:

CðtÞ ¼ density of the N2 complex at time t;
IðtÞ ¼ density of the N1 complex at time t;
TðtÞ ¼ tumour volume at time t;
GðtÞ ¼ concentration of TGF-b at time t;
LðtÞ ¼ concentration of TGF-b inhibitor at time t;
SðtÞ ¼ concentration of IFN-b at time t;

In this study, regulation of N1 and N2 TANs is explored through TGF-β inhibitor and IFN-β controls in
the framework of optimal control theory having the objective of minimizing the tumour size with least
drug administration cost. In particular, infusion scheme(s) accounting for the amount and frequency of
administration is explored. Various initial N1 and N2 phenotypes are also considered to simulate
individualized therapeutic regimen depending on current pathological conditions. Several control
strategies including combination therapies are examined under different circumstances that could give
the best clinical outcomes.

We found therapeutic regimen at regulating anti- and pro-tumoural neutrophil phenotypic states
by means of four different administration modalities of a TGF-β inhibitor and IFN-β cytokine in
lung cancer. The optimal control strategy predicts that, depending on pathological states,
therapies may have to be adjusted accordingly to minimize adverse effects of drugs and its
administration cost.
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Figure 1. (a) N1 and N2 complexes regulate cancer survival and immune inhibition in the presence of TGF-β and IFN-β [60].
(b) Simplified model diagram of N1-N2 network dynamics with the inclusion of a TGF-β inhibitor acting as a control to the
signalling pathway. (c) Schematic non-dimensional model including a TGF-β inhibitor (modified from [60]). Optimal control is
applied to obtain appropriate L and S dosages that minimize the tumour volume with minimal costs.
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2. Methodology
2.1. Mathematical model
In order to understand the mutual interactions between a tumour and immune system involving
tumour-associated neutrophils, a mathematical model of the signalling pathway for lung cancer is
proposed in [60]. It consists of the basic network of interactions between cells, cytokines and
growth factors. It was shown that IFN-β and TGF-β play a crucial function as tumour suppressor
and tumour promoter (refer to figure 1a). High levels of TGF-β and low activities of IFN-β induce
Treg infiltration generating inhibition of overall anti-tumour immune response of T cells. In
addition, TGF-β alters the tumour microenvironment inducing polarization of neutrophil N1 into
N2 type while IFN-β can polarize the N2 phenotype back to N1 phenotype [15,61]. The N2-
dominant microenvironment contributes to enhance tumour growth. On the contrary, low TGF-β
and high IFN-β levels reduce the neutrophil polarization toward N2 from N1 phenotype and
enhance immune activities of T cells and N1 TANs, driving tumour suppression. For model
simplification, the N2 regulatory network among Treg, Th17 and N2 cells is merged into one



Table 1. Parameters used in the model.

parameter description value references

λ source (IL-6) term in the N2 component 0.01 [60,62]

G source (TGF-β) term in the N2 component 0–1.0 [60,63]

k1 self-regulation rate in the N2 component 4.0 [60]

k3 scaling parameter 1.0 [60]

α suppression rate of the N2 component by the N1 component 1.5 [60]

k2 self-regulation rate in the N1 component 4.0 [60]

k4 scaling parameter 1.0 [60]

β suppression rate of the N1 component by the N2 component 1.0 [60]

S source (IFN-β) term in the N1 component 0.2 [60,64]

μ decay rate of the N1 component 1.0 [65,66]

Cth threshold (N2 component) 1.81 [60]

Ith threshold (N1 component) 1.29 [60]

r growth rate of tumour cells 0.05 [33]

K scaling constant 1.0 [33]

γ1 suppression strength in immune-mediated growth 0.1 [33]

T0 carrying capacity of cancer cells 100 [33]

GS source term in the TGF-β component 0.826 [60]

mG decay rate (TGF-β) 0.826 [5,67–69]

gL degradation rate of TGF-β through the inhibitor 100 [60]

mL decay rate (TGF-β inhibitor) 6.6 [36]

mS decay rate (IFN-β) 3.96 [70]
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component denoted as N2 complex. On the other hand, the immunoregulatory system composed
of N1 cells, interleukin IL-12 and CD8+, is incorporated into N1 complex. Further details of
model development can be found in [60]. The associated dimensionless equations for complexes
N2 (C ), N1 (I ) and tumour volume (T ) is described by the following ordinary differential
equations [60]:

dC
dt

¼ l|{z}
source ðIL�6Þ

þ lGG|ffl{zffl}
source ðTGF-bÞ

þ k1
k23 þ aI2|fflfflfflfflffl{zfflfflfflfflffl}

inhibition fromN1

� C|{z}
decay

,

dI
dt

¼ lSS|{z}
source ðIFN-bÞ

þ k2
k24 þ bC2|fflfflfflfflffl{zfflfflfflfflffl}

inhibition fromN2

� mI|{z}
decay

and
dT
dt

¼ r 1þ C
K þ g1I

� �
T 1� T

T0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

growth

� dIT|{z}
killing

,

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð2:1Þ

with essential set of parameters listed in table 1. Here, two sources (IL-6, TGF-β) of the N2
complex are represented in the first and second terms in equation of C while the IFN-β-mediated
source of the N1 complex is provided in the first term in equation of I. The third term in
equation of C and second term in equation of I represent the mutual inhibition between N1 and
N2, respectively. Tumour growth and N1-mediated tumour cell killing are represented in the first
and second terms in equation of T, respectively. Finally, the decay process of the N1 and N2
complexes is represented in the last terms in equations of I and C, respectively.

The basic dynamics of the model (2.1) is illustrated in figure 2. Different levels of TGF-β (G) signals
could induce either a single stable steady state SS(s) or three steady states of which two are stable and one
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unstable SS(u). Here, S represents the IFN-β-induced source of the N1 module. When TGF-β is low
(G = 0.1), N2 complex activities are suppressed while N1 activities are promoted yielding one SS(s)

which induces an anti-tumorigenic phenotype of TANs (figure 2a). On the contrary, high level of
TGF-β (G = 1.0) enhances N2 activities but decreases that of N1 complex leading to a stable SS(s) which
is a tumorigenic phenotype of TANs (figure 2c). Thus, for low and high G signals, phenotypic
differentiation of TANs does not depend on initial status of N1 and N2 complexes. However, an
intermediate TGF-β signal (G = 0.4) leads to two SS(s) and one SS(u) generating bistability in the
system. The initial conditions of N1 and N2 complex influence the induction of either anti- or pro-
tumour TANs (figure 2b). Due to the dichotomous behaviour of TANs with respect to signals of
TGF-β, an associated hysteresis diagram is expected (figure 2d ). The bistability window Wb≈ [0.33,
0.53] provides the limit points for which the system jumps from one stable state to the other. The
system is not only G-dependent but also S-dependent. That is, varying levels of IFN-β signals also
promotes bistability and hysteresis as shown in figure 2e, where the bistability window with respect
to S is Wb≈ [0.06, 0.25]. Note that the domain of bistability is dependent on key parameters and may
progressively shrink for some parameter sets. Figure 2f depicts the bistable and monostable region
under varying G and S simultaneously. Starting at a limit point obtained from one-parameter
bifurcation (G), a cusp point (CP) is achieved by computing a fold continuation. Then, two key
parameters G and S are increased (or decreased) at the same time along the trajectory of a limit point
for equilibrium curve at the corresponding value of S. This resulted to a codim 2 bifurcation. The
cusp point yields the threshold values Cth and Ith. MatCont was used for numerical continuation and
bifurcation analysis [71]. In this study, the effects of exogenous intervention of TGF-β inhibitor and
IFN-β on tumour progression are further investigated. Figure 1a illustrates the response of N1 and N2
complexes to the TGF-β inhibitor and IFN-β, acting as regulatory controls to the system. Note that
N2-polarization by TGF-β can be blocked by using inhibitor (TGF-β Inh) and/or IFN-β promoting
N1-dominant microenvironment. As depicted, both controls could downregulate N2 complex which
activates N1 complex leading to tumour-suppression. Note that IL-6 is a protein-coding gene that
induces Treg and others (upward arrow), which promotes N2 phenotype resulting in tumour growth.
The dashed arrow indicates that withdrawal of IL-6 activity downregulates Treg and others (hence,
downward arrow), leading to N1 phenotype suppressing tumours. Figure 1b shows the schematic
diagram of the simplified model while figure 1c is the dimensionless form; N1 and N2 complexes are
grouped as module C and I, respectively.
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The non-dimensional set of differential equations describing the model is as follows:

dL
dt

¼ uLðtÞ � mLL,

dG
dt

¼ GS � mGG� gLLG,

dC
dt

¼ lþ lGGþ k1
k23 þ aI2

� C,

dS
dt

¼ uSðtÞ � mSS,

dI
dt

¼ lSSþ k2
k24 þ bC2

� mI

and
dT
dt

¼ r 1þ C
K þ g1I

� �
T 1� T

T0

� �
� dIT,

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

ð2:2Þ

where uL and uS denote the exogenous infusion rate of TGF-β inhibitor and IFN-β, respectively, and T is
the tumour volume.

The current modelling approach uses optimal control theory to identify therapeutic infusion protocol of
TGF-β inhibitor and IFN-β that could lead to N1-polarization suppressing tumour progression. In
particular, we aim to determine appropriate drug injection rates uLðtÞ and/or uSðtÞ minimizing
tumour volume and associated administrative infusion cost. The controls uL and uS represent dosages
of TGF-β inhibitor and an IFN-β drug, respectively. These controls are assumed to be bounded and
Lebesgue integrable. That is, the control set is defined as

V ¼ {(uL, uS)
��ui is measurable with 0 � uiðtÞ � umax

i , t [ ½t0, t1�, i ¼ L, S}, ð2:3Þ

where umax
L and umax

S are the maximum tolerated TGF-β inhibitor and an IFN-β drug doses, respectively,
which could be administered in a given treatment period. These upper bounds may also be viewed as the
maximum amounts a patient can financially afford. The lower bounds for uL and uS correspond to no
treatment. Furthermore, we intend to administer precisely the amount of treatment to be given to the
patient over the given time interval [t0, t1], which is within safety limits (isoperimetric constraint). That
is, we have

ðt1
t0
uLðtÞdt ¼ A1 and

ðt1
t0
uSðtÞdt ¼ A2, ð2:4Þ

where A1 and A2 are the known TGF-β inhibitor and IFN-β drug amounts, respectively. Considering the
bounds for uL and uS, the choices for A1 and A2 satisfy

0 � A1 � umax
L

�
t1 � t0

�
and 0 � A2 � umax

S

�
t1 � t0

�
:

The following optimal control problems (OCPs) are formulated to examine different therapeutic
strategies. Here, the control costs are modelled by linear combination of quadratic terms, where the
weight factors B1 and B2 denote the relative cost of minimizing tumour volume T(t) and
administering TGF-β inhibitor and/or IFN-β drug infusions over a certain time period, respectively.
The quadratic form of the cost functional with respect to the controls ensures that the associated
Hamiltonian becomes strictly convex and has a unique minimizer, thus making the mathematical
problem more tractable. The use of such quadratic functionals is not commonly motivated by
biological phenomena making its simplifying assumptions questionable [72]. However, its use in order
to incorporate the nonlinearity of the problem has produced qualitatively significant results [73,74]. It
should be noted that the quadratic controls in the cost function model the adverse effects of using too
much drugs, as used in several works [73,75–79]. An isoperimetric optimal control has been applied
to cancer immunotherapy [80–82].

1. TGF-β inhibitor control only. In this scheme, we want to investigate the anti-tumour effect of TGF-β
inhibitor on tumour growth. In particular, we want to minimize the tumour size (T) and dose of
TGF-β inhibitor while keeping the same IFN-β supply. Thus, the OCP is to minimize the cost
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functional

J
�
uLðtÞ

� ¼
ðt1
t0

�
TðtÞ þ B1

2
u2LðtÞ

�
dt, ð2:5Þ

subject to (2.2) where S is assumed constant (i.e. S = 0.2, dS/dt = 0) with
Ð t1
t0
uLðtÞdt ¼ A1.

2. IFN-β control only. We consider the anti-tumour efficacy of IFN-β infusion. In particular, we want to
minimize the tumour size (T) and dose of IFN-β in the absence of IFN-β inhibitor. Thus, the
problem is formulated as minimizing the cost functional

J
�
uSðtÞ

� ¼
ðt1
t0

�
TðtÞ þ B2

2
u2SðtÞ

�
dt, ð2:6Þ

subject to (2.2) with constant TGF-β and no inhibitor present (i.e. G = 0.45, dG/dt = 0, L = 0, dL/dt = 0)
with

Ð t1
t0
uSðtÞ dt ¼ A2.

3. Concomitant TGF-β inhibitor and IFN-β controls. In this approach, the anti-tumour efficacy of both
controls is examined assuming that TGF-β inhibitor and IFN-β can be administered simultaneously.
Specifically, we want to minimize the tumour size (T) and doses of both TGF-β inhibitor and IFN-
β. Hence, the OCP is to minimize

J
�
uLðtÞ, uSðtÞ

� ¼
ðt1
t0

�
TðtÞ þ B1

2
u2LðtÞ þ

B2

2
u2SðtÞ

�
dt, ð2:7Þ

subject to (2.2) and isoperimetric constraints (2.4).
4. Alternating TGF-β inhibitor and IFN-β controls. In order to avoid drug complications such as risk of

killing healthy cells and overdose, we propose a strategy of administering drugs alternately.
Specifically, we want to minimize the tumour size (T) and doses of both TGF-β inhibitor and IFN-β
in an alternating injection scheme. Thus, the OCP can then be formulated as minimizing the cost
functional

J
�
uLðtÞ, uSðtÞ

� ¼
ðt1
t0

�
TðtÞ þ B1

2
u2LðtÞ

�
dt

þ
ðt01
t00

�
TðtÞ þ B2

2
u2SðtÞ

�
dt ð2:8Þ

subject to (2.2) and isoperimetric constraints (2.4) within an appropriate time interval.

Our goal is to find optimal infusion regimen for TGF-β inhibitor and/or IFN-β, u�ðtÞ ¼ ðu�LðtÞ, u�SðtÞÞ
such that

J
�
u�ðtÞ� ¼ min

V
J
�
uðtÞ�, ð2:9Þ

where V is the set of all square integrable functions uLðtÞ and uSðtÞ over a specified interval given in (2.3).
By using standard results in control theory, the existence of optimal controls is guaranteed [83]. In this
optimal control problem (OCP), the integrand of the objective functional satisfies the necessary
convexity, in which Pontryagin’s maximum principle can be applied [84]. In solving the OCP, an
iterative method is used where initial conditions for the state variables and terminal conditions for
the adjoints constitute a two-point boundary value problem. State equations are solved forward
in time using the given initial conditions and the corresponding adjoint equations are solved
backward in time starting with the transversality conditions. This is known as the forward–backward
sweep method (FBSM). Numerical simulations can be obtained using Euler scheme or fourth-order
iterative Runge–Kutta method. We use adapted FBSM [85,86] with adapted scheme [87] for
isoperimetric constraints.
3. Results and discussion
In this section, we present the numerical results obtained from different control strategies. The weight
parameters B1 = B2 = 1 are used as default values. Four different initial conditions, Qi := (C0,i, I0,i), i = 1,
…, 4, are considered in order to resemble diverse phenotypical state of N1 and N2 complexes. The
polarization of the microenvironment is N2-dominant if C . Cth and I , Ith, otherwise, N1-dominant
when C , Cth and I . Ith. We include the following conditions:
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— Q1 = (3, 2): low-risk state, high levels of both C and I above their corresponding threshold values;
— Q2 = (1, 2): risk-free state, low (high) level of C (I) below (above) the threshold value;
— Q3 = (1, 0.5): low-risk state, low levels of C and I below their corresponding threshold values; and
— Q4 = (4, 0.3): high-risk state, high (low) level of C (I) above (below) the threshold value.

An important phenotypic marker is

C , Cth and I . Ith: ð3:1Þ

3.1. TGF-β inhibitor control only
In this therapeutic strategy, we assume that there is a constant source of IFN-β and that the system can be
regulated by exogenously administering TGF-β inhibitor. The goal is to obtain optimal infusion protocol
with the least cost of TGF-β inhibitor infusion, i.e. u�LðtÞ that represses the N2-dominant phenotype
leading to tumour-suppression. We consider that the total dose of TGF-β inhibitor which can be
administered in a day is 1 unit, and thus, A1 = 1. Also, we presume that this drug can only be
administered every other day as in experiments [37] taking into account its toxicity to healthy tissue.
The adapted FBSM is applied for (a maximum of) one day if condition (3.1) is not satisfied (i.e. either
C . Cth or I , Ith or both inequalities hold) to obtain the optimal control profile u�LðtÞ for that period.
It is expected that C will decrease since TGF-β inhibitor blocks the TGF-β promoting N2 phenotype
which would in turn, upregulate N1 activities. Then, a day of no infusion follows letting the TGF-β
inhibitor take effect. The activities of C and I are simultaneously monitored. At the time when
condition (3.1) holds, infusion is stopped or no control is applied. Continuous monitoring of C and I
profiles will be crucial in determining the next TGF-β inhibitor infusion. This routine suggests a TGF-β
inhibitor control.

We consider the treatment period Pt to be the time when initial control infusion is administered until
condition (3.1) fails. Then cancer-free period Pcf is shortly achieved when condition (3.1) is satisfied. Before
C crosses Cth from below (I crosses Ith from above), optimal control is again applied proposing the
specific time of TGF-β inhibitor administration, and that commences the relapse period Pr. Figure 3a
depicts the control scheme, the corresponding profile of TGF-β inhibitor (L) and its effect on TGF-β
(G), and the concentration profiles of C and I with different initial conditions Q1, Q2, Q3, Q4. For
instance, if one considers Q4 as initial values of C and I, TGF-β inhibitor control is applied every other
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day until C crosses Cth which is about 10 days, duration of Pt. Then Pcf follows until around day 20 when
TGF-β inhibitor administration is again needed. The remaining time period covers Pr. Note also that
starting at risk-free, anti-tumorigenic region Q2 satisfies condition (3.1). Thus, initial TGF-β inhibitor
infusion commences (later) at around day 5. Figure 3b illustrates that administration of TGF-β
inhibitor is needed to reduce the N2/N1 ratio (shown in black, dash-dotted curve). It is expected that
when the initial condition is at high-risk, tumorigenic region Q4, the total amount of TGF-β inhibitor
to be used for entire medication period (60 days) is the largest. This is shown in figure 4a. The C−I
dynamics obtained from the TGF-β inhibitor control protocol at different initial conditions are
illustrated in figure 4b. Observe that all the trajectories converge to the anti-tumorigenic region. Time
courses of tumour volume in these four cases illustrate the relatively poor anti-tumour efficacy when
the initial condition is in the tumorigenic region Q4 (figure 4c), despite the highest cost (figure 4a).
3.2. IFN-β control only
Let us consider a scenario when TGF-β inhibitor cannot be administered due to adverse drug reactions,
high cost, etc., and assume that only IFN-β can be used for treatment purposes. Taking into account that
IFN-β is a noxious drug [29,88,89], it can be administered only every other day in increasing amount as
illustrated in experimental system [29,33,44]. In this strategy, we let the minimum and maximum IFN-β
amount be 2 and 10 units, respectively (i.e. Amin

2 ¼ 2, Amax
2 ¼ 10). As in the first control strategy, both C

and I are assessed. If condition (3.1) fails, then immediate administration of IFN-β is needed. This is done
by using adapted FBSM for a day to fully utilize the minimum amount followed by a period of no
infusion (maximum of a day) where both C and I are concurrently monitored. If condition (3.1)
still does not hold, application of control routine is carried out where IFN-β amount is increased by
2 units. This infusion scheme with increasing amount of IFN-β per administration is implemented
until condition (3.1) is not satisfied. The period from first IFN-β control administration until the last
infusion where at least one of the inequalities in condition (3.1) no longer holds is what we refer to as
the treatment period Pt. Then a critical period Pcrit follows where both C and I should be carefully
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monitored and strategic IFN-β infusion is necessary. Subsequently, C and I levels will be below and above
their threshold values and IFN-β can be regularly administered at minimum amount. This period is
considered as the maintenance period Pm.

Figure 5a illustrates the IFN-β infusion control scheme, the corresponding IFN-β concentration
profiles, and dynamics of C and I. It is shown that starting at Q4 entails an increasing rate and
amount of IFN-β infusion, and longer Pt. It is interesting to note that with initial condition at Q3, the
second infusion rate during Pt is 2 units but it can be verified that the amount of IFN-β < 2. It can be
observed in figure 5b that IFN-β infusion decreases the N2/N1 ratio levels.

It is depicted in figure 6a that the total amount of IFN-β needed for the entire medication duration for
60 days is the least when (C, I ) is initially at anti-tumorigenic region Q2 as opposed to starting at
tumorigenic region Q4. In figure 6b, the dynamics of C−I with different initial conditions under the
IFN-β control are steered towards the anti-tumorigenic region. Relatively efficient treatment results
starting from anti-tumorigenic sector Q2 and poor outcomes starting from tumorigenic status Q4 are
reflected in time courses of tumour volumes in figure 6c.

3.3. Concomitant TGF-β inhibitor and IFN-β controls
Now let us assume that both TGF-β inhibitor and IFN-β can be administered concurrently. As in the
previous strategies, drug infusions can be done every other day where IFN-β can be administered at
an increasing amount. Both drugs are concomitantly administered until condition (3.1) is satisfied
which spans the treatment period Pt. After the infusions, C and I will decrease and increase,
respectively, for some time. Before C and I cross their corresponding threshold value from below and
above, respectively, simultaneous drug administration should be carried out. This duration covers the
cancer-free period Pcf. Then continuous monitoring of C and I profiles are necessary to determine the
time for next concomitant administrations of TGF-β inhibitor and IFN-β. These period is referred to as
the relapse period Pr. Concomitant infusion scheme, corresponding TGF-β inhibitor and IFN-β
concentrations, and dynamics of the state variables starting at different initial conditions are depicted
in figure 7a. The average levels of N2/N1 ratio for each regimen denoted by tPt, tPcf , tPr under
various scenarios are depicted in figure 7b. Figure 8a shows a better comparison of the average
amount of N1/N2 levels for each medication period under different conditions while figure 8b
illustrates the ratio of the maximum (τmax) and minimum (τmin) N2/N1 levels for each condition.
Obviously, τmax/τmin is highest at high-risk state Q4.
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The total amount of TGF-β inhibitor and IFN-β drugs administered for the entire medication duration of
60 days are depicted in figure 9a,b, respectively. It can be observed that starting at Q4 needs more infusions
and thus more drug amount used. On the contrary, less administration and drug amount is needed when
(C, I) is initially at risk-free state Q2. Figure 9c shows the C−I dynamics starting at different initial
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conditions. Administration of concomitant controls will drive all the trajectories to the anti-tumorigenic
region. Scaled tumour volumes (Q4 bar in figure 6d) and elongated path from the initial TAN distribution
in the tumorigenic zone Q4 (red dotted curve in figure 6c) also indicate the relatively worst outcome in
decreasing the tumour size in the presence of a N2-dominant tumour microenvironment.
3.4. Alternating TGF-β inhibitor and IFN-β controls
Suppose that TGF-β inhibitor and IFN-β cannot be administered simultaneously due to toxicity, adverse
drug reactions, etc. Here, we examine the scheme where drug infusion can be carried out alternately
and every other day. Control scheme is obtained by analogously following the protocol and condition
laid out in the previous strategies. The drug infusion protocol, its concentrations and state dynamics
starting with different initial conditions are illustrated in figure 10a and the average levels of N2/N1
ratio tPt , tPcf , tPr under different conditions are illustrated in figure 10b. It is interesting to note that
with initial condition at Q1, IFN-β infusion is not necessary a day after the first TGF-β inhibitor
administration. Also, starting at Q3 needs lesser amount of IFN-β for its first infusion. Figure 11a
shows a comparison of the average amount of N1/N2 levels for each medication period under
different conditions while figure 11b illustrates the ratio of the maximum (τmax) and minimum (τmin)
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N2/N1 levels for each condition under alternating administration of TGF-β inhibitor and IFN-β. As
expected, τmax/τmin is highest at high-risk state Q4.

The proportion and the total amount of TGF-β inhibitor and IFN-β used for the entire duration of 60
days are depicted in figure 12a,b, respectively. As expected, starting at Q4 needs more drug infusions and
hence more drug amount compared with other initial conditions. Trajectories of the C−I dynamics with
different initial conditions towards the anti-tumorigenic region under the alternating control scheme are
illustrated in figure 12c. Time courses of tumour volumes in four cases (figure 12d ) show the worst
outcome in decreasing the tumour size with the initial TAN distribution in the tumorigenic zone Q4,
indicating the critical role of the N1/N2 immune conditions. It is important to note that, in order to
satisfy condition (3.1), the initial drug administration and infusion duration vary with different initial
conditions. This in turn, influences the drug amount to be used within a specific period. Starting at
Q2, for instance, showed that drug infusion is not carried out during the first day. On the other hand,
starting at Q4 demands several drug administrations to meet the condition (3.1).

Figure 13 compares the relative total amount of TGF-β inhibitor and IFN-β used in the proposed
therapeutic strategies starting at different initial conditions. Across the various schemes, starting at Q4

needs a bigger amount to bring C below and keep I above their respective threshold values.
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4. Conclusion
The exact role of immune cells such as NK cells [4] and TANs in tumour growth is still poorly
understood. Several studies have reported that neutrophils are cytotoxic to tumour cells. On the
contrary, a growing clinical evidence supports that neutrophils can promote tumour progression by
enhancing proliferation and angiogenesis, and inducing cell migration and metastasis [20,21,23].
Hence, TANs can display two different phenotypes: an anti-tumour (N1) and pro-tumour (N2)
effector cells [15,16,24]. The current study investigates a regulatory model between N1 and N2 TANs.
In this work, optimal control theory is employed to determine the amount, infusion times and cost of
TGF-β inhibitor and IFN-β administrations to activate N1 leading to tumour suppression. This
framework has been utilized to identify treatment schedules and anti-invasion therapy for
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glioblastoma [90,91]. Both single and combination drug therapies are considered under various

phenotypical conditions of N1 and N2. An important aspect of determining treatment protocol is the
patients’ pathophysiological condition. We identified therapeutic regimen for promoting anti-tumoural
TANs and suppressing pro-tumoural neutrophil phenotypic states through four different
administration of the TGF-β inhibitor and IFN-β in lung cancer. The optimal control scheme predicts
that, depending on relative states of N1 and N2 phenotypes, therapy schedules may have to be
adjusted properly to minimize adverse effects of these drugs and its administration cost in addition to
maximizing anti-tumour efficacy.

Proper diagnosis of N1 and N2 activities are important tools in order to have an adaptive and
individualized drug infusion protocol [60]. Converting N2 TANs to N1 could provide new therapeutic
options for cancer treatment. Our work essentially can provide a general framework of optimally
controlled injection schedules of anti-cancer drugs such as TGF-β inhibitors and IFN-β through
immune control, i.e. a critical transition between N1 and N2 TANs. Immune cells in a tumour
microenvironment play such a critical role in regulation of tumour growth and anti-cancer therapies
[4], having two faces of anti-tumour and tumour-promoting roles. The mathematical framework in
this work may be adapted for optimal results of anti-cancer therapies as far as appropriate patient-
specific data in clinics are provided.

Our study has four limitations:

— The current work does not consider the role of other factors in TME such as intracellular pathways such
as STAT1/STAT3/JAK [92] in response to IFN-β, TGF-β, and other stimuli [93], neutrophil elastase (NE)
in the presence [94] and absence [95,96] of LPS, tumour-promoting or -suppressive immune response
of NK cells [4,97], tumour-associated fibroblasts (TAFs) [67,98–100], ECM remodelling [69,101–103],
angiogenesis from blood vessels [104–106], or growth factors such as EGF [107,108] and CSF-1
[5,109]. NK cells were shown to mediate dual roles of neutrophils in metastatic colonization
[110,111]. For example, neutrophils can enhance extravasation of circulating tumour cells by
suppressing NK cells [111]. Depletion or adjuvant therapy of NK cells was shown to increase anti-
tumour efficacy in a combination therapy (OV-bortezomib-NK) relative to control, showing
nonlinear behaviour of immune system [4]. These factors may play major roles in regulation of
N1→N2 transition, thus cancer progression. In particular, we focused on the effect of TGF-β
inhibitor and IFN-β on TANs in this study, but it would be important to see the effect of those two
inhibitors on NK cells and TAFs in future work. For example, TGF-β and its inhibitor [98,99,112]
and IFNs [112–115] play an important role in regulation of tumour-associated fibroblasts in cancer
progression. We plan to include those players in a future optimal-control model.

— NET and NE were shown to promote tumour growth and invasion [116] by turning on the multiple
signalling pathways including PI3K in lung cancer cells [117]. For example, upregulated NET
activities near tumour sections induce the transformation of B cells [118], contributing to cancer
progression [119]. In particular, mathematical models [116] and experimental data [120] suggest
that NET can mediate the critical metastatic process [121,122] to stabilize the circulating tumour
cells in the bloodstream and help extravasation of these cancerous cells. However, NET was also
suggested to suppress tumour growth in colonic adenocarcinoma [123]. In our study, we did not
take into account these critical influence of NETs in a spatial domain. We plan to develop an
optimal control approach in a new framework of the partial differential equations of NETs in
order to improve the therapeutic, anti-invasion strategies.

— Unforeseen microenvironmental factors may limit bi-lateral switches between N1 and N2 TANs. In
our study, optimal control was applied only to IFN-β and TGF-β inhibitors. We plan to investigate
the specific role and optimization of these stimuli in TME for better understanding of the role of
TANs (either promotion [124–127] or suppression of tumour progression [123]). A new optimal
control method has to be developed for a possible triple combination therapy, i.e. TGF-β + TGF-β
inhibitor + immune agents [128]. We plan to develop an optimal control of the TAN’s plasticity of
the possibly continuous spectrum of the N1→N2 switches, which requires better understanding
and experiments of the biological system as well as advanced optimal control theory.

— It has been reported that a more realistic clinical situation employs linear cost functions. These types
of problems have been used in several works devoted to the administration of single and
combination therapies to treat different types of tumours [129–133]. On the contrary, a study by
Glick & Mastroberardino [74] concluded that quadratic control yields continuous, low doses of the
therapeutic drug producing a better outcome in the eradication of the solid tumour. Several
researches on optimal control approaches for cancer treatment still favour quadratic controls [77–79].
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Under certain circumstances, both linear and quadratic controls obtain qualitatively similar results

[76,81,134]. It is true that profiles of treatment strategies depend on the landscape of the cost
functionals. These differences show the importance of carefully defining an objective functional that
most accurately reflects the toxicities of a particular drug along with the objective of the treatment
strategy, for instance, decreasing the tumour mass at the end of the treatment interval, reducing the
overall tumour burden over the treatment interval, and some other clinically relevant criteria [73]. It
is therefore suggested that further model iterations should include exhaustive investigations on
linear controls to have holistic treatment strategies for cancer treatment. Further analysis of models
with other types of objective functionals should also be pursued. Varying results should then be
presented to the medical practitioner for them to decide which solutions best fit the biological
situation and can be used for practical implementation, if any [134].

This work, however, provides a general framework of optimal control approach for the fundamental
transition from N2 to N1 TANs, thus inhibiting tumour growth, in response to known key players.

Typical lifespan of neutrophils is usually under tight control for maintenance of tissue homeostasis
due to their potential toxicity [135], leading to short half-life in blood circulation after leaving the
bone marrow. However, there exist multiple cellular and molecular factors such as smoking and
reactive oxygen species (ROS) [136–138] that can influence their longevity [139,140], altered signalling
pathways and neutrophil apoptosis in TME [136,137,141,142]. For example, ROS production is shown
to be decreased in the absence of endogenous IFN-β, inducing cellular delays in apoptosis of TANs
[143]. Since these factors may affect a complex imbalance between N1 and N2 TANs, an optimal
control framework of such N1/N2 system with time delays [144,145] is needed in order to control the
aggressive promotion of aggressive tumour growth.

Building a mathematical model does not entail all important details of a life process, rather, distil key
elements that could provide insight into the underlying mechanisms and generate novel hypotheses for
experimentation [45]. Since no model is perfect, and is lacking some aspects of reality, a symbiotic
approach incorporating in vivo, in vitro and in silico techniques could be proven to be beneficial
[146,147]. Despite several caveats and limitations, mathematical modelling will still be instrumental in
understanding cancer biology and treatment [47]. Further design of experiments and development of
computational techniques for verification and validation should be carried out using experimental data.
Various types of mathematical models were suggested for better understanding of tumour biology:
(i) ordinary differential equations [60,91,148–152], (ii) delay differential equations [60,148,153], (iii) partial
differential equations [4,5,67,68,101,103,116,154–160], (iv) immersed boundary method [161,162],
(v) individual-based models [163–165], and (vi) multi-scale hybrid model [69,100,166–173]. See [174] for
a review of cell-based approaches. These mathematical approaches have been applied to investigation of
various aspects of signalling network of oncogenes and tumour suppressors, tumour growth, cellular
invasion, angiogenesis, recurrence, interaction with tumour microenvironment including chemokines/
cytokines, stromal cells, immune cells, metastasis and development of anti-cancer strategies. In
particular, multi-scale mathematical models [69,100,166,167,169–173,175,176] could be used to address
dynamical changes in inter- and intra-cellular signalling pathways at the microscale level and integrate
cellular process at the cellular level. We hope to address these issues in future work.
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