Table 5.
Predictions with the two methods: classical calibration and inverse regression, and corresponding radius of the prediction intervals and errors, for data in table 4. In italics the maximum R2 and the minimum standard error s.e.
| predictions |
prediction interval radius |
errors |
|||||
|---|---|---|---|---|---|---|---|
| Ai | ci | classical | inverse α0 + α1 Ai | classical (a) | inverse (b) | classical ei | inverse ɛi |
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
| 0.181 | 4 | 3.62591020 | 3.7126938 | 2.582782 | 2.576339 | 0.374089799 | 0.28730621 |
| 0.179 | 4 | 3.56942588 | 3.6567619 | 2.582810 | 2.576365 | 0.430574117 | 0.34323815 |
| 0.180 | 4 | 3.59766804 | 3.6847278 | 2.582796 | 2.576352 | 0.402331958 | 0.31527218 |
| 0.209 | 5 | 4.41669065 | 4.4957409 | 2.582411 | 2.575986 | 0.583309349 | 0.50425915 |
| 0.208 | 5 | 4.38844849 | 4.4677749 | 2.582423 | 2.575998 | 0.611551508 | 0.53222512 |
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
| SSE = | 187.5209 | 185.687 | |||||
| MSE = SSE/(n − 2) = | 2.75766 | 2.730692 | |||||
| 1.66062 | 1.65248 | ||||||
| R2 = 1 − SSE/SST = | 0.990124 | 0.9902206 | |||||