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Abstract

The survival rate of cancer has increased significantly during the past two decades for breast, 

prostate, testicular, and colon cancer, while the brain and pancreatic cancers have a much lower 

median survival rate that has not improved much over the last forty years. This has imposed the 

challenge of finding gene markers for early cancer detection and treatment strategies. Different 

methods including regression-based Cox-PH, artificial neural networks, and recently deep learning 

algorithms have been proposed to predict the survival rate for cancers. We established in this 

work a novel graph convolution neural network (GCNN) approach called Surv_GCNN to predict 

the survival rate for 13 different cancer types using the TCGA dataset. For each cancer type, 

6 Surv_GCNN models with graphs generated by correlation analysis, GeneMania database, and 

correlation + GeneMania were trained with and without clinical data to predict the prognostic 

index. The performance of the 6 Surv_GCNN models was compared with two other existing 

models, Cox-PH and Cox-nnet. The results showed that Cox-PH has the worst performance among 

8 tested models across the 13 cancer types while Surv_GCNN models with clinical data reported 

the best overall performance, outperforming other competing models in 7 out of 13 cancer types 

including BLCA, BRCA, COAD, LUSC, SARC, STAD, and UCEC. A novel network-based 

interpretation of Surv_GCNN was also proposed to identify potential gene markers for breast 

cancer. The signatures learned by the nodes in the hidden layer of Surv_GCNN were identified 
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and were linked to potential gene markers by network modularization. The identified gene markers 

for breast cancer have been compared to a total of 213 gene markers from three widely cited lists 

for breast cancer survival analysis. About 57% of gene markers obtained by Surv_GCNN with 

correlation + GeneMania graph either overlap or directly interact with the 213 genes, confirming 

the effectiveness of the identified markers by Surv_GCNN.
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1. INTRODUCTION

Extensive research has been conducted for cancer prognosis, diagnosis, and treatment since 

the War on Cancer in 1971. With hundreds of billions of spending on research and clinical 

care, survival rates of cancers have been improved in general. The mortality rate of cancer 

has been on the decline by 29% since its peak in 1991, saving an estimated 2.9 million lives. 

Some cancers are associated with high survival rates, including breast, prostate, testicular, 

and colon cancer while the brain and pancreatic cancers have a much lower median survival 

rate that has not improved much over the last forty years, imposing the challenge of finding 

early detection for cancer and alternative treatment strategies [1, 2]. Research has been 

conducted to show that early-stage cancer diagnoses can improve cancer treatment outcomes 

and survival [3–6]. Thus, continuously screening for early-stage cancer not only can improve 

the chances of survival but also can have a large socioeconomic impact.

Survival analysis has been used to determine the most important features in the survival 

of a patient to gather more information for early diagnosis and potential treatments [7–

11]. The most commonly used method for survival analysis is Cox-Proportional Hazard 

(Cox-PH) regression [12]. The Cox-PH method employs both quantitative variables such 

as molecular expression levels, age, and weight and categorical variables including sex 

and different treatment methods. Furthermore, the Cox regression model extends survival 

analysis methods to assess the effect of several risk factors on survival time simultaneously. 

However, the Cox-PH method tends to suffer in high-dimensional data, and regression 

cannot learn any complex non-linear functions. A previous remedy to this downside is the 

application of support vector machines in survival analysis[13, 14]. Other machine learning 

methods have also been applied for survival analysis to extract significant molecular 

predictors for early diagnosis and optimal treatment outcomes [11, 15]

Recently, deep learning has been used to predict survival outcomes with the loss function 

from the Cox regression model [16–20]. Ching et al. created a 1-layer artificial neural 

network (ANN) to predict survival outcomes for 10 cancer types using TCGA (The Cancer 

Genome Atlas) data [16]. Katzman et al. developed a multilayer ANN to recommend 

personalized treatments by determining the patients’ risk score (RS) and see which treatment 

gives this patient the best-predicted outcome [17]. Hoa et al. also created a multilayer 

integrating biological pathways and clinical data to predict the Prognostic Index (PI) of 

each patient [18]. Chaudhary et al. developed an autoencoder for liver cancer, where they 
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gathered the features of their bottleneck layer to gather a prediction [19]. Lastly, Huang et 

al have compared several survival analysis models across 12 cancer types using the TCGA 

dataset and reported better performance of the Cox-nnet model, providing a rationale to use 

Cox-nnet as a reference for this study [20]. All these methods used one-dimensional gene 

expression data in their networks. For most cancer types, all models perform better than the 

typical Cox-PH model and learn more complex features in the high-dimension dataset.

Other types of data and networks have also been used for survival analysis. Convolutional 

Neural Networks (CNNs) have been used to predict the survival of patients with pancreatic 

cancer from CT scans [21] while Recurrent Neural Networks were used for time-series 

datasets to predict survival outcomes [22, 23]. The challenge of using the CNN method 

to analyze gene expressions lies in two facts. Gene expression data is 1-dimensional while 

CNN needs 2-dimensional (2D) input. Different embedding methods have been applied 

to transform the 1D data into 2D. Further, the convolutional approach works well on the 

Euclidean manifold. However, molecular expression data, in essence, represents the outcome 

of molecular interactions, which are in non-Euclidian manifold represented by interaction 

networks [24]. On the other hand, the one-dimensional gene expression data is easily 

mappable onto a graph and graph convolutional neural networks (GCNN) is a promising 

approach for the non-Euclidean manifold, suggesting the effectiveness of using GCNN 

to analyze molecular expressions. The GCNN algorithm found great success in the drug 

discovery field and predicting metastatic breast cancer classes [25–28]. Our group used the 

GCNN model with a protein-protein interaction database (STRING) and a correlation graph 

to classify the TCGA cancer types along with normal tissues and to identify significant 

genes associated with each cancer type [29]. The success of applying GCNN in these studies 

motivates the investigation of applying GCNN to determine the survival rate with the TCGA 

gene expression data in this work.

We performed survival analysis on 13 TCGA cancer types spanning 5,963 samples with 

3 different graphs: a statistical relationship graph using correlation, a database-driven 

graph from GeneMania including gene-gene and protein-protein interactions, and a merged 

graph including both correlation and GeneMania to examine which graph can generate the 

best outcome. We also incorporated clinical data into our model to increase prediction 

accuracy and compared our survival analysis with and without clinical data to other 

established models including Cox-PH and Cox-nnet, a one-layer ANN model, to evaluate 

the performance of GCNN. We then interpreted the best performing GCNN models to 

identify the most significant genes and biological processes in breast cancer.

2. MATERIAL AND METHODS

2.1 Dataset Preparation

RNA-seq data were downloaded from TCGA using the R/Bioconductor package TCGA bio 

links [30]. The dataset includes a collection of 10,340 samples from 33 cancer types as of 

December 2018. The cancer types were filtered into their respective class keeping only the 

primary tumors and removing any replicate samples from the same patient or incomplete 

data that were missing follow-up times or day of death. Only the cancer types with more 

than 250 samples and more than 80 events (deaths) were kept ensuring data balance for 
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GCNN training, resulting in 13 cancer types shown in Supplement Figure 1. The number 

of samples (250) was determined to keep as many cancer types as possible while keeping 

sufficient data to train the GCNN model properly. Having enough events in the data is 

essential for training and survival prediction.

Each sample has the same 56,716 genes represented as expression levels in the 

log2(FPKM+1) unit where FPKM is the number of fragments per kilobase per million 

mapped reads. To lower the computational complexity, the number of genes was reduced by 

looking at the distribution of the mean and standard deviation of the gene expressions for 

the entire pan-cancer TCGA dataset to gather the most informative genes. The histogram of 

the distribution of the mean and standard deviations of all 56,716 genes’ expression levels is 

shown in Supplement Figure 2. A valley centered at 0.4 is shown in the standard deviation 

histogram plot in Supplement Figure 2B suggesting that values below 0.4 represent 

background and noise related to genes with low expression levels around 0. Supplement 

Figure 2A shows the histogram plot of mean expression levels for all genes. A threshold 

(0.7) was considered appropriate for two reasons: 1) The histogram in Supplement Figure 

2A shows many genes below this point representing low expressing genes, and 2) A mean of 

0.7 with a standard deviation of 0.4 allows the gene to be fully expressed through the span 

of the gene’s distribution without reaching 0. Many cancer types have similar histogram 

distributions showing that most cancer types have a similar number of genes with the same 

mean expressions and standard deviation, and thus a total of 15,496 genes were selected for 

survival analysis for 13 cancer types. The 13 cancer types used in this study, the number of 

samples, and events are shown in Table 1.

To integrate more informative data into the network for training and prediction clinical data 

was added to the last hidden layer [31, 32]. Extensive research results have shown that 

smoking history, family history of cancer, weight, age, pathological cancer stage, and TNM 

staging (T describes the size of the tumor and any spread of cancer into nearby tissue, N 

describes spread of cancer to nearby lymph nodes, and M describes metastasis) are closely 

related to survival rate for cancer diseases [7, 33–35]. Therefore, such clinical data were also 

fed into the GCNN model as shown in Table 1. A family history of cancer and smoking 

are given as 0s if they have no blood relative with cancer or have not smoked more than 

100 cigarettes and 1s otherwise. The mean of the data for each category in the clinical data 

is substituted for any missing data. We standardized the gene expression and clinical data 

between 0–1 using min-max normalization in this study using equation (1) to ensure the 

convergence of the model where v is the covariate variable for patient i,

Xi
v = Xi

v − min Xv

max Xv − min Xv . (1)

2.2 GCNN Model for Survival Analysis

The GCNN model in this study includes an input graph represented by an adjacency matrix, 

graph convolutional layers (coarsening and pooling), and a hidden layer connected to a 

cox-regression layer with a single output node resulting in a patient’s risk score (RS), η, as 

shown in Figure 1. The risk score can be considered as a predictor for a patient’s survival. 
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While an RS less than 1 suggests that the inputs are associated with improved survival, an 

RS greater than 1 is associated with a decreased survival. On the other hand, an RS close to 

1 suggests that the inputs have little effect on survival. In some literature, RS is also denoted 

as a prognostic index (PI) or hazard ratio (HR). The RS can be calculated by the linear 

combination of the weights and covariates, which will be further explained in section 2.5.

2.3 Three Graphs for GCNN

Three graphs were used in this study: a correlation graph, a database-driven graph generated 

by the GeneMania interaction database, and a combination of correlation+ GeneMania 

interactions. The correlation graph was created by taking the Spearman correlation between 

the 15,496 filtered genes from the TCGA pan-cancer dataset. To make sure only informative 

relationships are given to the model, the correlations greater than 0.55 are kept into the 

graph and replaced with a constant value of 1 as a bidirectional connection to create an 

adjacency matrix. The value 0.55 was chosen as a threshold that gave a sufficient amount 

of connections without over saturating the number of connections. A second objective 

in choosing the threshold of 0.55 was to find a balance between the connections and 

minimizing the number of singleton nodes, which are nodes not connected to any other 

nodes in the network. Since the singleton nodes do not contribute to the graph filter, the 

number of singleton nodes needed to be minimized.

The database-driven network graph is taken from the GeneMania database (https://

GeneMania.org/) [36]. GeneMania has a large number of interactions and incorporates 

both gene-to-gene and protein-to-protein interactions. Since the genes remain consistent 

throughout all models, the GeneMania graph does not change and is established for all 

models. A p-value threshold was also established for the GeneMania graph to keep only 

interactions with the confidence of (p < 3×10−5) from the filtered 15,496 genes. This 

threshold was chosen for the same reason described above for the correlation graph to get a 

sufficient number of connections while minimizing the number of singleton nodes.

The combination graph, Correlation + GeneMania, is composed of two portions: correlation 

and database driven network graph from GeneMania database, including the union of 

connections determined by both the correlation graph and the GeneMania graph.

2.4 Graph Convolutional Neural Network

The graph convolutional network proposed was created by Deffand et al and later optimized 

by Kipf et al by reducing the Chebyshev expansion to an order of 1 [37, 38]. A detailed 

description of the proposed GCNN algorithm was presented in our previous publication 

[29]. A representation of the GCNN model in this study was shown in Figure 1.

The GCNN performs a similar operation to the traditional convolutional neural networks but 

it learns features from neighboring nodes in a graph. In this paper, we focus on the Spectral 

GCNs, which make use of the Eigen-decomposition of graph Laplacian. Given W = (wij) ∈ 
R n × n denotes the adjacency matrix with edge weights as its elements, the graph Laplacian 

of W is denoted as
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L = In − D− 1
2W D− 1

2 ,   L  ∈ Rnxn, (2)

where D is the diagonal matrix with Dii = ∑jwij , and In is an n × n identity matrix. The 

eigendecomposition of L then becomes L = UΛU T, where U=[u1, u2, …, un] represents n 

eigenvectors of L and the diagonal matrix, Λ = diag[λ1, λ2, …, λn],with λi defined as the 

eigenvalues of L [37]. The Graph, G, represented by the adjacency matrix, becomes a filter 

to the input signal x and the output of the filter is calculated by the convolution of G and x 
shown as

y  =  g L x  =  g UΛUT x  =  Ug Λ UTx, (3)

where gθ is the spectral representation of the filter g(Λ) with learnable parameters θ. The 

complexity of gθ grows exponentially as the inputs and the number of neighboring nodes 

increases.

A polynomial expansion can be used to solve for gθ since this operation is computationally 

exhaustive after the eigendecomposition. The Chebyshev approximation was used to 

estimate the polynomial expansion and is represented by

Tm x = 2xTm − 1 x − Tm − 2 x , (4)

where T0 (x) = 1 and T1(x) = x [37, 38.] The local filter can be expressed as

gθ Λ = ∑f = 0
F θfTf Λ , (5)

where Λ is the scaled eigenvalues between [−1,1], which is defined as, Λ =  2Λ/λmax −  In. 

The Chebyshev expansion uses x0 = x and x1 = Lx, which greatly decreases the 

computational cost. L becomes the renormalized graph Laplacian as introduced by Kipf 
et al [38]. The filter, f, is set to an order of 1 by letting θ = θ0 –θ1, which prevents overfitting 

and makes y =  θ In + D− 1
2W D− 1

2 x. The normalization of the adjacency matrices becomes 

W = W + 1 and Dii = ∑jW ij and then the final filter expression is expressed as

y =  θ D− 1
2W D− 1

2 x . (6)

Equation (6) describes the graph convolution in this study. To reduce the complexity of 

graph convolution, a greedy algorithm is used to reduce the number of nodes by around 

half. Each node will be paired with a neighboring node that has a similar set of edges [39, 

40]. Any node without a similar counterpart will be paired with a generated empty singleton 

node. Max pooling will then coarsen these pairs into one single node, thus reducing the 
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graph by half its size. This final graph will be flattened and connected to a hidden layer with 

a Relu activation function. The hidden layer then is a part of the Cox-PH layer which is 

explained in detail in section 2.5.

2.5 Cox-Layer

The output of the graph convolutional network coarsening layers connects to a hidden layer 

with the number of nodes treated as a hyperparameter. The hidden layer is then connected to 

a cox-regression layer with a single output node resulting in the patient’s risk score (hazard 

ratio).

The final layer of our Surv_GCNN, the Cox regression layer is based on the Cox_PH model. 

The Cox_PH model creates an individual, i, hazard function that defines the likelihood to an 

event rate as time, t, given K number of hidden nodes, xi (w) = [xi,1(w), …, xi,k(w)]⊤ [12] as

ℎ t|xi w =  ℎ0 t exp ∑
k  = 1

K
ßkxi, k w , (7)

where w denotes the collection of weight parameters of the graph convolutional network 

coarsening layers, h0(t) is the baseline hazard function, and ßk ∀k = 1, …, K are the 

coefficients of the Cox model. The partial likelihood for patient i, ℒi, for an event occurring 

at the time Yi, or time-to-event is defined as

ℒi = ℎ Y i xi w
∑j:  Y j > Yiℎ Y i xj w = ℎ0 Y i φi

∑j:  Y j > Yiℎ0 Y i φj
= φi

∑j:  Y j > Yiφj
 , (8)

where φi  =  exp ∑k = 1
K ßkxi, k w  and the summation is over all the subjects j that has not 

had an event occur before time Yi. The partial likelihood for all patients is the multiplicative 

of all patients with an event occurring defined as

ℒ ϕ = ∏i:  Ci = 1ℒi, (9)

where ϕ = {w, ßk∀k} is the collection of Surv_GCNN parameters, Ci = 1 for an occurrence 

of death for patient i and Ci = 0 for censored data where an event has not occurred. This then 

makes the log partial likelihood to be

ℓ ϕ = ∑i:  Ci = 1 ∑k = 1
K φi − log ∑j:  Y j > Yiφj . (10)

The parameters ϕ can be learned from the maximum likelihood estimation as

ϕ = argmaxϕ ℓ ϕ . (11)

2.6 Training the GCNN Model

Gene expression levels from TCGA data is embedded into a graph that goes through a single 

graph convolutional layer and a single hidden layer first. Both the hidden layer and the 
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clinical data are connected to the output giving the patient’s risk score. To ensure the best 

possible results, many hyperparameters were tuned using a random search to maximize the 

concordance index (C-index) that was used to evaluate the model. Some parameters were 

meant to be tunable hyperparameters but ended up working for all models such as a single 

GCN layer, a single hidden layer, Relu activation function for all nodes besides the output, 

and the learning rate of 0.005. Parameters such as batch size, dropout, the number of nodes 

in the hidden layer, and L2 regularization were tuned using λ for individual models as shown 

in equation (12) and added to the loss function in equation (10) to give us the loss function 

in equation (12) as follows,

loss( ß) = − ∑i:  Ci = 1 ∑k = 1
K φi − log ∑j:  Y j > Yiφj + λ ß2 . (12)

The training was done in Tensorflow 1.14 using the Tensorcox package in python by 

minimizing the negative log-likelihood function with L2 regularization shown in (12) with 

the code found at https://github.com/RicardoRamirez2020/GCN_SURV. The tuned model 

parameters are also shown in Table 1.

2.7 Evaluation of GCNN-based Survival Prediction

Evaluation of survival analysis using the GCNN approach was conducted for 8 models 

including Cox-PH, Cox-nnet, 3 GCNN models based on correlation graph, GaneMania 

graph, and correlation + GeneMania graph without clinical data, and three GCNN models 

based on the three graphs with clinical data. The performance of these GCNN models was 

compared with existing methods for survival analysis including Cox-PH and Cox-nnet [12, 

16]. We decided on using the Cox-PH since it is the standard of most survival analysis and is 

then used as an output layer in our GCNN model. The Cox-PH model is a regression-based 

method where the output is determined based on the input features directly. We used the 

same equation as (10) with each gene connected directly to the output RS prediction. The 

Cox-PH model was also performed with Tensorflow using expressions of all 15,496 genes as 

the inputs.

Comparing against ANN-based Cox-nnet results allows us to evaluate the effect of GCNN 

and ANN approaches. The Cox-nnet model also implemented equation (10) with an ANN. 

The Cox-nnet had 15,496 input nodes, a single hidden layer with 143 nodes with a drop out 

of .08, and the output is the risk score. Comparing with the Cox-PH method, the Cox-nnet 

has a new feature map since the features to the output come from the hidden layer while 

Cox-PH extract features from gene expressions directly. In the implementation of the Cox-

nnet, we retained the original procedure and parameters described in the publication [9]. The 

same loss function is shown in equation (8) and optimizer was used as the GCNN with a 

learning rate of 1e-4 for the same 15,496 genes. Since we incorporated high dimensional 

data, L2 regularization was added to tune the λ parameter for each model [41]. A universal 

L2 regularization parameter of 0.01 was used for both the Cox-PH and Cox-nnet models. 

The Cox-nnet model showed improved results with L2 regularization in the original findings 

[16].
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The performance of the GCNN models obtained from three graphs including correlation, 

GeneMania, and Correlation + GeneMania, was examined concerning prediction 

performance and the complexity of the graphs. Since clinical data is one of the most 

significant indicators of survival times and increase prediction in survival analysis when 

incorporated with gene expression [42, 43], the effect of clinical data was evaluated by our 

Surv_GCNN.

Harell’s C-index was calculated based on the RS from the GCNN models and used to 

evaluate model performance [44, 45]. The C-index was used rather than a traditional mean 

square error because of the censored data. Since we do not know the true end time, we 

cannot train the model using a traditional regression approach unless we train with only the 

non-censored data. Rather than predicting the survival time of each patient, the risk score is 

the prediction for each patient from the model. The C-index is calculated by gathering every 

pair of patients and examining their risk score and their times-to-events. If a patient j has 

a higher RS, ηj, with a shorter time-to-event, Yj , compared to the RS and time-to-event of 

patient i, ηi and Yi, this is called a concordant pair. Since patient, i and j can be interchanged 

we only focus on the case when Yi > Yj to ensure no duplicate pairs. If a patient j has 

a lower ηj with a shorter Yj, or higher ηj with a longer Yj compared to ηi and Yi of 

patient i, this is called a dis-concordant pair. This is done for every pair of patients except if 

both patients are censored or if the censored patient has a longer time-to-event (Ycensored > 

Ynon-censored). The final C-index is calculated by taking the concordant pairs divided by the 

sum of the concordant pair and discordant pairs.

C – index =  ∑i ≠ j1 ηi < ηj  1 Y i > Y j
∑i ≠ j1 Y i > Y j

(13)

A C-index value will always be between 0–1. A C-index of 0.5 indicates that the model 

predicts random RS values, a C-index value less than 0.5 suggests a worse-than-random 

prediction and a C-index greater than 0.5 implies an improved RS prediction for each 

patient.

All the models were trained using Tensorflow using Adam optimizer to increase the speed 

of the PH model and to keep the software consistent. The models were run 10 times while 

randomly dividing the data into 80%−20% partitions for training and testing, respectively. 

This was done for each model but made sure that the median values of the time-to-event 

from both the training and testing groups were within 15% of the larger median value among 

the two groups. A similar rule was applied to check the number of censored data in the 

training and testing groups. With these procedures, the data used for each run may have 

different partitions, but the properties of each partition should remain similar. A paired t-test 

was used to test for significance between models. There are four specific tests done. The first 

test is to see how Cox-PH compared to the other models considering that regression cannot 

learn any complex functions. The second was to compare cox-nnet versus the GCN models 

to compare the neural network model to the GCNN model without clinical data. The third 

test was to examine the three graphs to see if any graph filter outperforms the others. Lastly, 
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we investigated if clinical data significantly increased model performance by looking at the 

model with and without clinical data.

2.8 Interpretation of the GCNN Model

We interpreted the GCNN model using breast cancer samples since it is one of the well-

studied cancer types and has the largest sample size in the TCGA dataset. The proposed 

GCNN model has the input of gene expressions and output of RS which are connected by 

the GCNN and 256 nodes in the hidden layer. Correspondingly, interpreting the model was 

separated into two parts: finding the significant nodes in the hidden layer contributing to the 

RS and dissect the relationship between gene expression levels to the hidden layer nodes.

2.9 Identify Prognostic Nodes in the Hidden Layer

We gathered model parameters from a single run resulting in the median C-index (0.7775) 

for the correlation + GeneMania graph of breast cancer shown in the box and whisker plot 

in Figure 2. All 1,080 samples in the breast cancer study were tested using this parameter 

set. We collected the values of the hidden layer for each patient along with the weights from 

the hidden layer to the output RS. The contribution of each hidden layer node to determine 

the RS was calculated by multiplying the value of the node and the weight of the nodes 

to the RS for each sample in the breast cancer study. All 1,080 samples had the same top 

contributing nodes from the hidden layer to the RS and were separated into two groups by 

the median contribution values, group 1 representing a node with contribution larger than the 

median, and group 2 if the contribution was below. To verify the statistical significance of 

the features learned in the hidden layer we tested both groups through a Kaplan-Meier (KM) 

plot using a log-rank p-value [46]. The KM plot requires only 3 labels for each sample, last 

follow up/ death time, censoring, and which group the sample belongs to.

2.10 Dissect the Relationship Between Genes and Hidden Layer Nodes.

Two approaches were used to examine the relationship between genes and hidden layer 

nodes. A Spearman correlation analysis between the gene expressions and the values of the 

top contributing nodes in the hidden layer was performed first to see the contribution of 

each gene on those significant nodes. We took the top correlated genes with an absolute 

correlation greater than 0.5.

Since the GCNN model is graph-based, we further mine gene modules in the correlation + 

GeneMania graph for breast cancer with the HotNet2 algorithm [47]. Two different network 

modules were mined based on mean values and variances of gene expressions in BRCA. 

We assigned means and variances of expression levels of genes from all BRCA samples 

as the input heat vector, integrated the correlation + GeneMania networks as the reference 

functional network, and identified gene modules that have relatively higher expression levels 

and modules whose expression levels changed more dramatically in all BRCA samples, 

respectively.

HotNet2 has two parameters β and δ; β is the fraction of the heat that a node in the network 

retains for itself at each time step and δ is the threshold, which determines whether there 

is an edge between 2 nodes in the final subnetwork. β can influence the amount of heat 
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that a gene shares with its neighbors and is determined by the topology of the network. We 

downloaded the HotNet2 tool from https://github.com/raphael-group/hotnet2 and applied it 

with default parameters. In this study, β was set as 0.5, and δ was automatically determined 

as 0.0231 for the mean expression level heat input and 0.00673 for the variance heat input.

All potential gene markers identified by Spearman correlation analysis and top modules 

from the HotNet2 modularization were further examined. The top modules from the 

HotNet2 were determined by taking a simple linear regression of the gene expressions 

in each module with an R2 value greater than 0.5. Three highly cited gene marker lists 

for breast cancer from previous studies: Gene Expression Profiling Interactive Analysis 

(GEPIA), PAM50, and Parker’s results were used as a reference [48–50]. There are 100 

genes in the GEPIA list, 55 in PAM50, and 62 in Parker’s results, resulting in a total of 213 

unique genes after removing the overlaps as listed in Supplement Table 1.

3. RESULTS

3.1 Selection of Cancer Types and Clinical data

A total of 13 cancer types were selected from the TCGA dataset based on the number of 

censored samples and events for each cancer type as shown in Table 1. Among these cancer 

types, breast cancer has the most enriched samples (1,080 samples). The averaged censored 

samples and events of the 13 cancer types are 504 and 156, respectively. Breast cancer has 

the least event to censored sample ratio as of 13.7%, while ovarian cancer has the highest 

ratio of 60.4%.

3.2 Graphs Established

Three graphs were generated based on correlation, molecular interactions from GeneMania, 

and the combination of Correlation + GeneMania. Table 1 also shows network properties 

including the number of connections and network density for correlation and correlation + 

GeneMania for each cancer type. The GeneMania network is the same for all 13 cancer 

types resulting in 948,742 interactions with 3,041 singleton nodes with a density of 61.22.

3.3 Input, Output, and Parameters in the GCNN

The input of the GCNN survival analysis model includes 15,496 gene expression and 

clinical data from the TCGA dataset. Clinical data for each cancer type was shown in Table 

1 with the determining factor on what was used is what was available in that study. The 

output of the GCNN model is the risk score (RS). The batch size, L2 regularization, hidden 

layer dropout, and the number of nodes in the hidden layer in the GCNN model were also 

listed in Table 1. A total of 104 models were trained and tested in this study: 6 GCNN 

models, a Cox PH model, and a Cox-nnet model for each cancer type selected.

3.4 Evaluation of Cox-PH, Cox-nnet, and GCNN Based on Three Graphs

C-Indices predicted by the 104 models (8 models/cancer for 13 cancer types) are shown 

in Figure 2. We performed t-tests (p-value < 0.05) on the C-Indices between models for 

each cancer type to test the statistical significance of the model performance (Supplement 

Table 2). The Cox-PH model generated the worst results for all 13 cancer types. Almost 
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all GCNN models without or with clinical data performed better than Cox-nnet, and Cox-

nnet outperformed GCNN based on GeneMania only in BRCA. Among GCNN with three 

graphs, the GCNN model based on correlation without clinical data performed the worst 

compared with the other two graphs for HNSC prediction, while all GCNN models without 

clinical data performed similarly. Comparing GCNN with or without clinical data, clinical 

data improved the performance of the GCNN model with at least one of the graphs in most 

cancer types: BLCA, BRCA, COAD, LUSC, SARC, STAD, UCEC.

A value of 1 to 8 was assigned to each GCNN model for a cancer type with 1 and 8 denoting 

the best and worst performer, respectively, assessed by the mean C-Index. Ranks of 8 models 

for each cancer type and the overall ranking for a model (the summation of ranks across 

13 cancer types) were shown in Figure 3A. Similarly, we also ranked the models based on 

the standard deviation of C-Index (1 for lease standard deviation) shown in Figure 3B. The 

reason the mean C-index was used rather than the median, as shown in the box plot, is 

that the standard deviation of the model is calculated based on the mean values, so mean 

C-index was adapted because these two values complement each other. In general, GCNN 

models based on the GeneMania graph or correlation + GeneMania graph with clinical data 

achieved better performance over other models.

3.5 Significant Prognostic Nodes for Breast Cancer

We took BRCA as an example to interpret the constructed GCNN models. We evaluated 

the survival significance of each node at the hidden layer by comparing the Kaplan-Meier 

curves of patients with high and low scores of the node (see Methods). Interestingly, all 

BRCA samples showed the same top 4 prognostic nodes (Figure 4). Along with all the nodes 

in the hidden layer, the clinical data were significant except for the metastatic status since 

there was not sufficient data.

3.6 Find Potential Gene Markers for Breast Cancer

Three analysis approaches including correlation-based analysis and two network-based 

analyses were performed to find the potential gene markers for breast cancer prognosis. 

A total of 318 unique genes were correlated to the top 4 prognostic nodes in the hidden 

layer. CCDC24 was the only gene shared between the 318 genes and the top 100 genes 

identified from a reanalysis of TCGA data by GEPIA [48]. Among the 318 genes, 38 genes 

had a log-rank p-value less than 0.05 between the patients with high or low expression in 

the gene. There were no overlap genes among the 318 genes and the PAM50 and Parker’s 

lists of genes that were representative of BRCA subtyping and prognosis [47, 49]. This 

result implies that a simple linear correlation analysis might not fully capture meaningful 

prognostic patterns since GCNN models are dependent on higher-order graph features.

3.7 Network Modules Generated by HotNet2 with Mean Expression as Heat Input

To dissect to critical modules of the graphs, we used HotNet2 with the mean or variance of 

gene expressions in BRCA samples as heat sources. HotNet2 generated 2 groups of gene 

modules for the integrated correlation + GeneMania network which contained 15,496 gene 

nodes and 1,041,526 edges after removing self-connections. A total of 275 gene modules 
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were generated with mean expression heat input. The largest module contains 563 genes and 

the smallest module contains 2 genes.

A total of 4 out of 275 modules were found with an R2 value greater than 0.5. The 4 

modules contained 696 unique genes. Seven genes were also reported by GEPIA, CHCHD7, 

CYB561, GTF2H5, LMAN2, PRR13P5, SEC61G, and VDAC1. Three (AP2B1, GSTM3, 

and MUC1) and two genes (CXXC5 and GRB7) were common with Parker’s and the 

PAM50 lists. Seventy of these 696 unique genes, including all the 12 genes listed above, had 

a significant log-rank p-value.

3.8 Network Modules Generated by HotNet2 with Expression Variance as Heat Input

We also tested the possibility to identify network modules with highly variable, thus 

potentially informative genes in BRCA. With the variance in the gene expression data as 

heat input, 178 gene modules were generated with the largest module contains 576 genes 

and the smallest module contains 2 genes. Only one of the modules was found to hold an R2 

value greater than 0.5 that comprised 576 genes. Four genes, CD24, CYB561, FABP7, and 

TCN1, overlapped with top genes from GEPIA, seven genes, ERBB2, GSTM3, IGFBP5, 

MS4A7, MUC1, PLAT, and SCUBE2, overlapped with genes in Parker’s list, and 10 genes, 

CXXC5, ERBB2, GRB7, KRT14, KRT17, KRT5, MAPT, NAT1, PHGDH, and SFRP1 
overlapped with the PAM50 list. A total of 64 out of 576 genes have a log-rank test p-value 

less than 0.05. Based on the 213 marker genes we identified by different approaches, the 

network module generated by the HotNet2 with variance as heat input contained the greatest 

number of known gene markers. The pathways enriched by the 576 genes given by the 

HotNet2 with variance heat input include pathways in cancer, cell cycles, inflammatory 

responses, and immune responses.

Among these marker genes, overexpression of human epidermal growth factor 2 (ERBB2) 

is a key BRCA-subtyping gene and known to enhance metastasis-related properties of 

cancer cells, and thus a prognostic factor for breast cancer [51, 52]. Another prognostic 

factor, CXXC5, has been identified as associated with a poor clinical outcome for estrogen 

receptor-positive (ER+) breast cancer [53, 54]. As suggested by many studies [55–57], many 

of these marker genes, especially those included in the PAM50 panel [58], are widely used 

as a genomic test to guide treatments. The results demonstrate the capability of GCNN to 

capture the well-studied genes and further illuminate novel prognostic markers of BRCA.

3.9 Interpreting Gene Modules with Network Connectivity

To further examine the genes chosen by the gene modules from the GCNN model, we 

examined the genes directly interacting with the three sets of genes: 318 genes from 

correlation analysis, 696 genes from HotNet2 modules with the mean expression as input, 

and 576 genes from HotNet2 modules with variances as input.

From the correlation + GeneMania graph, 58 out of 318 genes were directly linked to the 

genes in GEPIA, while 34 genes were linked to genes in Parker’s list and 32 genes were 

linked to genes in the PAM50 list. In the modules identified by HotNet2 with the mean 

expression as input, there were 80 unique genes that directly interact with the genes in the 

GEPIA list, while 61 genes interacting with genes in Parker’s list, and 92 interacting with 
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genes in the PAM50 list out of 696 total genes. Lastly, from the HotNet2 analysis with gene 

variance, 164, 120, and 197 out of 576 genes directly interacted with genes in the GEPIA, 

Parker’s list, and the PAM50 list, respectively.

In summary, 83 of the 318 (26.1%) selected genes either overlapped or were directly 

interacted with a gene from the three gene lists, 185 of the 696 (27.4%) for the HotNet2 

results with mean gene expression as inputs. Specifically, a total of 329 of the 576 (57.1%) 

identified by the HotNet2 with gene expression variance overlapped or directly interacted 

with 136 genes from the GEPIA, Parker’s results, and PAM50 list. The distribution of the 

136 genes among the three gene lists is shown in Figure 5B while the Venn diagram for the 

three gene lists shown in Figure 5A.

4. DISCUSSION

This work is the first attempt to predict and interpret the survival rate for different cancer 

types using the GCNN approach. Our results suggested that clinical data improves the 

prediction of 7 cancer types including BLCA, BRCA, COAD, LUSC, SARC, STAD, 

UCEC, which agrees with existing results [7, 32–34]. The proposed 1-layer GCNN already 

generated better performance comparing to the regression-based Cox-PH method and neural 

network-based Cox-nnet method. This confirmed the idea that GCNN is capable of handling 

data in a non-Euclidean manifold. This property is very helpful in establishing GCNN 

models with molecular expression data since no embedding is requested comparing to the 

CNN models. The top two models evaluated by mean C-Index were GCNN based on 

GeneMania and Correlation +GeneMania with clinical data. Interestingly, the t-test showed 

there was very little significant difference among the GCNN models generated by three 

different graphs.

The GCNN model in essence includes convolution on the graph based on the network 

structure. To investigate whether the structure of the graph was significant, we examined 

a random graph structure for three cancer types including BRCA, COAD, and LGG as 

shown in Supplement Table 3. Since the GeneMania graph provided the best results among 

the three graphs as shown in Figure 3, the features such as the number of nodes, network 

density, and the number of connections of the GeneMania graph were kept in the generation 

of the random graphs. To keep these features, we randomly shuffled the genes within the 

GeneMania graph at each independent run to generate a new random network. The structure 

of the random network bears no biological meaning embedded from the GenaMania graph 

structure. To examine the effect of the different embeddings, we constructed a chromosomal 

embedding and a randomly shuffled embedding convolutional neural network (CNN). The 

random embedding was created with the same 15,496 genes but placed randomly into a 

125×125 image to fit all the genes in a square image with each pixel intensity denoting 

a gene expression value. There are 129 extra empty pixels (15,496 + 129 = 1252) with 

value zero due to the square-format 2D embedding. The chromosomal embedding was 

also a 125×125 image but now ordered based on the Ensembl100 annotation (GRCh38 

human genome build) with only 28 genes not found which were placed at the end with the 

additional 129 empty pixels. The genes filled each row based on the chromosomal ordering 

(Chromosome 1 to X and Y, and smaller genomic position first) and continued onto the 
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next row until all the genes were filled. Both CNN models used a 5×5 convolutional kernel 

followed by a 2 × 2 max-pooling to reduce the image by half similar to our GCNN graph. 

The software implementation remained consistent by using TensorFlow 1.14.

We considered the 3 embedding approaches (random CNN, chromosomal CNN, and random 

GCNN) on 3 cancer studies, BRCA, COAD, and LGG. Each cancer study was selected 

for a specific reason. BRCA is well studied and therefore we used it for the interpretation. 

COAD is tested because our GCNN reported the highest improvement compared to the 

other models. LGG achieved the highest C-indexes with our GCNN models. Results 

obtained from random CNN, chromosomal CNN, and random GCNN models were shown in 

Supplement Table 3 along with our GeneMania, Correlation, and Correlation + GeneMania 

GCNN models without clinical data. The six models in Supplement Table 3 were all trained 

on the same 25 partitions to reduce any variation between models. The partitions kept the 

same data distribution as described in section 2.7.

To further validate the results, a paired one-sided t-test was conducted to test the 

performance improvement between each model for the 3 selected cancer types with a 

mean C-index of 25 runs and a p-value for the t-test. For BRCA, the Correlation GCNN 

model performed better than the random CNN and random GCNN models with a p-value 

less than .01. The Correlation + GeneMania GCNN model also outperformed the random 

GCNN and random CNN models with a p-value less than 0.01 and 0.05, respectively. For 

COAD cancer type, both the Correlation and the GeneMania GCNN models performed 

better than the random GCNN with a p-value of 0.01. All three GCNN models performed 

better than the chromosomal CNN with a p-value less than 0.05. While the GeneMania 

GCNN model outperformed random CNN with a p-value less than 0.05. The LGG cancer 

type had the highest C-index scores for all GCNN models suggesting that LGG might 

have the simplest regulations to distinguish important features to determine risk score 

compared to the other cancer types. The Correlation GCNN model performed significantly 

better compared to the random CNN, the chromosomal CNN, and the random GCNN 

giving a p-value less than 0.01. However, the GeneMania GCNN performed worse than the 

chromosomal GCNN with a p-value of 0.0455, and the Correlation + GeneMania GCNN did 

perform worst among all 6 models with a p-value less than 0.01. The bad performance of the 

Correlation + GeneMania GCNN model might be caused by the high density of the network 

structure from the GeneMania graph. The chromosomal CNN’s specific embedding was 

expected to improve the performance, but there was no significant performance difference 

between the random CNN and the chromosomal CNN models for BRCA, COAD, and LGG. 

Interestingly, our previous study on cancer type classification using the TCGA dataset also 

showed similar prediction accuracy when genes are ordered randomly, comparing similar 

studies where input genes are in chromosomal order [59, 60]. By comparing with different 

embeddings, GCNN models outperformed CNN models and random networks

Interpretation of the GCNN model concerning biological meaning is very hard since the 

evolution of the data was not assigned any biological meaning from the beginning. A novel 

network module-based analysis was presented for breast cancer in this study. The proposed 

method retrieved significant gene markers for breast cancer survival. A total of 329 out 576 

genes selected by HotNet2 Modules with variance as heat input either overlapped or directly 
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interacted with the 213 well know gene markers for breast cancer survival. The investigation 

of graph connectivity shows that a possible reason that the other genes appear in the modules 

is due to the structure of the graph and its close neighbors. Further interpretation for other 

cancer types and other GCNN models should be performed in future research to establish a 

more complete view of significant gene markers for cancer survival.

It is worth noting that the GeneMania graph for GCNN models is the same for all cancer 

types, while the correlation graphs are different for each cancer type. A correlation graph 

across 13 cancer types will also be established and refined for each cancer type in our future 

study to further investigate the effects of graphs on the performance of GCNN models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ANN artificial neural network

ACC adrenocortical cancer

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

C-index Concordance Inde

CESC cervical and endocervical cancer

CHOL cholangiocarcinoma

CNN convolutional neural network

COAD colon adenocarcinoma

Cox-PH Cox-Proportional Hazard

DLBC diffuse large B-cell lymphoma

ESCA esophageal carcinoma

GBM glioblastoma multiforme
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GCNN graph convolutional neural networ

HNSC head and neck squamous cell carcinoma

KICH kidney chromophobe

KIRC kidney clear cell carcinoma

KIRP kidney papillary cell carcinoma

KM Kaplan Mierer

LAML acute myeloid leukemia

LGG lower grade glioma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MESO mesothelioma

OV ovarian serous cystadenocarcinoma

PAAD pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

PI Prognostic Index

PRAD prostate adenocarcinoma

READ rectum adenocarcinoma

RS risk score

SARC sarcoma

SKCM skin cutaneous melanoma

STAD stomach adenocarcinoma

std standard deviation

TCGA The Cancer Genome Atlas

TGCT testicular germ cell tumor

THCA thyroid carcinoma

THYM thymoma

UCEC uterine corpus endometrioid carcinoma

UCS uterine carcinosarcoma
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Figure 1. 
Structure of the proposed Surv_GCNN model. The Surv_GCNN model includes a graph 

convolution layer and a hidden layer fully connected to the Cox layer that gives the risk 

score as the output of the Surv_GCNN model. The input to the Surv_GCNN model is a 1D 

gene expression level of TCGA samples and graphs of the Surv_GCNN can be generated by 

statistical correlation analysis, existing molecular interaction databases, or a combination of 

these graphs. The clinical data can also be integrated with the hidden layer to form the Cox 

layer if needed.
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Figure 2. 
Concordance Index boxplots between 8 models across 13 cancer types from the TCGA 

dataset. The 8 models include Cox-PH in yellow, Cox-nnet in purple, Correlation in light 

blue, GeneManiain red, Correlation + GeneMania in light green, Correlation with Clinical in 

dark blue, GeneMania with Clinical in orange, and Correlation + GeneMania with Clinical 

in dark green. Each model has 10 runs for each cancer type. The middle line of the box 

represents the median of the 10 runs while the top and bottom of the box are the 75 and 

25 percentiles, respectively. The top and bottom whiskers of the plot represent the 1.5 

interquartile range outside the 75 and 25 percentiles, respectively. Each ‘x’ represents the 

outliers outside the whiskers.
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Figure 3. 
The ranking of the performance of 8 models for every cancer type is shown. (A) Ranked 

8 models based on their median from the 10 runs. The value of 1 represents the highest 

median C-Index and 8 being the lowest. (B) Ranked 8 models based on their standard 

deviation of the 10 runs. The value of 1 represents the lowest standard deviation and 8 

denotes the highest. The overall evaluation of a model is determined by summing the scores 

for each cancer type first and ranking them from the lowest overall as 1, to the highest value 

as 8.
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Figure 4. 
Kaplan Meier plots for the 4 most contributing nodes (A-D) to the RS score in the 

Surv_GCNN model. (A) KM plot based on node 136, the biggest contributing node; (B) 

KM plot based on node 131 the second-biggest contributor; (C) KM plot based on node 134 

which is the third-biggest; and (D) KM plot for the 4th-biggest contributor node 58. The 

groups in each KM plot were divided by their median node value from all 1080 patients. 

Larger than the median is shown in the red group and less than the median in the blue group. 

The log-rank p-value was also shown in the bottom corner of the graph.
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Figure 5. 
(A) The Venn Diagram of the three sets of highly cited gene markers from GEPIA, PAM 50, 

and Parker’s lists. (B) A total of 329 out of 576 genes in the variance HotNet2 set directly 

interact or overlap with 136 genes in the GEPIA, PAM50, and Parker’s list. Venn Diagram 

of the 136 gens was shown in (B).
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