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Distributed and Localized Dynamics Emerge in the Mouse
Neocortex during Reach-to-Grasp Behavior
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A long-standing question in systems neuroscience is to what extent task-relevant features of neocortical processing are localized or distrib-
uted. Coordinated activity across the neocortex has been recently shown to drive complex behavior in the mouse, while activity in selected
areas is canonically associated with specific functions (e.g., movements in the case of the motor cortex). Reach-to-grasp (RtG) movements
are known to be dependent on motor circuits of the neocortex; however, the global activity of the neocortex during these movements has
been largely unexplored in the mouse. Here, we characterized, using wide-field calcium imaging, these neocortex-wide dynamics in mice of
either sex engaging in an RtG task. We demonstrate that, beyond motor regions, several areas, such as the visual and the retrosplenial cor-
tices, also increase their activity levels during successful RtGs, and homologous regions across the ipsilateral hemisphere are also involved.
Functional connectivity among neocortical areas increases transiently around movement onset and decreases during movement. Despite
this global phenomenon, neural activity levels correlate with kinematics measures of successful RtGs in sensorimotor areas only. Our find-
ings establish that distributed and localized neocortical dynamics co-orchestrate efficient control of complex movements.
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Mammals rely on reaching and grasping movements for fine-scale interactions with the physical world. In the mouse, the
motor cortex is critical for the execution of such behavior, yet little is known about the activity patterns across neocortical
areas. Using the mesoscale-level networks as a model of cortical processing, we investigated the hypothesis that areas beyond
the motor regions could participate in RtG planning and execution, and indeed a large network of areas is involved while per-
forming RtGs. Movement kinematics correlates mostly with neural activity in sensorimotor areas. By demonstrating that dis-
tributed and localized neocortical dynamics for the execution of fine movements coexist in the mouse neocortex during RtG,
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we offer an unprecedented view on the neocortical correlates of mammalian motor control.
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Introduction

Deciphering how the CNS produces goal-directed movements,
such as the reach-to-grasp (RtG), is crucial for expanding our
understanding of the neural computations underlying motor
ability and animal cognition in general (Bayne et al., 2019). RtG
is known to be dependent on neocortical circuits, and intensive
research has provided detailed insight into how neural activity
from motor areas of the neocortex contributes to the control of
movements (Evarts, 1968; Georgopoulos et al., 1982; Graziano et
al., 2002; Churchland et al., 2012). In rodents, medial prefrontal
regions, such as the secondary motor cortex (also termed medial
agranular cortex, precentral cortex, or frontal orienting field),
have been shown to be critical for movement preparation (N. Li
et al., 2016; Barthas and Kwan, 2017; Chen et al., 2017).
Nevertheless, how neural systems give rise to behavior cannot be
fully comprehended from segregated analysis of its components.
Indeed, parallel to the patterns of neural activity at the local level,
information processing occurring at the corticocortical level is
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necessary for complex behavior (Peters et al., 2014; Allen et al.,
2017; Battaglia-Mayer and Caminiti, 2019).

However, despite the growing adoption of the mouse for elucidat-
ing the neural underpinnings of motor control (Olveczky, 2011), the
neocortex-wide dynamics during RtG remain largely unexplored.
Advancements in optical methods, especially wide-field fluorescence
microscopy, have allowed monitoring neuronal activity from almost
the entire dorsal neocortex in awake, behaving mice (Allegra
Mascaro et al., 2019; Montagni et al., 2019; Sancataldo et al., 2019;
Ren and Komiyama, 2021). With this tool, it has been recently shown
that neocortex-wide dynamics emerge during learning (Makino et al.,
2017); nevertheless, the contribution of regions beyond the contralat-
eral motor areas and the corticocortical interactions during skilled
movements remain largely unexplored. Also, while movement kine-
matics are associated with neural activity in the contralateral motor
areas, and information about such activity can also be used to predict
several features of the executed movement (Prsa et al., 2017; C. Li et
al,, 2019), information on the relationship between RtG kinematics
and neural activity across the neocortex is still scanty.

Our results indicate that global cortical activation emerges
during successful RtGs, with functional connectivity (FC) across
areas peaking around movement onset, whereas movement kine-
matics correlated only with the activity in a portion of the senso-
rimotor region.

Materials and Methods

Transgenic mice

All experimental procedures were authorized by the Italian Ministry of
Health (authorization 127-2018-PR). A total of 9 mice (3-11 months of
age) were used in this study. Six (3 male, 3 female) were GCaMP mice
(C57BL/6]-Tg(Thyl-GCaMP6f)GP5.17Dkim/], stock #025393, herein
referred to as GCaMP6f) (Chen et al,, 2013), whereas 3 (2 females, 1
male) GFP mice (Tg(Thyl-EGFP)M]Jrs, stock #007788) were used as
controls to account for potential hemodynamic artifacts. Animals were
housed on a 12 h light/dark cycle with ad libitum water. Mice under-
going behavioral training were food-restricted to 80%-90% of original
body weight by limiting food intake to 2-3 g/d. Animals were monitored
and weighed daily, and food ratios were increased if necessary.
Veterinary staff monitored animals twice a week.

Surgery

The day before surgery, mice were given a subcutaneous injection of enro-
floxacin (10 mg/kg) and each day thereafter for 3d, to prevent infections.
On the day of surgery, animals were anesthetized with isoflurane (3% induc-
tion, 1.5% maintenance) and placed on a stereotaxic apparatus (Kopf
Instruments). The absence of tail reflex and toe-pinch reflex was tested to
confirm that the mouse was adequately anesthetized. Throughout the sur-
gery, the temperature was kept constant at 37°C by means of an electric
heating pad controlled by a rectal temperature sensor (Stoelting). To pre-
vent cornea dehydration, ophthalmic gel was applied over the eyes. The
scalp was first scrubbed with ethanol and betadine, then a depilatory cream
was applied to remove hairs, and then a few drops of a topic agent (lido-
caine hydrochloride 2%) were applied as an analgesic measure. A circular
piece of scalp was removed, and the anatomic points of reference (bregma
and A ) were stained with a permanent marker. Two semicircular coverslip
glasses, one per hemisphere, were glued on the skull above the cortex using
a transparent dental cement. A custom-built headpost was placed ~0.5 mm
posterior to A . At the end of the surgery, subcutaneous injections of analge-
sic and anti-inflammatory (carprofen, 5mg/kg) drugs were given to facili-
tate recovery. To this end, 200 ml lactated Ringer’s solution of the 0.9%
saline was given to each mouse at the end of surgery. Mice were allowed to
recover at least 1 week following surgery. During this period, animals were
given ad libitum food and water.
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Behavioral apparatus

The experimental apparatus (see Fig. 1A) comprised a stage (size 300 -
% 300 x 20 mm, Thorlabs) and walls to form an enclosure and secured
above a lab jack (MLJ050/M, Thorlabs) and was inspired by the work of
Guo et al. (2015). The enclosure is equipped with a base for the animal, a
perch, a speaker to deliver the auditory cue, and a turntable attached to a
servo-motor equipped with a contactless magnetic rotary encoder to
ensure consistent pellet positioning (MX-28AT) and controlled by a
controller board (ArbotiX-M. Robocontroller, Trousser Robotics). The
servo is controlled via an ad hoc program. Chocolate pellets (10 mg,
5TUL Purified 10 mg pellets, catalog 1811529, TestDiet) were used to
induce the RtG movements, thus serving as stimuli. The interstimulus
interval was 6-20 s. The enclosure was placed within a custom-made sen-
sory-isolated enclosed imaging recording chamber that is kept dark and
has been insulated with acoustic foam to further reduce ambient sounds
(RS components and woods).

The behavioral data were collected at 200 frames/s via a high-speed
camera (CM3-U3-13YC-CS, Chameleon3, FLIR) with 2.8-8 mm varifo-
cal objective lenses (LENS-30F2-V80CS, Fujinon), placed to the left of
the head-fixed animal. A 470 nm LED illuminating the stage was used as
light source to create a high-contrast image for processing and quantifi-
cation. Movies were recorded using the FlyCapture software (FLIR).

Wide-field microscopy

Imaging was performed through the intact skull using a custom-made
microscope. The microscope consisted of back-to-back 50 mm /1.2
camera lenses (Nikon), separated by a FF495-Di03-50.8-D dichroic mir-
ror (Semrock), mounted in a 60 mm cube (Thorlabs). To excite the
GCaMPé6f indicator, a 470 nm light source (LED, M470L3, Thorlabs)
was deflected by a dichroic filter (DC FF 495-DI02 Semrock) on the
objective (TL2X-SAP 2x Super Apochromatic Microscope Objective,
0.1NA, 56.3 mm WD, Thorlabs). The fluorescence signal was selected
by a bandpass filter (525/50 Semrock) and collected by a CMOS camera
(ORCA-Flash 4.0 V2, Hamamatsu). Images were acquired at 25 Hz, with
a resolution of 512 x 512 pixels with a FOV of ~12 x 12 mm (depth 16-
bit) via the HCImage Live software (Hamamatsu). The microscope thus
allows a FOV embracing the entire dorsal prospect of the mouse neocor-
tex. To reduce unwanted light scattering on the mouse eyes (which could
serve as visual stimuli, inducing unwanted neural activity), an iris (ID15/
M, Mounted Standard Iris, @15 mm Max Aperture, TR75/M. Post,
Thorlabs) was placed 1-2 mm above the mouse skull. Imaging sessions
were performed for each behavioral training session. The synchroniza-
tion of the components of the experimental setup occurred via a com-
mon hardware trigger signal at the start of each block (for the definition,
see Experimental design).

Experimental design. Following recovery from surgery for at least 1
week, mice were habituated to the experimental setup for >4 d
(>30min a day/mouse). Then, mice were gently placed under the micro-
scope objective and fixed (see Fig. 1B). Each session contained at least 5
blocks, and each block lasted between 65 s and 6 min, 50 s. Here, we ana-
lyzed the first 10d starting from when the mouse performed the first
successful RtG. The neural dynamics associated with both successful
movements and with errors trials were analyzed. Successful RtGs
attempts were defined as RtGs that ended with the pellet eaten, error
RtGs attempts were defined as RtGs with reach that did not end with the
pellet eaten because the animal missed the pellet or failed the grasp or
dropped the pellet before eating it. We analyzed the neural dynamics for
a total of 298 movements (n successful RtGs =78, n error RtGs=117, n
successful RtGs performed by GFP mice=103). To ensure consistency,
only trajectories from successful RtG performed by GCaMP mice were
analyzed.

Image processing and data analysis. For the movement data, image
sequences were loaded onto FIJI (Image]) and the metacarpus position
was tracked using the manual tracking plugin, to obtain the XY coordi-
nates of the RtGs. The timing of the movement onset (MoveON) was
defined as the frame for which the operator detected a variation in the
metacarpus position. The metacarpi coordinates were then used to
reconstruct the movement trajectories and compute the movement kine-
matics. We computed the following kinematics parameters that were
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Figure 1. Mesoscale imaging of neocortical dynamics during RtGs. A, Experimental setup. Schematics of the experimental setup, which comprises a custom-made widefield microscope to ac-
quire images, 512 x 512 pixels, from the intact skull of GCaMPéf transgenic mice with a sampling rate of 25 Hz. Behavioral data were obtained via a high-speed (200 fps) camera placed on
the left side of the head-fixed animal. Chocolate pellets were used to induce voluntary RtG movements. A turntable attached to a servo-motor was used for pellet delivery. All components of
the experimental setup were synchronized by using a common TTL trigger. B, Experimental timeline. Mice underwent surgery to expose the skull and head-bar implantation. Following recovery
from surgery (~1 week), mice were food-restricted to 80%-90% of their baseline body weight and habituated to the experimental setup for at least 4 d (30 min a day/mouse). After habitua-
tion, mice were gently placed under the microscope and head-fixed below the objective. Training consisted of daily sessions (30-45 min/session) and lasted at least 3-4 weeks (5 sessions/wk).
Each session consisted of several (at least 3) blocks, during which tones (square wave at 440 Hz) preceded by 200 ms the rotation of the turntable. Interstimulus interval (ISI) was between 6
and 20 s. €, Mesoscale cortical activity during a single RtG movement. Top, lllustration of the movement sequence, that is, the onset of the RtG (MoveOn, left), the RtG (middle), and the finish-
ing sequence of the RtG, when the pellet is brought to the mouth (pellet at mouth, right). Left, Image sequence of a mouse performing a successful RtG with the left forelimb. Right, Image
sequence of cortical activity during the same perimovement epoch (between —0.2 and 0.56 s relative to the movement onset, sampling time 40 ms). Color bar (viridis) represents the range of
AF/FO (%). In this case, the movement lasts ~560 ms. Black dot represents bregma. Activity increases in both hemispheres during early phases of movement, while later increased activity is
localized in the contralateral sensorimotor areas. Scale bar, 2 mm. D, Neural activity in the right primary motor cortex is associated with repeated RtGs. Left, Image represents the typical FOV
obtained during recordings. The Allen Mouse Brain Atlas mask was applied on the fluorescence image stacks to parcellate the signals according to the cortical areas of interest. For each hemi-
sphere, areas of interest also included the RFA (top left ring and top right ring) and the CFA (bottom left ring and bottom right ring). Scale bar, 1 mm. Right, Graph represents the fluorescent
and movement signals. AF/FO (%) extracted from the right primary motor cortex (gold-colored trace). Blue rasterplot represents onsets of RtG movements. Increased activity in the selected
cortical area is observed for each RtG attempt. Asterisks identify successful RtGs.

correlated with the ones used to characterize the neural activity (see
below): mean speed (mm/s), max speed (mm/s), duration (s), pathlength
(mm), number of speed peaks, mean acceleration (mm/s?), and max
acceleration (mm/s®). The number of movement speed peaks was used
as a measure of movement smoothness (Lai et al., 2015) and was defined
as the number of peaks above the mean movement speed.

For the neural data, image stacks for each animal collected from dif-
ferent sessions were registered using custom-made software, by taking
into account the bregma and A position.

Raw wide-field imaging data of GCaMP fluorescence entail a non-
negligible source of contamination because of hemoglobin, whose
absorption spectrum largely overlaps with that of GCaMP, making inter-
pretation of neural activity from these wide-field data challenging (Ma et
al,, 2016a). In order to account for the hemodynamic contribution, we

first acquired widefield fluorescence data from the neocortex of GFP
mice trained to execute RtGs. We expected the fluorescence signal from
these mice to be static (i.e., not responsive to neuronal calcium levels);
however, as reported elsewhere (Allen et al., 2017), fluorescence fluctua-
tions were present in GFP mice around the movement onset (see Movie
3). We used the non-negative matrix factorization (NMF) as a source
separation technique to demix the neuronal calcium signal from the
non-calcium-related signal like hemodynamics. Among other source
separation algorithms, we used the NMF because it has been previously
used to calcium signals (Pnevmatikakis et al., 2016; Saxena et al., 2020)
and because the weights and components are non-negative as opposed
to other techniques, such as independent component analysis or singular
value decomposition. For each animal, we concatenated the AF/F0 fluo-
rescence sequences of any valid RtG considering a time window ranging


https://doi.org/10.1523/JNEUROSCI.0762-20.2021.video.3
https://doi.org/10.1523/JNEUROSCI.0762-20.2021.video.3

780 - J. Neurosci., February 2, 2022 - 42(5):777-788

from —4 to 6 s around the movement onset (250 frames for each consid-
ered RtG). To avoid values of AF/FO <0, which are required by the NMF,
for those trials whose AF/FO was <0, we found the minimum value for
the entire stack in the time window and offset the trial by the same value
so that the minimum value becomes zero. This image stack was then
reshaped into a matrix F whose columns represent the number of frames
in the stack (250 by the number of considered RtGs) and its rows repre-
sent the number of pixels of the each frame (40,000 =200 x 200). We then
used the NMF to factorize the fluorescent stack of each animal into two
matrices W and H by setting the numbers of components to 40.

Where W is the component matrix whose columns equal the number
of components and the same number of rows of F which represent the
pixels of each frame, H, instead, represents the weight matrix and repre-
sents the coefficient to assign to each component to reconstruct the orig-
inal fluorescence stack. We then analyzed each component of the W
matrix by reshaping it into a 200 x 200 pixels image. We considered
components to be non-calcium-related like hemodynamics if: (1) the
component highest activation matches the superficial vasculature
observed from the raw fluorescence image; (2) the components highest
activation lays on the edge of the mask where the skull starts to form the
temporal bones; and (3) the component was considered to be noisy (i.e.,
activation was low and spread over large portion of the cortical mantle).
We then demixed the neuronal calcium signal from the non-calcium-
related signal by setting to 0 the columns of W that met one of the three
abovementioned conditions.

To remove the offset introduced by summing the minimum before
applying the NMF, we subtracted the AF/F0 in the time window —2 to
—0.5 s. The signal was then low-pass filtered (9Hz) to reduce the
unwanted contribution of respiratory and heartbeat components. The
comparison between the raw and the resulting denoised signal for
the GCaMP and GFP mice is in Movies 2 and 3, respectively.

To dissect the contribution of each cortical area for RtG, the proc-
essed stacks we also registered the cortex to the surface of the Allen
Institute Mouse Brain Atlas (www.brain-map.org) projected to our plane
of imaging. We further applied a mask to exclude the medial-most areas
because they lay over the superior sagittal sinus; therefore, the neuronal
signal in this region could be more easily affected by hemodynamic arti-
facts. Areas laying on the most lateral parts of the mouse cortex were
also excluded. This parcellation of the neocortex created 22 areas for
each hemisphere, for a total of 44 areas, plus the left neocortical hemi-
sphere, the right neocortical hemisphere, and both hemispheres (CTX).
The abbreviations and extended names for each areas are as follows:
MOs, secondary motor area; RFA, rostral forelimb area; MOp, primary
motor area; CFA, caudal forelimb area; SSp-bfd, primary somatosensory
area, barrel field; SSp-1I, primary somatosensory area, lower limb; SSp-
m, primary somatosensory area, mouth; SSp-n, primary somatosensory
area, nose; SSp-tr, primary somatosensory area, trunk; SSp-ul, primary
somatosensory area, upper limb; SSp-un, primary somatosensory area,
unassigned; SSs, secondary somatosensory area; RSPagl, retrosplenial
area, lateral agranular part; RSPd, retrosplenial area, dorsal part; VISrl,
rostrolateral visual area; VISa, anterior visual area; VISal, anterolateral
visual area; VISam, anteromedial visual area; VISI, lateral visual area;
VISli, laterointermediate visual area; VISp, primary visual area; and
VISpm, posteromedial visual area. The coordinates for CFA (AP: 0.2
mm; ML: 1.7 mm) and RFA (AP: 2.3 mm, ML: 0.9 mm) were deter-
mined herein as the average of the coordinates reported in recent papers
(Tennant et al., 2011; Hira et al., 2013; Morandell and Huber, 2017;
Wang et al., 2017). Throughout the text and figures, we added the suffix
L and R to term cortical areas of the left (ipsilateral with respect to the
paw executing the movement) or right (contralateral with respect to the
paw executing the movement), respectively (e.g., MOs_L, MOs_R). For
each block, the image stacks were processed to obtain the estimates of
AF/F,. Briefly, the image stacks were processed considering the equation
AF/F, = (F - Fy)/F,, where F defines the value of the fluorescence signal
in a given moment and F, defines mean fluorescence over each block.
Neocortical areas were considered associated with movement if their ac-
tivity during any moment of the time window crossed a threshold
defined as the mean + 1.96 x SD of the neural signal occurring during
the baseline (—2 to —1 s with respect to MoveON). The highest value
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Movie 1.  Example of a typical RtG movement (bottom) performed by a GCaMP6f mouse
and the related neocortex-wide activity (top). In the movie, the fluorescence activity
increases before and throughout the RtG, with a mediolateral spread across sensorimotor
regions of both hemispheres. Top, Color bar (viridis) represents the range of AF/Fy (%).
Scale bar, 2 mm. Bottom, Scale bar, 10 mm. Time (t, in seconds) for both sequences is
shown at the top. [View online]

t=0.60

.

RAW

Movie 2.  Image sequences of fluorescence activity across the neocortex before (RAW, left)
and after NMF correction (NMF, right) for GCaMP mice. Time (t, in seconds) for both sequen-
ces is shown at the middle. [View online]

RAW NMF

Movie 3.  Image sequences of fluorescence activity across the neocortex before (RAW, left)
and after NMF correction (NMF, right) for GFP mice. Time (t, in seconds) for both sequences
is shown at the middle. [View online]

reached at any moment in the time window —2 to 1.5 s around
MoveON was defined as the PeakMax. Also, to statistically determine
whether the transaction between the behavioral phases is associated with
different neural activity levels, we used a two-way mixed-model
ANOVA followed, if appropriate, by Tukey’s HSD post hoc tests. To
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Figure 2.  Single-pixel analysis of neocortex-wide activity during successful and error RtGs. 4, Top, Averaged activity across the temporal windows —2, —1.5's; —0.5, —0.045; 0, 0.5 s; and

0.5-1 s relative to MoveON. Black dot represents bregma. Scale bar, 2 mm. B, Perievent (—2

+ 2 s with respect to MoveON) image sequence for successful RtGs. Images represent the average

signal obtained from aligned stacks of all subjects, for all perimovement epochs (n =78 movements, 6 mice). On average, activity increases before movement onset in medial regions of the
cortex and spreads mediolaterally thereafter (images above the red line, and in D). This increase involves areas of both hemispheres. Color bar (viridis) represents the range of AF/Fy (%). ,
Diagram represents a successful RtG (i.e., an RtG that does end with the pellet eaten). D, Premovement activity starts in medial areas and spreads laterally during RtGs. Scale bar, 2 mm.
E, Contralateral versus ipsilateral activity across the neocortex during successful RtGs. Neocortex-wide activity is compared between the ipsilateral and contralateral hemispheres. Perievent
(0.20 + 0.76 s with respect to MoveON) image sequence for successful RtGs. Images represent the average signal obtained from aligned stacks of all subjects, for all perimovement epochs
(n =78 movements, 6 mice). On average, activity appears distributed across both hemispheres. A pronounced bias toward the contralateral hemisphere emerges around the RFA and around

the SSp-ul and part of the CFA and SSp-Il, from 0.36 to 0.56 s after MoveON. Color bar (jet)

represents the range of AF/F; (%). F, Diagram represents an error RtG (i.e., an RtG that does not

end with the pellet eaten). G, Perievent (—0.24 + 0.96 s with respect to MoveON) image sequence for error RtGs. Images represent the average signal obtained from aligned stacks of all sub-
jects, for all perimovement epochs (n = 113 movements, 6 mice). In error RtGs, compared with successful RtGs, during the latter phase of movement execution, the activity does not involve lat-
eral areas across both hemispheres. Color bar (viridis) represents the range of AF/Fy (%). Scale bar, 2 mm. Time is in seconds (s) for all image sequences.

determine the temporal involvement of neocortical areas during the
task, we computed the latency necessary to reach the 50% and the 100%
of the PeakMax (latency to HalfPeakMax and latency to PeakMax,
respectively) in each of the responsive areas. Finally, to quantify the rate
of rise of the neural response in each area, we quantified the slope of the
PeakMax90 — HalfPeakMax
LPeakMax90 — LHalfPeakMax
the 90% of the PeakMax and LPeakMax90 and LHalfPeakMax are the
times where the signal reaches 90% and 50% of the PeakMax,
respectively.

To evaluate the FC between the areas during RtGs, cross-corre-
lations between pairs of areas for each behavioral phase were com-
puted at the single-trial level. The fluorescent time series were
chunked according to the behavioral phase of interest and are pre-
sented as cross-correlation matrices (CCMs). We investigated the
network membership of these regions by using a hierarchical clus-
tering algorithm (HCA) that was based on Ward’s linkage method
(Ward, 1963), which minimizes the variance between the clusters. The
proximity was then interpreted as an indirect measure of FC and repre-
sented graphically by means of dendrograms. All data are reported as
mean * SD if not stated otherwise. Sample size and appropriate statistical
analyses are specified in each figure legend. Statistical significance was
defined as o < 0.05 if not stated otherwise. Multiple comparisons were
corrected by Bonferroni or Bonferroni-Hochberg procedures. No

neural response as where PeakMax90 is

statistical methods were used to predetermine the sample size. All statisti-
cal analyses and related figures were created using either Python or R and
were assembled in Inkscape.

Results

Wide-field calcium imaging during RtG

We conceived that, for a mouse to perform complex, goal-directed
movements, such as RtG, a specific neural network within the neo-
cortex could be recruited. To gain information about such dynamics,
our setup integrates a large FOV microscope to simultaneously image
the entirety of the neocortical surface and a behavioral apparatus for
inducing, delivering, and videotaping the RtGs (Fig. 1A). Mice were
trained to perform the task while head-fixed under the microscope
(Fig. 1B). Once trained, animals executed RtG movements to eat
chocolate pellets that were placed on a rotating table placed in front
of them (Fig. 1C, left). The time-aligned image stacks obtained from
the camera and from the microscope allowed the monitoring of neu-
ral activity across functional areas of the neocortex, throughout the
behavioral task, with activity increasing in contralateral regions, and
to a lesser extent for the ipsilateral sensorimotor regions (Fig. 1C,D;
Movie 1).
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Neural activity increases across several areas A
spanning both hemispheres during

successful RtG behavior 'eﬁ.
Single-pixel analysis of cortex-wide activity st
indicates that, on average, for all successful RtG
movements (Fig. 2) executed by all subjects,
the neural activity increases bilaterally in the
neocortical mantle. The contralateral hemi-
sphere displayed higher activity compared with
the ipsilateral one only in a small portion of the
cortex; at the rostral portion of the secondary
motor cortex, and in the sensorimotor cortex
with peak activity centered around the upper
limb  somatosensory cortex (Fig. 2E).
We averaged the different contributions of
neocortical activation during four temporal
windows (i.e., at 2-1.5 s and at 0.5-0.04 s before
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s 2.5 { GCamP

wo.o -A -A ‘A

A A A s

medial areas becomes apparent with more pro-
nounced activity in the contralateral hemi-
sphere ~0.24-0.48 s after movement onset
(Fig. 2A). Instead, later (>0.48 s) phases of
movement activity are characterized by an
increase in neural activity in the rostro-lateral
regions of both hemispheres. When consider-
ing all windows together, it is clear that neural
activity for successful RtGs spreads over a wide
portion of the cortical mantle.

When considering unsuccessful RtGs, we
observed a different activation pattern with
respect to successful ones (Fig. 2F,G). In partic-
ular, neural activity during errors diverged
from correct trials starting at 0.38 s and is
characterized by low values of AF/F0. In addition, even if activity
originated bilaterally in medial regions as in successful RtGs, the
neural response was shorter and did not spread to the rostro-lat-
eral regions as in successful RtGs.

To characterize the contribution of functional areas across
the neocortex during successful RtG, we parcellated the acquired
image stacks according to the Allen Institute Mouse Brain Atlas
(Fig. 3A, left). The resulting parcellation allowed to extract the
calcium signal for each neocortical area. The increase in the lev-
els of neural activity encompassing the neocortical mantle is
observed also on each hemisphere separately (Fig. 3B). Several
areas displayed a vigorous increase in neural activity levels with
movement execution, including the motor areas and the ret-
rosplenial cortices of both hemispheres, whereas other areas,
such as the SSp-bfd, displayed a more modest increase in
activity (Fig. 3C,D). Overall, the activity levels across homol-
ogous areas of both hemispheres, including motor, somato-
sensory, retrosplenial, and visual areas, appeared
comparable.

Figure 3.

Calcium signals from neocortical areas increase before
movement onset

We compared the temporal profile of the parcellated fluores-
cent calcium signal across the peri-event time window. Of

—202202202202202

-2 0 2-2 0 2
Time (s) from MoveON

Global increase of neural activity during RtGs. A, lllustration of the areas from which the traces displayed
in B were obtained, which include also the RFA and the CFA. Areas and subsequent traces are color-coded accordingly
to the left (blue) and right (red) hemisphere, whereas the numbers are associated with the areas in € and D. Neural
activity traces refer to the perimovement epochs (n =78 movements, 6 mice). B, AF/Fy (%) traces of single trials
(thin colored lines) and their corresponding average (thick black line) for the whole cortex (L + R), the ipsilateral
(left, L) and the contralateral (right, R) hemisphere, for a time window of
(MoveON). €, D, Traces of neural activity for a selection of 14 areas across the two neocortical hemispheres for GCaMP
mice (blue traces and red traces) and for GFP mice (gray traces). The MOs, RFA, MOp, CFA, and RSPd, and to a lesser
extent the SSp-bfd and the VISp, display increased activity levels during RtGs. Shaded regions represent 95% Cls for
the population mean. The comparison between the raw and the denoised signals for the GCaMP and GFP mice is
shown in Movies 2 and 3, respectively.

—2, 2 s around the movement onset

the areas considered, all (n=44) emerged as associated with
movement (i.e., showed activity levels higher than the set
threshold) with the primary and secondary motor areas dis-
playing the highest PeakMax and other areas spread across
both hemispheres, forming a distributed cortical network
associated with RtG movements (Fig. 4A). Across all respon-
sive areas, the HalfPeakMax was reached before movement
onset, which indicates that the increases in the amplitude
levels of the fluorescent signal anticipate the movement onset
(Fig. 4B, left). In addition, across all responsive areas, we
found that the first time point passing the threshold occurred
well before movement onset (580 * 113 ms). These results
suggest that the temporal dynamics of the calcium signal
detects variations in the levels of neural activity also in the
RtG premovement phase. Moreover, the latency to reach
the HalfPeakMax showed low variability across areas. In
contrast, the latency to reach PeakMax occurred after the
movement onset for all areas and differed across areas (Fig.
4B, right). In particular, somatosensory areas and the con-
tralateral CFA reached the PeakMax later, compared with
other areas. Next, we compared the neural activity levels
across the three temporal windows (rest: —2 to 1.5 s; pre-
move: —0.5 to 0.04 s; move: 0 to 0.5 s), across neocortical
areas (Fig. 4C). We found that both the time window and
the areas significantly affect the calcium responses [two-
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Figure 4. Bilateral and state-associated neural dynamics emerge during RtG. A, Color plots represent the mean activity for all neocortical areas, separated for each hemisphere (ipsi = left,
ipsilateral hemisphere, on the left; contra = right, contralateral hemisphere, on the right side). Several homologous areas across the hemispheres exhibit increased activity levels. Color bar rep-
resents the levels of AF/Fy (%) activity. B, Color raster plots represent the mean, normalized activity for the movement-associated areas. Left, The areas in the plot are ranked by latency to
reach T-half max%, in ascending order (areas requiring less time to reach the T-half max% are placed higher in the plot). Black squares represent the latency to T-half max% for each area.
Right, The areas in the plot are ranked by latency to reach the PeakMax, in ascending order (areas requiring less time to reach their PeakMax are placed higher in the plot). Black squares repre-
sent the latency to T-half max% for each area. €, Emergence of a state-associated increase of activity levels across neocortical areas. Notched boxplots (top and bottom whiskers represent max-
imal and minimal value, respectively, excluding outliers) represent the activity levels for all movement-responsive areas, ranked based on PeakMax, ranked by descending median value, from
left to right. Left, Movement-responsive areas within the ipsilateral hemisphere. Bottom, Movement-responsive areas within contralateral hemisphere (Extended Data Fig. 4-1).

way mixed model ANOVA, effect of temporal window,
F(1.89,6392.37) = 2824.784, p < 0.0001, temporal window x area
interaction, F(g; 13639237 = 7.786, p < 0.0001, Bonferroni post hoc
tests]. Post hoc pairwise comparisons indicate statistically signifi-
cant increases from rest to movement for several areas, including
the MOs, the RFA, the MOp, the CFA, the RSPd, the SSp-ul, and
the visual areas. These increases were found to be already present
when comparing the rest versus the premove window (e.g., for the
MOs, the RFA, the MOp, the CFA, the RSPd, and the SSp-ul) but
were found not to be different for few areas, including the SSp-bfd
and the several visual areas (for all pairwise comparisons, see the
Extended Data Fig. 4-1). These findings suggest that a global net-
work of areas is activated during movement execution, with the ma-
jority of them increasing their levels of activity before movement
onset.

Movement onset transiently increases FC

Considering the increase in neural activity levels across the areas
from rest to movement, we next asked whether such variation
was associated with a modulation of FC across areas and whether
FC was modulated throughout the behavioral phases. The hier-
archical cluster analysis (HCA) revealed that near movement

onset there is an increase in FC. Indeed, we found that the Ward
distance was lowest around MoveON (—0.28 s, time window
length = 0.48 s; Fig. 5, middle, left inset), indicating that the areas
tend to form a single functional aggregate. This effect is illus-
trated by the CCM (Fig. 5, middle, right), indicating an overall
increase in the correlation coefficients around MoveON.
Conversely, during movement execution (“Grasp”), the FC
decreases (Fig. 5, bottom, right), leading to the emergence of
four distinct clusters (Fig. 5, bottom, left). The first cluster con-
tained the caudal portion visual areas only and therefore could
be regarded as a visual network. The second cluster included
intermingled areas: that is, two subdivisions of the visual cortex
(VISam and VISa), the retrosplenial cortices (RSPd and RSPagl),
several somatosensory areas, as well as the CFA thus could be
considered as a multimodal network. The third cluster was
formed by two areas of the primary somatosensory cortex related
to the mouth and nose representation (i.e., the SSp_m and the
SSp_n). Finally, the last cluster is constituted by two somatosen-
sory areas, including the one associated with the representation
of the upper limbs (SS-p_ul) as well as an adjacent area with an
unknown association (SS-p_un) as well as the primary and sec-
ondary motor areas and the RFA and could be regarded as the
sensorimotor network.
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Because the used parcellation may
not account for subfield-specific FC, we
next sought to determine whether such
a scheme of communication is main-
tained in the context of single-pixel
analysis. To this end, we used seeds of
the contralateral hemisphere that affili-
ated with the four clusters emerging
during the grasping phase to compute
the single pixel seed correlations shown
in Figure 5. Overall, the seed correla-
tions are in good agreement with the
results of the HCA, and both show that
the transition from resting to move-
ment execution was associated with a
robust increase in the cross-correlations
around movement onset (Fig. 5, right).

Our approach provides evidence for
the existence of segregated functional
networks emerging during motor exe-
cution. Overall, these FC results suggest
that the corticocortical communication
scheme during goal-directed forelimb
movements can be decomposed into
two parts: the earlier phase, with a tran-
sient increase in cross-correlation; and
a latter phase, where separated net-
works emerge.

Movement kinematics correlates with
neural activity levels in sensorimotor
areas of both hemispheres
Considering the increase in activity
observed across the neocortical areas,
we sought to determine the extent of
association between neural activity and
movement parameters. To this end,
we first reconstructed the spatial tra-
jectories for the successful RtGs and
computed the movement metrics
(Fig. 6A-C). The movement distance
was 54.54 = 18.81 mm (Fig. 6D), the
movements lasted 0.71 £0.26 s (Fig.
6E), while the number of speed peaks
was 17.78 + 7.99 (Fig. 6F).

Since during movement execution
we observed the emergence of differen-
tiated activation among areas, we asked
to what extent each area contributed to
specific kinematic parameters of RtG
movement. To this end, we performed
correlation analyses between neural ac-
tivity measures in all responsive areas
of the neocortex and the extracted pa-
rameters of movement kinematics (Fig.
7). Differently from the activity levels,
which were broadly increased across
the neocortical mantle, statistically sig-
nificant correlations between neural ac-
tivity and movement kinematics were
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Figure 5. Movement onset is associated with transient increases in FC. FC was analyzed by means of HCA and (CM, for three temporal
windows (top, |, Baseline: —0.76 to 0.26; middle, Il, Onset: —0.32 + 0.28; bottom, lll, Grasp: 0.4-0.9 s with respect to MoveON), which
were defined using a sliding time window yielding the highest and lowest Ward values, left inset. A strong decrease in the Ward values is
observed from the baseline (I) to the onset (Il) phase. This decrease is transient, as during the grasp phase (Ill) there is an abrupt shift to-
ward rearrangement of the FC, shown by high Ward values. An equal cutoff was chosen for each temporal window, and the resulting dus-
ters are color-coded in the figure based on the four clusters emerging during the grasp phase. The first cluster (green) contains visual
areas. The second (magenta) is comprised of a heterogeneous set of areas, including the somatosensory areas, both RFA and CFA, some
visual areas, and all the RSPs. The yellow dluster includes the somatosensory areas of the mouse’s snout, whereas the last duster (cyan)
consists of the MOs, MOp, SSp-ul, and SSp-un. During the grasp phase, some areas maintain highly positive cross-correlation values. A
trend toward anticorrelation arises between the areas representing the mouse’s snout. For each CCM, insets represent the seed-pixel analy-
sis (SCA) for four areas: seeds, which represent the four dusters emerging during the Ill phase. This analysis also highlights that during the
grasp phase two anticorrelated networks emerge across both hemispheres. Correlation coefficients (C(G; — 1 indicates anticorrelation, 1 indi-
cates correlation) are color-coded (cool warm color map). Black dots represent bregma. Scale bar, T mm for all insets.

smoothness in the MOp, the CFA, the SSp-ul, and the SSp-un of

found only for few areas across both hemispheres (Fig. 74).  the ipsilateral hemisphere (number of speed peaks, p = —0.40,
Specifically, our analysis revealed a negative correlation between = pagj < 0.01; p = —0.49, pog; < 0.01; p = —0.41, p,gj < 0.01; p =
the amplitude of the signal (PeakMax) and movement  —0.39, pyg; = 0.02 for MOp, the CFA, the SSp-ul, and the SSp-un,
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Figure 6.  Kinematic trajectories of successful RTGs. A, Example of RtG movement tracked for reconstruction and kine-
matic analysis. In this stereotypical RtG sequence, the yellow line in each image indicates the path covered by the meta-
carpus. Selected components of the setup are labeled with numbers for display purposes (for more details on the setup
and the behavioral task, see Fig. 1). B, Reconstructed RtG trajectories of left-paw movements for each animal.
Trajectories of successful movements are shown, separated for each animal. Scale bar: both directions, 10 mm. C, Speed
profile reconstruction from a successful RtG movement. Speed peaks exceeding the mean speed (horizontal blue line)
are used to compute the movement smoothness (red triangles). D, Distribution of the movement distance. Histogram
(bin size = 10) represents the absolute frequency distribution for the distances (arc length) covered by the paw to reach
the chocolate pellet and eat it. Vertical line indicates the median value. Shaded curve indicates the density distribution.
Lines of the rug plots (bottom) indicate the raw distribution for each movement. E, Distribution of the movement dura-
tion. Histogram (bin size = 10) represents the absolute frequency distribution for the movement durations. Vertical line
indicates the median value. Shaded curve indicates the density distribution. Lines of the rug plots (bottom) indicate the
raw distribution for each movement. F, Distribution of the number of speed peaks. Histogram (bin size = 10) represents
the absolute frequency distribution for the speed peaks. Vertical line indicates the median value. Shaded curve indicates
the density distribution. Lines of the rug plots (bottom) indicate the raw distribution for each movement (the speed
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all areas of the neocortex, an integrative
framework not reported previously.

Our results point the attention also to
areas beyond the MOs, the MOp, and their
subdivisions (RFA and CFA) toward other
territories, such as the RSC, the SSp, and the
visual areas, which were previously not
recorded and studied simultaneously within
the context of the RtG. For the RSC, while
its participation to RtG in the mouse is
demonstrated here for the first time, the
contribution of RSC may be explained by
its known involvement in the processing
of visual information necessary to locate
the target relevant for the behavioral
tasks (Czajkowski et al.,, 2014). Indeed,
RSC is involved in early phases of learn-
ing (Makino et al., 2017); however, no
information was available about the cor-
ticocortical interactions (e.g., with the
secondary motor areas) and about the
relationship with kinematic parameters
of movement.

The global activation found in the present
work is consistent with recent reports on
other types of behavioral tasks (Goard et al.,
2016; Wekselblatt et al., 2016; Allen et al,
2017; Kyriakatos et al., 2017; Makino et al.,
2017; Musall et al., 2019; Stringer et al., 2019;
Salkoff et al., 2020); here we extended it to the
RtG. In addition, we show that this activation is
supported at the trial-by-trial level by an increase

peaks being computed as natural numbers, overlap frequently in the rug plot).

respectively; Fig. 7B). Also, in the ipsilateral CFA, the PeakMax
was inversely correlated with the movement pathlength (Fig.
7D). In the contralateral RFA, we found that the slope of the neu-
ral response was inversely correlated with movement pathlength
(p = —0.54, pg; < 0.01; Fig. 7C). In this area, the latency to reach
the PeakMax correlated with movement smoothness (p = 0.46,
Padj < 0.01) and pathlength (p = 0.43, p,g; < 0.01; Fig. 7D), while
the slope was inversely correlated with movement smoothness
(p = —0.51, pag; < 0.01; Fig. 7D). Similarly, the latency to reach
the PeakMax in the contralateral MOp and in the CFA was anti-
correlated with respect to movement speed (p = —0.47, p,g; <
0.01 and p = —0.43, p,g; < 0.01, for MOp and for the CFA,
respectively; Fig. 7C). At variance with all the other areas, the
degree of movement smoothness was positively correlated with
the latency to reach the PeakMax in the contralateral SSp-1l (p =
0.41, pagj <0.01). Therefore, while neural activity level increases
neocortex-wide, a restricted group of rostral areas exhibit activity
that correlates with kinematic parameters of RtGs.

Discussion

We provided an unprecedented view of the mesoscale level neo-
cortical dynamics from mice performing an RtG task. To the
best of our knowledge, this is the first reported step toward an
optical characterization of neocortex-wide neural dynamics in
rodents during voluntary RtG movement planning and execu-
tion. Our work provides novel evidence for the role played by
the secondary motor areas during RtG and, by directly observing

in FC occurring at movement onset. Indeed, our
HCA revealed that such an increase in FC repre-
sents the transition between the premove-
ment and postmovement onset FC clusters
whose correlation maps have been observed previously in the
mouse (Vanni et al.,, 2017; Hakon et al., 2018; Clancy et al.,
2019) and closely related to the underlying structural connec-
tivity (Hakon et al., 2018). Therefore, such widespread activation
would raise the possibility that neocortical activation patterns for
the production of successful RtG movements are distributed
rather than localized.

In interpreting our results, we cannot exclude that whole-
body movements may account for part of the widespread distri-
bution of neocortical activity we observe during RtG. However,
it is important to note that, because of the trial averaging around
the movement onset, such movements have to be performed by
each animal in a substantial number of trials to contribute to the
spread of the response. Also, other parameters, such as arousal,
could possibly contribute to the increased activity we observed in
visual areas. Indeed, it was shown that the levels of activity in the
visual cortex are related to arousal (Stringer et al., 2019).

Recent work emphasizes that it is critical to understand both
functional specialization and functional integration schemes and
how they relate to different aspects of complex behavior (Cohen
and D’Esposito, 2016). Our work thus shows the first direct evi-
dence indicating that, while neural activity increases globally
during RtG, neuro-kinematic correlations are significant only for
a subset of rostral areas. The present findings are in agreement
with Salkoff et al. (2020), in which it was shown that these areas
encode performance in a “simple” licking behavior. The present
results suggest that forelimb movement planning and execution
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Local neural activity levels in sensorimotor areas correlate with movement kinematics. A-C, At variance with the widespread activity associated to RtG movements, only 8 areas

were found to have a statistically significant correlation with movement kinematics. Color bar represents the correlation coefficient. The neural activity in the majority of these areas, that is,
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we set a Benjamin—Hochberg significance level of cx << 0.05.

may involve large neural networks across the neocortex while the
encoding of kinematic parameters occurs primarily in segregated
areas. However, being correlational in nature, our work will be
likely instrumental for guiding optogenetic interventions, to gain
insight about the causal role of each neocortical area during vol-
untary movements. Nonetheless, such direct observation of
global and local activation patterns for dexterous movements
provides an integrated view of the nature of information process-
ing in the mouse neocortex and encourages future investigations
toward decoding of behavioral parameters from neural data, a
computational approach that is increasingly used on fluorescent
imaging data of neural activity (Prsa et al., 2017; C. Li et al., 2019;
Salkoff et al., 2020).

Our data add experimental evidence to the relatively new
idea of ipsilateral representation of movement parameters,
supporting recent work in rodents, where recordings re-
stricted to the posterior parietal cortex recently reported
evidence for ipsilateral control of limb movement (Soma et
al., 2019). Indeed, ipsilateral activity is also a computational
feature of the human neocortex and is increasingly getting
attention in the motor control community (Bundy et al,
2018; Bundy and Leuthardt, 2019).

While the correlation between movement kinematics and ip-
silateral activity during RtG came as a surprise, there is a growing
literature suggesting that neocortical dynamics concerning the
generation of contralateral and ipsilateral limb movements are

controlled by both hemispheres (Mutha et al., 2013; Schaffer and
Sainburg, 2017; Heming et al., 2019). In this regard, our results
on both contralateral and ipsilateral activation and correlations
with movement kinematics for RtG control support this bihemi-
spheric model of forelimb control.

Our findings extend these studies by providing evidence for a
correlation between large scale, area-level activity, and specific
metrics of RtG movements. Our findings also encourage to
study, at the cellular level, the role of areas found to be active
during movement (e.g., the visual areas) less intensively studied
in the association to forelimb movements (Morandell and
Huber, 2017; Ebina et al., 2018; Galinanes et al., 2018). In the
future, it would also be relevant to assess the neocortical dynam-
ics during RtG in a freely moving condition or during perform-
ance refinement (Makino et al., 2017; Whishaw et al., 2017; Bollu
etal, 2019; Hwang et al., 2019).

Moreover, movement errors are associated with altered activ-
ity in the motor and parietal cortex (Diedrichsen et al., 2005);
however, information on neocortex-wide dynamics of error
movements is lacking in the mouse. Our wide-field imaging
approach suggests that the widespread neural activity observed
during successful RtGs is not generic to movement execution but
rather the success of the completed goal-directed action.

There are some aspects that need to be considered when
interpreting our results. The one-photon, wide-field calcium
imaging approach is sensitive to light scattering potentially
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leading to artifacts in the signals extracted from the cortical areas,
which could increase the risk of erroneously treating an area as
movement-associated (Yang and Yuste, 2017). Such possibility is
reduced by the evidence that areas even in close proximity (e.g.,
the barrel fields vs the upper limb portion of the somatosensory
cortex) do not display the same levels of activity (Fig. 44). We
concede that the number of neocortical clusters emerging during
movement could be influenced by the parcellation of the neocor-
tex, which may introduce spurious segregations beyond those
that are physiologically present. Importantly, the overlap
between the results obtained from the seed-pixel analysis and the
CCM supports the existence of at least four distinct neocortical
networks during voluntary motor control. The analyzed neural
activity is inferred from the fluctuations of fluorescence intensity
throughout time, a signal composed also by non-neuronal sour-
ces, notoriously of hemodynamic origin, which represents
another artifact that needs to be taken into account (Ma et al,,
2016a,b). However, the hemodynamic component of the signal
has a much slower rise and decay time with respect to the neuro-
nal signal. This temporal feature of the hemodynamic compo-
nent of the GCaMP6f signal reduces its contribution relative to
the results reported here (Scott et al., 2018). In addition, our con-
trol experiments on GFP mice allowed us to obtain signal com-
ponents that were exclusive for GCaMP mice thus further
mitigating the contribution of non-neuronal signals in our
results.

The transgenic line used here reports variation in the activity
of excitatory neurons only, leaving the question open as to what
is the role played by other neural populations, considering, for
instance, that GABAergic neurons in the primary motor cortex
signal the initiation of voluntary reaching movements (Estebanez
etal., 2017).

The temporal kinetics (50 ms rise time and 150 ms decay
time) intrinsic to the optical probe used here (GCaMP6f) (Chen
et al,, 2013; Dana et al.,, 2014) entails that the neural dynamics
faster than 50ms associated with RtG were not investigated in
the present study. Moreover, because of the indicator decay time,
it is hard to disentangle events that occur within a time window
of 150 ms. This is also the reason why we do not extend our anal-
ysis past the peak in the calcium wave for the correlation analysis.
Finally, the activity patterns observed here refer mostly to rela-
tively slow (<13 Hz) cortical communication schemes; nonethe-
less, neural activity in the lower frequency range (including
frequencies <4 Hz) encodes several parameters of movement ki-
nematics (Bansal et al., 2011). The adaptation for such tasks for
head-fixed mice is more recent (Guo et al., 2015); and recently,
the work of the same group revealed how input from the thala-
mus drives activity in the primary motor cortex and RtG move-
ment (Sauerbrei et al., 2020).

To overcome the temporal constraints associated with cal-
cium imaging, a crucial step forward will be represented by the
adoption of genetically encoded voltage indicators for the study
of neocortex-wide dynamics during skilled movements, as very
recent technological advances offer sufficiently stable and bright
signal-to-noise ratio for in vivo applications (Abdelfattah et al.,
2019; Adam et al,, 2019; Villette et al., 2019). Even considering
such limitations, our findings remain unexpected and provide
experimental evidence to put into question some dogmas of the
classical literature in motor control (Omrani et al., 2017), at least
when investigating the modus operandi of the rodent neocortex.
The present neocortex-wide characterization of the neural activ-
ity patterns associated with RtGs is a step toward all-optical
interrogation of neural circuits associated with this behavior.
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In conclusion, our investigation identified a global network of
neocortical areas beyond those previously known to be associ-
ated with goal-directed arm movements and suggest that the
operating mode of the mouse neocortex underlying unilateral
goal-directed movements involves distant communication across
both hemispheres, whereas the encoding of movement parame-
ters occurs locally, and, in the context of our investigations,
mostly in the sensorimotor areas.
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