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Kashin Beck’s disease

Osteoarthritis (OA), a degenerative joint disorder, is one of 
the leading causes of disability around the globe. The disease 
affects almost all joints, but more than 80% of OA occurs in 
the knees.1,2 Apart from disability, OA increase in the risk of 
developing cardiovascular diseases.3 In addition, OA nega-
tively affects mental well-being. In particular, the disease con-
dition is associated with depression, suicidal ideation, memory 
loss, insomnia, and bipolar disorder.4-7 Current studies are 
focused on understanding the pathogenesis of OA with a view 
of rationalizing treatment approaches. However, the mecha-
nism underlying OA pathogenesis remains to be validated.

Kashin-Beck disease (KBD) is an endemic OA, mainly 
prevalent in China, North Korea, and Russia.8,9 Generally, 
KBD manifests with pain, swelling, and stiffness of the 
joints as well as flexion of finger joints. Patients with this 
conditions find it very difficult to work or to take care of 
themselves.10 By the end of 2017, there were 535,878 first-
degree KBD patients in China. Among these, 12,730 were 
children ≤13 years old.11 Exploring the etiology, pathogen-
esis, as well as biomarkers for early diagnosis of KBD is 
critical in guiding management strategies of the disease.

Primary OA and KBD share not only similar clinical 
characteristics but also the associated pathologic articular 
cartilage disorders, including chondrocyte apoptosis, 
inflammation, and cartilage degeneration manifest in both 
disease conditions.4,12,13 Nonetheless, OA and KBD exhibit 
distinct epidemiological characteristics. Whereas OA is 
globally distributed, KBD is only endemic in some regions. 
As search, discerning marked differences and similarities 
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Abstract
Objective. We aimed to analyze deoxycytidine-deoxyguanosine dinucleotide (CpGs) methylation profiles in DIO2, GPX3, 
and TXNRD1 promoter regions in osteoarthritis (OA) and Kashin-Beck disease (KBD) patients. Methods. Blood samples 
were collected from 16 primary OA patients and corresponding 16 healthy individuals and analyzed for methylations 
in the CpGs of DIO2, GPX3, and TXNRD1 promoter regions using MALDI-TOF-MS. The methylation profiles of these 
regions were then compared between OA and KBD patients. Results. DIO2-1_CpG_2 and DIO2-1_CpG_3 methylations 
were significantly lower in OA than KBD patients (P < 0.05). A similar trend was observed for GPX3-1_CpG_4, GPX3-
1_CpG_7, GPX3-1_CpG_8.9.10, GPX3-1_CpG_13.14.15 and GPX3-1_CpG_16 (P < 0.05) as well as TXNRD1-1_CpG_1 
and TXNRD1-1_CpG_2 methylation between OA and KBD patients (P < 0.05). However, there was no difference in 
methylation levels of other CpGs between the 2 groups (P > 0.05). Conclusion. OA and KBD patients display distinct 
methylation profiles in the CpG sites of DIO2, GPX3, and TXNRD1 promoter regions. These findings provide a strong 
background and new perspective for future studies on mechanisms underlying epigenetic regulation of selenoprotein genes 
associated with OA and KBD diseases.
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between OA and KBD will promote early diagnosis and 
effective treatment of the 2 diseases.

In recent years, increasing evidence shows that both OA 
and KBD are caused by epigenetic DNA modification.  
For instance, methylation of selenoprotein genes has been 
implicated in the development of OA and KBD.14,15 As  
such, selenoproteins are important targets in understanding 
arthritis diseases. Meanwhile, iodothyronine deiodinase 
(IDs), GPXs, and TrxRs family of proteins are key members 
of selenoproteins. These proteins participate in regeneration 
of skeletal muscles. Indeed, research shows that DIO2 is 
central to KBD progression in children.16 On the other hand, 
GPX3 protects against oxidative-related damage of human 
chondrocytes14. Similar to GPX3, TXRND1 protects against 
oxidative-related cell damages.17-19 Increasing evidence 
shows that the cross-talk between inflammation and epigenetic 
regulators contribute to the development and/or progression 
of OA.20 Nevertheless, methylation profiles of selenoprotein 
genes in OA and KBD patients remain unknown. Therefore, 
we evaluated the epigenetic changes in DIO2, GPX3, and 
TXRND1 genes in OA and KBD patients.

CpGs methylations in DIO2, GPX3, and TXRND1  
promoter regions of OA and KBD patients were assessed 
using the high-throughput, cheap, and highly accurate 
matrix-assisted laser desorption/ionization time of flight 
mass spectrometry (MALDI-TOF MS) technique,21 DNA 
methylation differences between KBD and OA will deepen 
our understanding of the epigenetic mechanism underlying 
modification of selenoprotein genes in OA and KBD 
patients.

Materials and Methods

Participant Selection

We collected 32 blood samples from 16 primary OA patients 
and 16 healthy subjects. All study participants were Han 
Chinese, drawn from all ages and either gender (Table 1). 
Clinical examinations and radiographic test were performed 
on each participant. Primary OA diosmosis was based on the 
proposed guidelines by the Diagnostic and Therapeutic 
Criteria Committee of the American Rheumatism Association 
(ACR). KBD was diagnosed based on the clinical diagnosis 
criteria of China (WS/T 207-2010). Patients with underlying 
genetic bone-, cartilage-, and arthritis-related diseases as well 
as other skeletal disorders were not included in the study.

Collection of Blood Specimens and DNA 
Extraction

Protocol for this study was approved by the Human Ethics 
Committee of Xi’an Jiaotong University, People’s Republic 
of China. All participants consented to the study in writing. 
Briefly, 3 mL of blood from all subjects was first collected 
in biochemical anticoagulation test tubes. Genomic DNA 
was then extracted from the blood samples based on the 
QIAamp DNA Blood Mini Kit (QIAGEN, Germany), fol-
lowing the manufacture’s protocol. Efficiency of extraction 
was validated by agarose gel electrophoresis.

Primer Design and Synthesis

Primers for the methylated CpG sites in the DIO2, GPX3, 
and TXNRD1 promoter regions were designed using the 
Agena software (http://www.epidesigner.com/index.html). 
Methylation patterns in CpG sites were determined based 
on the sequence of the three target genes. The size of the 
target fragments ranged between 200 and 600 bp for all the 
genes. DIO2, GPX3, and TXNRD1 fragments contain 4, 25, 
and 13 CpGs, respectively. Each forward primer was conju-
gated with a 10-mer tag. Also, reverse primers were conju-
gated with a T7 promoter tag to adjust for the differences in 
melting temperature. The properties of primers used in this 
experiment including sequences of the target fragments and 
CpGs are highlighted in Tables 2 and 3, respectively. The 
primers were synthesized by Liuhe Huada Gene Technology 
Co., Ltd. (Beijing, China).

Methylation Assessment

Briefly, 200 ng of genomic DNA of each participant was 
treated with bisulfite based on the EZ-96 DNA methylation 
kit (Zymo Research, Irvine, CA, USA), according to the 
manufacturer’s instructions. Methylation of DIO2, GPX3, 
and TXNRD1 was then quantitatively analyzed using the 
Agena MassARRAY platform (CapitalBio Corporation, 
Beijing, China). The platform composes of a MALDI-TOF 
mass spectrometer and an RNA base-specific cleavage 
(Mass CLEAVE) module. The methylations were detected 
using the Spectro CHIP (Agena Bioscience, California, 
USA) and Mass ARRAY Compact System (Agena 
Bioscience, California, USA) on the Agena MassARRAY 
platform. The data imported and analyzed using the 

Table 1. T he Basic Characteristics of the Subjects for MALDI-TOF MS Experiment.

Characteristics OA Patients (n = 16) KBD Patients (n = 16) t/x2 P

Age, y (mean ± SD) 55.23 ± 6.27 52.35 ± 8.79 1.067 0.295
Gender (female/male) 7/9 8/8 0.125 0.723

OA = osteoarthritis; KBD = Kashin-Beck disease; MALDI-TOF MS = matrix-assisted laser desorption/ionization time of flight mass spectrometry.

http://www.epidesigner.com/index.html
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EpiTYPER software version 1.0 (Agena Bioscience, San 
Diego, CA, USA).

Statistical Analysis

Continuous variables were expressed as means ± stan-
dard deviations (SD). Differences between OA and KBD 
patients were analyzed using chi-square (χ2) test and 
Student t test for 2 independent samples. All statistical 
analyses were performed using SPSS V. 23.0 (IBM Corp 
Armonk, NY, USA). Statistical significance was set at  
P < 0.05.

Results

Baseline Characteristics of the Study Population

There was no significant difference in demographic charac-
teristics of the 16 OA and 16 KBD patients evaluated in this 
study between the 2 groups with regard to age and gender 
(P > 0.05) (Table 1).

DIO2 Methylation

Methylation profile of the 4 CpGs in DIO2 promoter region 
is shown in Figure 1. We found methylation levels of 
DIO2-1_CpG_2 and DIO2-1_CpG_3 were significantly 
lower in OA than KBD patients (P < 0.05). However, there 

was no significant difference in the methylation level of 
DIO2-1_CpG_1 and DIO2-1_CpG_4 between the 2 groups 
of patients (P > 0.05) (Fig. 2).

GPX3 Methylation

Methylation profile of 14 CpGs (CpG Units) in GPX3  
promoter region is summarized in Figure 3. Methylated 
GPX3-1_CpG_4, GPX3-1_CpG_7, GPX3-1_CpG_8.9.10, 
GPX3-1_CpG_13.14.15, and GPX3-1_CpG_16 were sig-
nificantly lower in OA than KBD patients (P < 0.05). 
Conversely, there was no difference in the levels of methyl-
ated GPX3-1_CpG_3, GPX3-1_CpG_5.6, GPX3-1_CpG_11,  
GPX3-1_CpG_17.18, GPX3-1_CpG_20, GPX3-1_CpG_21, 
GPX3-1_CpG_22, GPX3-1_CpG_23, GPX3-1_CpG_24 
between the groups (P > 0.05) (Fig. 4). However, the meth-
ylation patterns of GPX3-1_CpG_1, GPX3-1_CpG_2, 
GPX3-1_CpG_12, GPX3-1_CpG_19, and GPX3-1_CpG_25 
were not assessed because they were either large or small, 
beyond the detection range of the Mass ARRAY platform.

TXNRD1 Methylation

Methylation profiles for 9 CpGs (CpG Units) in the 
TXNRD1 promoter region are shown in Figure 5. 
Methylated TXNRD1-38_CpG_1 and TXNRD1-38_CpG_2 
were significantly lower in OA than KBD patients  

Table 3. T he CpGs in the Target Sequences.

Amplicon Name Target Sequence

DIO2_1 CCCATAAGGACATTGAGTAGTTTGAGAAGATACATGCAGTAAATGTACATTGCATATATTAGTAA 
TATTATTTTGCTAACATTGTATGCTAGTCATAGGGAAGGTGTAATTTTTCTATGTGGTTTATATTATTTT 
TCTAAGCTTTGAAGTCTTTTAACAATTTCG1TCCATGAGATGCAAATTCAAAACTCATTAGGAGCCAAAC 
TAATGAAAAAAATGAAAGAATTTGTAGGGAATGCTGAGGGTTGTGTCACAAGAGAGGGCATTGCACAA 
GGCCACCACG2TTTTACAATTCCAGGGCACCCCCATTCACATCATATTGTATGTGAATGGTGCCCCCTA 
GTGTAGAGCAATGCAGAGGCCCTCTACATGCCCTGTTCATTCATTCATTCAGGACG3TCCTCAATGAGC 
CAACTGTGCG4CCAAGCATGGTTCTAGGTGTTGGG

GPX3_8 GGAATAAGAAATGCTTCCCAGAATGGAGACTTCCATCAGTTCTAGGGAGCTATTAGCCCCCTTGCCC 
TGGCTGTAATGGAGACCG1CTGTGTCTGCCTCCTTTCG2CACTTTGGAGCCAAAAGAGGAAGGGACC 
G3CCTCCCACG4TCCACAGGGACCTGACTTCCACCTCTCTGCCCAGATTTGCTTATGTCACTGTCG5C 
CCCG6GGACG7GGGAGGTGGGGAGCTGAGGGCAAGTCG8CG9CCCG10CCCCTGAAATCCCAGCCG11 
CCTAGCG12ATTGGCTGCAAGGGTCTCG13GCTTGGCCG14CG15GATTGGTCACACCCG16AGGGCTTGA 
AAGGTGGCTGGGAGCG17CCG18GACACCTCAGACG19GACG20GTGGCCAGGGATCAGGCAGCG21GCTC 
AGGCG22ACCCTGAGTGTGCCCCCACCCCG23CCATGGCCCG24GCTGCTGCAGGCG25TCCTGCCTGCTT 
TCCCTGCTCCTGGC

TXNRD1_38 TTTGAGAATGATGAAGACATCAGGCCCTCCTTCAGGACTCG1ACCACCTTTCG2CTCTGCTGCAAAT 
GCCG3GAGTGAAGAAAACTGAGGTGAAAGGGTTGCTGTTTCCTAATGGCTACG4AGAAGCCACG5CC 
CTGCG6CCG7AGCG8GGCG9GGCTAACTGCCAGAGTCAGAATGACAAAGCAGAAATCCACTCCTCG10 
TGCAGCCCTGGCAACCTATGCTAATTGCCTCG11TAAGCTGAGAGCTCCTAATTGGGTGACACCACATC 
CTCTGCCTGCTCATAGCCG12CCCCCAACCTAAGAACAGAGCAAAAACAATTTAAGGCAATTCTGGAA 
CCAAATTTGGAATAAGTGTGTTTTTACTGAAGAAATTAGACTATGCCCTAAGGCAGTAGCTACAGAAC 
TTTGCTAGCTGTTGTCATCACG13TGAGGGTCTTTAGAATCCTGGTGCCT
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(P <0.05). On the other hand, there no difference in the 
levels of methylated TXNRD1-38_CpG_3, TXNRD1-38_
CpG_5.6.7, TXNRD1-38_CpG_8.9, TXNRD1-38_CpG_10, 
TXNRD1-38_CpG_11, TXNRD1-38_CpG_12, and 
TXNRD1-38_CpG_13 between the 2 groups (P > 0.05) 
(Fig. 6). Methylation of TXNRD1-38_CpG_4 was not 
detectable because it is too small, beyond the detection 
range of the Mass ARRAY platform.

Discussion

Herein, we explored the methylation patterns of seleno-
protein genes in patients with OA and KBD using the 
MALDI-TOF MS technique. Overall, 42 CpG sites in the 
promoter region of three selenoprotein genes (DIO2, 

GPX3, TXRND1) were analyzed. We found significant 
pathogenetic differences between OA and KBD patients. 
Most previous OA research focused on the pathogenesis, 
management, and treatment modules of the disease.2,15,22-24 
Clinical evidence shows that symptom management does 
not sufficiently ameliorate OA. Research on mechanism 
underlying OA development is particularly important in 
guiding the development of better treatment therapeutic 
strategies, which will improve the quality of life of 
affected patients. On the other hand, KBD is character-
ized by joint deformation. In extreme cases, the effected 
individual becomes disabled. Though critical, early diag-
nosis and prevention of KBD remain a persistent chal-
lenge. Numerous research studies have shown that OA 
and KBD patients exhibit oxidative damage and apoptosis 

Figure 1.  Methylation levels of CpGs in the promoter region of DIO2 gene in patients with osteoarthritis (OA) and Kashin-Beck 
disease (KBD). The color intensity is directly proportional to the methylation level. The numbers 1, 2, 3, and 4 represent CpGs DIO2-
1_CpG_1, DIO2-1_CpG_2, DIO2-1_CpG_3, and DIO2-1_CpG_4, respectively.
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of cartilage chondrocytes.25-30 Accordingly, reducing the 
levels of reactive oxygen species (ROS) in chondrocytes 
has been reported to effectively delay and prevent oxida-
tive related damage to the cells.31,32

Selenium (Se) is a natural mineral widely distributed in 
the environment.33 It is an essential trace element in human 
and animals, easily obtained from food.34 In the body, sele-
nium is distributed in various tissues, organs, and body flu-
ids, with the highest concentration found in the kidneys. 
Besides the known toxic effects, there has been a keen 
interest in selenium owing to its nutritional value.35 In one 
study, it was found that selenium deficiency is closely 
associated with Keshan disease (KSD) and KBD.36,37 
Given that several inorganic selenium antioxidant com-
pounds have been implicated in the oxidation of the sele-
nium, it is particularly necessary to explore the biological 
functions of the mineral. Meanwhile, selenium compounds 
prevent oxidative DNA damage.31,36 Oxidative stress also 
causes degeneration of the extracellular matrix, which 
exacerbate apoptosis and necrosis of KBD and OA articu-
lar chondrocytes.31,38,39 These findings demonstrate the 
protective antioxidant properties of selenium on apoptosis 
and necrosis of chondrocytes.

To date, 25 selenoproteins have been identified and iso-
lated in humans. Functionally, selenoprotein (selenocyste-
ine) mainly regulates various biological functions such as 

oxidation, inflammation, and apoptosis.17,40,41 The iodo-
thyronine deiodinase (ID) family participates in maintain-
ing metabolic balance of thyroid hormones in the body, as 
well as regulates regeneration of skeletal tissues.17,40,41 
Several studies show that DIO2 mRNA is overexpressed 
in the articular cartilage of OA patients.22,42 Meanwhile, 
DIO2 has been implicated in KBD progression in 
children.16

Recent studies show that, GPXs protects against oxida-
tive damage by degrades ROS. For instance, GPX3 exerts 
an anti-inflammatory biological effect against activated 
H2O2-mediated lipoxygenase. Selenium up-regulates the 
level expression of GPX3 mRNA following oxidative-
related damage of human chondrocytes.14

On the other hand, most research on the biological func-
tion of TrxRs mainly focuses on removing excess free radi-
cals in the cytoplasm and mitochondria to protect cells 
against oxidative stress.29,43 In related studies, it has been 
found that low Se level in the body increases production of 
ROS and activates the Nrf2 signaling pathway. Together, 
they enhance the antioxidant capacity of the body.17-19 This 
underlines the role of selenoproteins in genetic regulation 
of OA and KBD diseases.

Recent studies have revealed significant difference in 
the methylation patterns of DIO2, GPX3, and TXNRD1 
promoter regions between OA and KBD patients. In this 
study, we found there were significantly fewer methylated 
CpGs sites in the DIO2, GPX3, and TXNRD1 regions in 
OA than KBD patients. Although the 2 diseases exhibit 
several similarities across many characteristics, the above 
methylation differences suggest of distinct epigenetic 
modification of selenoprotein genes toward OA and KBD 
disease development. Even so, the exact mechanism 
underlying epigenetic modification of selenoprotein genes 
in the development of OA and KBD remain to be eluci-
dated. Nevertheless, findings of this study provide a strong 
background that will guide future research perspectives on 
OA and KBD.

Overall, compared with individual with KBD, OA 
patients exhibit higher methylations in the DIO2, GPX3, 
and TXNRD1 promoter regions. This implies that KBD 
and OA are caused by distinct epigenetic modifications. 
These changes disrupt the expression of selenoproteins, 
modulating anti-oxidation and anti-chondrocyte apopto-
sis. In general, findings of this study provide new 
insights into epigenetic mechanism underlying repressed 
expression of selenoprotein in OA and KBD disease 
conditions.

Figure 2.  Methylation levels of CpG sites in DIO2 promoter region 
in osteoarthritis (OA) and Kashin-Beck disease (KBD) patients.
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Figure 3.  Methylation levels of CpGs in the promoter region of GPX3 gene in osteoarthritis (OA) and Kashin-Beck disease (KBD) 
patients. The color intensity of the dots is directly proportional to the methylation level. The numbers 1 to 25 in the figure represent 
CpGs GPX3-8_CpG_1 - GPX3-8_CpG_25.
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Figure 4.  Methylation levels of CpGs in the promoter region of GPX3 in osteoarthritis (OA) and Kashin-Beck disease (KBD) 
patients.
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Figure 5.  Methylation levels of CpGs in the promoter region of the TXNRD1 gene in osteoarthritis (OA) and Kashin-Beck disease 
(KBD) patients. The color intensity of the dots is directly proportional to the methylation level. The numbers 1 to 13 represent CpGs 
TXNRD1-38_CpG_1- to TXNRD1-38_CpG_13.
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