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Clinical

Basic Science of Chondrons, Pericellular 
Matrix, and Interterritorial Matrix

In normal articular cartilage, chondrocytes are embedded 
within an abundant extracellular matrix (ECM). The solid 
matrix of the ECM is composed of a crosslinked network  
of type II collagen, proteoglycans, and several important 
other collagens (e.g., VI, IX, X, XI) and noncollagenous 
proteins.1,2 The ECM consists of discrete regions based on 
proximity to the chondrocytes, composition, and collagen 
fibril diameter and organization. The ECM can be divided 
into pericellular matrix (PCM), territorial, and interterrito-
rial regions.3 The PCM is a specialized, thin layer of the 
ECM that immediately surrounds chondrocytes4 forming a 
unit together called the chondron.5 This PCM (mainly type 
VI collagen) has an important role in the metabolic activity 
of the chondrocyte and the mechanical signaling from and 
to the ECM.6-8 The PCM has a patent structure, defined 
molecular composition, and unique physical properties that 

support the chondrocyte (Fig. 1). Given this spatial posi-
tion, the PCM is pivotal in mediating communication 
between chondrocytes and the ECM and, thus, plays a criti-
cal role in cartilage homeostasis. The biological function 
and mechanical properties of the PCM have been compre-
hensively studied, mostly in the form of chondrons.

Interterritorial ECM

The PCM integrates with the surrounding tissue via the ter-
ritorial matrix connecting the PCM to the interterritorial 
matrix.9 The interterritorial region of the ECM is the largest 
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Abstract
injuries to articular cartilage of the knee are increasingly common. the operative management of these focal chondral lesions 
continues to be problematic for the treating orthopedic surgeon secondary to the limited regenerative capacity of articular 
cartilage. the pericellular matrix (PCM) is a specialized, thin layer of the extracellular matrix that immediately surrounds 
chondrocytes forming a unit together called the chondron. the advancements in our knowledge base with regard to the 
PCM/chondrons as well as interterritorial matrix has permeated and led to advancements in product development in 
conjunction with minced cartilage, marrow stimulation, osteochondral allograft, and autologous chondrocyte implantation 
(aCi). this review intends to summarize recent progress in chondrocytes with matrix research, with an emphasis on 
the role the PCM/extracellular matrix (eCM) plays for favorable chondrogenic gene expression, as a barrier/filtration 
unit, and in osteoarthritis. the bulk of the review describes cutting-edge and evolving clinical developments and discuss 
these developments in light of underlying basic science applications. Clinical applications of chondrocytes with matrix 
science include reveille Cartilage Processor, Cartiform, and aCi with Spherox (which was recently recommended for the 
treatment of grade iii or iV articular cartilage defects over 2 cm2 by the National institute of Health and Care excellence 
[NiCe] in the United Kingdom). the current article presents a comprehensive overview of both the basic science and 
clinical results of these next-generation cartilage repair techniques by focusing specifically on the scientific evolution in 
each category as it pertains with underlying chondrocytes with matrix theory.
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matrix region, and its hallmark is randomly oriented bun-
dles of large collagen fibrils. These fibers are arranged 
based on location in articular cartilage: parallel to the sur-
face of the superficial zone, obliquely in the middle zone, 
and perpendicular to the joint surface in the deep zone.3

The interterritorial matrix contains abundant proteogly-
cans and contributes to the biomechanical properties of 
articular cartilage. It has elongated parallel ridges with sig-
nificantly greater surface roughness versus than the PCM. 
The average Young’s modulus of the interterritorial matrix 
is significantly greater than the PCM.10 Thus, the interterri-
torial matrix appears to possess not only distinct microtopo-
graphic contours in comparison with the PCM, but also 
significantly greater mechanical stiffness. “These distinc-
tive nanostructural and nanomechanical properties may 
have implications in nutrient diffusion and fluid dynamics, 
both of which are of vital importance for cartilage health 
and function.”10

Biomechanical Importance of the PCM

The PCM has been found to have biomechanical importance 
to support the chondrocyte. First, within the chondron, the 
PCM allows the construct to be stiffer versus chondrocytes 
alone. One study found the PCM allowed for retaining the 
width and volume of the enclosed chondrocytes via collagen 
fibrils during compression.11 Second, through the molecular 
complex, the PCM has a role in transduction of a mechano-
biological signal. This molecular complex, consisting of 

type VI collagen, biglycan, decorin, and matrilins, interact 
with other components of the PCM. Specifically, matrilin-1 
and -3 attach to the cell membrane, via integrin, and other 
ECM molecules in order to receive extracellular signals.12 
Another example localized in the chondrocyte PCM, is 
fibroblast growth factor 2, which is a growth factor that par-
ticipates in mechanical signal transduction.13 Finally, the 
role of transduction translates to gene expression. Mechanical 
forces regulate chondrocyte differentiation and proliferation 
via gene expression, that is, Indian hedgehog gene. The 
upregulation for the expression of Indian hedgehog gene (a 
vital signal in chondrocyte fate determination and prolifera-
tion)14 was found to be dependent on domain A of matri-
lin-3.15 These studies help illustrate a key role of PCM to 
translate mechanical signals to biological events.

Importance of the PCM as Barrier/Filtration Unit

For the molecules that enter or exit the chondrocytes, the 
PCM acts as a barrier. An intact PCM helps balance the ana-
bolic and catabolic processes of chondrocytes. Studies have 
shown cultured Chondrons expressed less matrix metallo-
proteinase proteins (MMP) in comparison with isolated 
chondrocytes.16,17 When chondrons were challenged with 
varied osmolarities, the chondrocyte volumes in the chon-
drons varied less compared with that of the isolated chon-
drocytes displaying the most efficient volume regulation.18 
Additionally, acting as a barrier to harmful pathways,  
chondrons have shown resilience to apoptosis induction 
versus isolated chondrocytes. Peters et al.19 demonstrated 
monoiodoacetate treatment induced 1.6% of chondrons to 
undergo apoptosis, compared with 9% of chondrocytes. 
Disruption of integrin-ligand interactions from detachment 
of cells from the matrix may activate cell death pathways.20 
Furthermore, individual PCM molecules, namely type VI 
collagen, has been shown to protect cells from apoptosis. 
Cheng et al.21 suggested a potential protective mechanism 
by which neurons upregulate collagen VI production under 
stress conditions to activate an anti-apoptotic signaling 
pathway. In summary, the PCM (1) balances the anabolic 
and catabolic processes of chondrocytes, (2) acts as a bar-
rier to harmful pathways, and (3) protects cells from 
apoptosis.

Favorable Chondrogenic gene Expression and 
growth Factors within the PCM

The PCM has a meaningful impact on the functionality of 
chondrocytes.22 Zhang et al.23 reported over 200 genes 
involved in chondrocyte proliferation, phenotype, and 
metabolism differentially expressed in chondrons versus 
chondrocytes using cDNA microarray. Likewise, chondrons 
have been shown to upregulate the expression of type II col-
lagen and aggrecan to a greater extent than chondrocytes in 

Figure 1. Schematic of a chondron (formed by the 
chondrocyte together with its surrounding pericellular matrix 
(PCM). the PCM is a specialized, thin layer of the extracellular 
matrix. the PCM has a patent structure, defined molecular 
composition, and unique physical properties that support the 
chondrocyte. image used with permission from guilak et al.9
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response to dynamic compression.6 Not only does the PCM 
(type VI collagen) stabilize the chondrocyte phenotype,22 it 
also protects chondrocytes from MMP13 expression, an 
enzyme that can degrade collagen from the cartilage 
ECM.16,24 Furthermore, PCM molecules have been shown 
to have an association with chondrogenic differentiation of 
mesenchymal cells and chondrocytes. French et al.25 dem-
onstrated domain I of perlecan (the binding site of numer-
ous growth factors localized to the PCM) promoted the 
chondrogenic differentiation of an embryonic fibroblast cell 
line in vitro. Perlecan regulates chondrogenic differentia-
tion through bone morphogenetic protein (BMP)-2 signal-
ing26,27 and directs vascular invasion into cartilage during 
endochondral ossification through vascular endothelial 
growth factor receptor (VEGFR).28 Furthermore, it has 
been proposed that an intact PCM improves matrix produc-
tion and cell-induced cartilage formation. Larson et al.8 
showed chondron pellets had a 10-fold increase in proteo-
glycan content versus a 6-fold increase for chondrocyte 
only pellets over 8 weeks (P < 0.0001) secondary to 
increased matrix deposition rather than cell division 
(unclear whether due to differences in rates of synthesis or 
greater retention and assembly). Vonk et al.17 presented data 
suggesting that preserving the PCM has a positive effect on 
cell-induced cartilage production secondary to increased 
quantities of proteoglycans and decreased gene expression 
of MMP13 in chondrons versus chondrocytes taken from 
articular cartilage. Also, the PCM also acts as storage and 
maintenance of growth factors, where they are activated, 
degraded, or transported.29

the role of the PCM in Osteoarthritis

Growing evidence suggests that many of the features of 
osteoarthritis (OA) are possibly initiated in the PCM.9 In 
healthy articular cartilage, the ECM is maintained in 
homeostasis (a balance of matrix synthesis and degrada-
tion). The PCM acts as a transitional zone between the 
interterritorial matrix and chondrocytes to modulate envi-
ronmental signals before they reach the chondrocytes. 
Changes to PCM properties, such as in a pathologic state 
like OA, may not only represent the disease state but may 
also influence the regulatory function of PCM and therefore 
chondrocyte activity.9 Multiple studies have suggested that 
associated change in PCM composition, structure, and 
mechanical function is present in OA.

Studies examining advanced stages of OA show compo-
sition changes of collagen expression including significant 
upregulated expression of collagen type VI30 and overlap-
ping localization of collagens I, II and III in the PCM.31 Via 
the chondrocyte’s primary cilium (organelle that projects 
from the cell surface into the PCM) these changes in com-
position can significantly affect mechanotransduction in 
chondrocytes.9 Distorted cilia length and incidence has 

been reported with OA severity, implying that there is 
altered cilia-mediated signaling in degenerative cartilage.32 
The cilium has mechanosensors, a variety of ion channels 
such as the transient receptor potential vanilloid 4 (TRPV4), 
and an ability to interact with matrix proteins such as col-
lagens type II and VI. One study showed TRPV4 provokes 
intracellular Ca2+ signaling cascades in response to mechan-
ical stimuli.33

Degradation of PCM structure may be one of the earliest 
events during OA onset9 secondary to elevated serine prote-
ases34 that digest several major PCM components35 leading 
to the chondrocyte’s increased contact with type II collagen 
fibrils. Binding of cell receptors, such as DDR2, to type II 
collagen has been shown to upregulates production of 
MMP-13 in chondrocytes leading to degradation of type II 
collagen in cartilage matrix.36 This highlights the feedback 
loop of serine proteases (HtrA1) to cell receptors (DDR2) 
and the MMP13 degradative pathway in OA progression.37 
In summary, a mechanical force on the articular cartilage 
activates HtrA1 which in turn degrades PCM proteins, thus 
leading to exposure of the chondrocyte’s surface receptors 
to type II collagen fibrils in the ECM. Then, binding of type 
II collagen fibrils to DDR2 upregulates MMP13, thus lead-
ing to degradation of collagen (Fig. 2). Moreover, a disrup-
tion of PCM structure may trigger the release of modulatory 
growth factors, normally sequestered and localized to the 
PCM, such as syndecan, which plays a vital role in modu-
lating the phenotypic changes of chondrocyte through Wnt 
signaling38 or perlecan which modulates cell binding of 
fibroblast growth factor (FGF)13 to alter the proliferation 
and metabolism of chondrocytes in response to injury.9

Clinical Applications Evolving from 
Chondron and Chondrocytes with 
Matrix Basic Science

The PCM plays a role in biomechanical transduction, chon-
drogenic phenotype expression, induction of OA disease 
processes, and as a filtration unit. Underlying principles 
regarding the importance of the matrix, including both 
PCM and interterritorial matrix, has brought about change 
in multiple cartilage repair procedures including minced 
cartilage, marrow stimulation, osteochondral allograft, and 
autologous chondrocyte implantation (ACI).

It has been proposed that the outgrowth of embedded 
chondrocytes (limited chondrocyte migration is contributing 
factor to poor cartilage self-healing) can be achieved through 
increased tissue surface area by mincing the cartilage tissue 
mechanically into small tissue fragments that covers a large 
area for new tissue formation.39 Lu et al.39 suggested a cor-
relation between chondrocyte mincing and mitogenic activa-
tion to produce a more robust neocartilage by demonstrating 
direct treatment of full thickness chondral defects in goats 
using cartilage fragments on a resorbable scaffold produced 
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hyaline-like repair tissue at 6 months. This mitogenic activa-
tion from the minced particles induces migration of chon-
drocytes and resulting cartilaginous PCM/ECM deposition 
more analogous to the chondron. As noted above, the native 
articular cartilage PCM and ECM components provide sig-
nals to drive undifferentiated cells toward chondrogenesis. 
In a porcine model, Cheng et al.40 investigated the chondro-
genic effects on adipose-derived stem cells (ADSC) with 
ECM-derived scaffolds compared to ADSCs with granules. 
The results showed two chondrogenic markers (AGC1 and 
COL2A1) and aggregate modulus of ECM material were 
significantly higher in ECM-derived scaffold group versus 
control (both P < 0.05).

Multipotent mesenchymal stromal cells (MSCs) describe 
the nonhematopoietic adult cell population present in vari-
ous tissues such as bone marrow and adipose tissue that 
have chondrogenic differentiation capabilities.41 Marrow 
stimulation (MS) techniques induce an influx of marrow 
substrates (MSCs, growth factors, and cytokines) to repop-
ulate a cartilage defect.42 Stimulation of cartilage matrix 
production and upregulation of cartilage-specific matrix 
genes were observed when chondrocytes were combined 
with MSCs,43,44 thus suggesting that successful combina-
tion with freshly isolated articular chondrocytes could 
promote chondrocytic differentiation of MSC in a 1-step 
procedure. In a goat model, Bekkers et al.5 showed that 
chondrons generated from debrided cartilage combined 
with MSCs resulted in better histological quality of 

regenerated tissue (determined by O’Driscoll score), mean 
ICRS macroscopic score for cartilage repair, and mean 
absolute glycosaminoglycan production (all statistically 
significant) compared with microfracture (MFx) alone. 
Even when obtained from damaged articular cartilage, 
chondrons also have a higher regenerative capacity when 
compared to chondrocytes without their PCM. Vonk et al.45 
showed in a goat model that chondrons isolated from a 
damaged joint outperformed chondrocytes on cell-by-cell 
basis in vitro with a statistically significant higher content 
of proteoglycan and collagen. de Windt et al.46 showed in a 
1-year follow-up pilot study of ten patients a statistically 
significant improvement in mean Knee Injury and 
Osteoarthritis. Outcome Score (KOOS) and significant 
decrease in mean visual analogue scale (VAS) score with 
complete defect filling on magnetic resonance imaging 
(MRI) with chondrons + MSCs. This was followed up with 
a second-look biopsy study of 35 patients showing newly 
formed cartilage tissue with hyaline-like features contain-
ing a high concentration of proteoglycans and type II col-
lagen.47 Of note, no comparisons to chondrocytes instead of 
chondrons were made in either de Windt study.

Growth factors in the surrounding ECM may play an 
important role in cartilage regeneration. Thus, combining 
the underlying principles of minced cartilage (migration of 
chondrocytes and resulting cartilaginous matrix [PCM/
ECM] deposition beyond that seen in chondrons) along 
with scaffolding, the Cartilage Autograft Implantation 

Figure 2. Feedback loop of serine proteases (Htra1) to cell receptors (DDr2) and the matrix metalloproteinas-13 (MMP13) 
degradative pathway in osteoarthritis progression. a mechanical force on the articular cartilage activates Htra1, which in turn 
degrades pericellular matrix (PCM) molecules, thus leading to exposure of the chondrocyte’s surface receptors to type ii collagen 
fibrils in the extracellular matrix (eCM). then, binding of type ii collagen fibrils to DDr2 upregulates MMP13, thus leading to 
degradation of collagen.
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System (CAIS) Harvester and Dispenser (DePuy Mitek, 
Raynham, MA) was developed. CAIS is a point of care sur-
gical procedure where cartilage is mechanically minced and 
then affixed using fibrin glue on a synthetic, absorbable 
scaffold (designed to keep the tissue fragments in place) 
that is reinforced with a mesh within the defect.48 Using a 
low load-bearing surface (i.e., lateral wall of the intercon-
dylar notch) or during debridement of a cartilage defect 
(often containing viable cartilage cells),49 cartilage and 
accompanying ECM can be harvested. Multiple animal 
models have shown success with a cartilage fragment 
seeded scaffold demonstrating high cellularity and intense 
ECM production as well as hyaline-like repair tissue in 
terms of morphological, mechanical, and histological 
assessments.50,51 Another study showed CAIS achieved the 
highest score compared with ACI in a horse model in terms 
of arthroscopic, histologic, and immunohistochemistry 
results.52 A level II randomized controlled trial (RCT) 
compared CAIS with MFx in 29 patients with 2-years of 
follow-up.48 The multicenter study demonstrated CAIS 
demonstrated significantly improved International Knee 
Documentation Committee (IKDC) scores and KOOS com-
pared with MFx at 24 months. There was no difference in 
terms of fill of the graft bed, tissue integration, or presence 
of subchondral cysts on MRI.

Reveille Cartilage Processor (Exactech, Gainesville, 
FL) is a single-stage surgical technique that utilizes autol-
ogous cartilage combining the underlying principles of 
minced cartilage (migration of chondrocytes and resulting 
cartilaginous PCM/ECM deposition analogous to chon-
drons) along with MS (Fig. 3). It has a 1.3 ± 0.1 minutes 
intraoperative processing time producing particles sized 
0.76 ±0.77 mm2.53 Particle size has been thought be a 
vital consideration for the amount of ECM production, in 
theory secondary to the activation of chondrocytes on the 
motorized stimulation of the cutting.54 One recent in vitro 
study showed chondrocyte outgrowth and matrix deposi-
tion from cartilage pieces (using Reveille Cartilage 
Processor) embedded in the gels harvested from patients 
undergoing total knee arthroplasty.53 A preliminary unpub-
lished in vitro study at 4 weeks demonstrated the binding 
capability of MSCs to porcine cartilage fragments along 
with outgrown chondrocytes and new tissue formation 
between graft particles under fluorescent microscopy 
analysis. There are no published clinical studies currently 
available.

Multiple cartilage repair products have been developed 
building on the advances made in the fields of chondrons 
combined with osteochondral allografts and MS, including 
a cryopreserved, viable osteochondral allograft with pores 
spanning the thickness of the graft called Cartiform 
(Arthrex Inc., Naples, FL, USA). Harvested from human 
cadaveric specimens, the allograft consists of full-thick-
ness articular cartilage and a thin layer of subchondral bone 

with perforations in the articular cartilage that allows for 
flexible conformity and improved integration to the under-
lying subchondral bone.55 Of note, the implant has a long 
shelf life (frozen storage for up to 2 years) secondary to 
pores which enable the cryopreservation solution to pene-
trate the tissue to maintain cell viability.56 The chondro-
cytes along with extracellular matrix proteins, chondrogenic 
factors (PCM plus surrounding ECM [beyond that seen in 
chondrons]), and a thin osseous portion are cryopreserved 
at −80°C.55 Following MS, Cartiform serves as a scaffold 
for the MSCs while the viable chondrocytes simultane-
ously release PCM/ECM inducing the MSCs to undergo 
chondrogenesis and produce hyaline cartilage. Nonmetallic 
and nonbone reactive suture anchors may be used to fix 
Cartiform in place57 or secured to the surrounding healthy 
cartilage using absorbable sutures.58 Fibrin glue is applied 
between the graft periphery and the native cartilage walls, 
avoiding the holes in the graft, as a final step to secure the 
graft in place (Fig. 4).57 In a goat model, Geraghty et al.56 
showed lesions treated with MFx plus Cartiform had more 
overall lesion fill at 12 months, but no difference in histo-
logical grade versus MFx alone. Another study demon-
strated a statistically significant higher percentage of type 
II collagen staining in the Cartiform plus MSCs pellet 
group versus MSCs alone.56 Vangsness et al.57 showed 
good results in their pilot 3 patient case series with a return 
to sport/exercise at 6 months with pain free/satisfactory 
outcomes at 2 years. In a case study, Hoffman et al.58 
reported complete resolution of pain and improvement in 
function at 9 months. The patient had returned to sports at 
9 months after implantation of a Cartiform implant into the 
femoral trochlea. Biopsy of the graft site showed repair tis-
sue consisting of 85% hyaline cartilage and excellent basal 
integration (score 90) based on ICRS (International 
Cartilage Repair Society) II scores for patient repair tissue. 
For comparison, a biopsy obtained from a patient 8.2 
months after treatment with MS alone contained only 5% 
hyaline cartilage.58

Similarly, ProChondrix (AlloSource, Centennial, CO) is 
a laser-etched, fresh cryopreserved osteochondral allograft 
that provides functional cells and PCM plus surrounding 
ECM (beyond that seen in chondrons) to a defect site. 
Following MS, ProChondrix works as a scaffold for the 
MSCs while the viable chondrocytes concurrently release 
PCM/ECM to help promote chondrogenesis. In a unpub-
lished series, Mehta et al.59 demonstrated a statistically  
significant increase in KOOS, Short Form–36 health ques-
tionnaire (SF-36) domains, subjective IKDC and Tegner 
activity scores at a mean follow up of 2.33 years in 17 
patients for treatment of isolated, symptomatic articular 
cartilage surface lesions. Currently, there is an ongoing  
prospective, multicenter study to evaluate the use of 
ProChondrix for improvement in physical function and pain 
when used on symptomatic cartilage defects of the femoral 
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condyle or patella for a period of 60 months follow-up with 
a target enrollment of 80 patients.60

Finally, combining ACI with knowledge learned from 
studying the PCM has led to advances in technologies. 
Chondrocyte de-differentiation,61 during in vitro monolayer 
expansion, remains a key limitation of ACI.62 Chondrons 
have a higher regenerative capacity when compared to chon-
drocytes without their PCM.45 Consequently, ACI with 
Spherox (formerly called chondrosphere) (ACT3D-CS, 
CO.DON AG, Teltow, Germany) was developed. The chon-
drocyte spheroids derive from human autologous chondro-
cytes and associated cartilage-specific matrix, which under 
defined cell culture conditions can build a 3-dimensional 
structure (Fig. 5). Unlike chondrocyte cell suspensions that 
do not begin differentiating and producing matrix proteins 
until transplantation into the defect, the chondrocytes in the 
spheroids are in a more developed differentiation state with a 

pronounced formation of ECM.63 In mouse model, chondro-
spheres demonstrated an ability to adhere to full-thickness 
cartilage defects and produce a cartilaginous extracellular 
matrix increasing content of collagen type II, glycosamino-
glycans and collagenous fibers thus restoring and conserv-
ing phenotype.64 In a 1-year clinical follow-up study of  
37 patients treated with Spherox, there was significantly 
improved scores (Lysholm, IKDC, SF-36, and Tegner) with a 
sizable degree of defect fill seen at 3 months on MRI.63 In a 
RCT, a potential dose relationship was seen in terms of 
magnetic resonance observation of cartilage repair tissue 
(MOCART) scores, but no significant correlation for clinical 
outcomes65 or any safety criteria.66 In a 2-year follow-up 
RCT, matrix-associated ACI with Spherox demonstrated sig-
nificantly higher KOOS Activities of Daily Living subscore 
compared to MFx with no other differences noted.67 However, 
a histological analysis of biopsies suggested a better quality 

Figure 3. reveille Cartilage Processor technique. (A) reveille Processor highlighting the particulator and sieve. (B) First, autologous 
harvested cartilage fragments are placed onto the particulator and spread evenly. then, tissue is particulated for at least 2 minutes at 
recommended speed of 1,500 rpm. Finally, after defect preparation followed by marrow stimulation, particulated tissue is ready for 
transfer. images used with permission from exactech, gainesville, Fl. USa.
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of repair in the patients treated with Spherox.67 Ultimately, in 
the absence of a head-to-head trial, indirect treatment com-
parisons can be made using network meta-analysis (NMA) 
methodology. This was used to estimate the relative clinical 
performance of Spherox versus other ACI. Using this data 
and a lifetime Markov model, the cost-effectiveness of 
Spherox was calculated. Estimates for chondrosphere versus 
MFx and for chondrosphere versus matrix-applied autolo-
gous cultured chondrocyte implant (MACI) were £4360 and 
around £18,000 per quality-adjusted life year gained, respec-
tively.68 As a result, the National Institute of Health and Care 
Excellence (NICE) recommended ACI using Chondrosphere 
for treating adult patients with symptomatic ICRS grades III 
or IV articular cartilage defects of the femoral condyle and 
patella if (1) the patient has not had previous cartilage repair 

surgery, (2) there is minimal osteoarthritic damage, and (3) 
the defect is over 2 cm2.69

Conclusion

In summary, the use of isolated chondrons as a model for 
studying the chondrocyte microenvironment including the 
ECM has enhanced our grasp of cartilage biology. Execution 
and improvement of cartilage engineering protocols with 
emphasis on the microenvironment of chondrocytes/MSCs 
and ECM could lead to the production of more robust and 
functional cartilage. Lesions in articular cartilage can cause 
considerable musculoskeletal morbidity including pain and 
loss of function. With that comes significant economic 
implications, especially when considering its progression to 

Figure 4. Cartiform (arthrex inc., Naples, Fl, USa) is a cryopreserved, viable osteochondral allograft (frozen storage for up to 
2 years) harvested from human cadaveric specimens characterized by a minimal amount of bone and pores spanning the thickness 
of the graft. Following marrow stimulation, Cartiform serves as a scaffold for the mesenchymal stem cells (MSCs) while the viable 
chondrocytes simultaneously release growth factors into the adjacent microenvironment theoretically inducing the MSCs to undergo 
chondrogenesis. Surgical images courtesy of senior author (KM).



1202S CartIlagE 13(Suppl 1)

OA.70 The ambition of a chondrocytes with matrix therapy 
aims to bring about a repair without the need for further 
long-term surgery. Bearing this in mind, we have highlighted 
the ongoing research encompassing novel tissue sources and 
cell types that are being developed and employed for carti-
lage repair utilizing underlying chondrocytes with matrix 
theory.
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integration in to the adhesion area by migration of surface chondrocytes along the irregular surface of the defect ground (iii) spheroid 
is completely integrated into the cartilage defect. red arrows indicate secretion of cartilage-specific proteins. red circles indicate a 
presumed cell proliferation. images used with permission from CO.DON ag, teltow, germany.
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