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Abstract

Viral structural proteins are emerging as effective targets for new antivirals. In a viral lifecycle, the 

capsid must assemble, disassemble, and respond to receptors, all at the right time and place. These 

reactions work within a narrow range of conditions, making them susceptible to small molecule 

interference. In at least three specific viruses, this approach has had met with preliminary success. 

In rhinovirus and poliovirus, compounds like pleconaril bind capsid and block RNA release. 

Bevirimat binds to Gag protein in HIV, inhibiting maturation. In Hepatitis B virus, core protein 

allosteric modulators (CpAMs) promote spontaneous assembly of capsid protein leading to empty 

and aberrant particles. Despite the biological diversity between viruses and the chemical diversity 

between antiviral molecules, we observe common features in these antivirals’ mechanisms of 

action. These approaches work by stabilizing protein-protein interactions.

Introduction

One advantage of targeting viral structural proteins is that they are unique to the pathogen 

and generally have no human homologs. Another advantage of structural proteins is their 

propensity to form oligomers, leading to a dominant negative effect: a drug does not 

necessarily need to act on every viral protein subunit to disrupt the oligomer’s function 

(••1). The challenge of targeting viral structural proteins is that they are not enzymes, 

where the substrate provides a straightforward starting point for transition state analogs. 

The regions of functionality for structural proteins are often macromolecular interfaces, and 

small molecules which bind to these interfaces must be identified through naïve screens. 

A further challenge in targeting a molecular interface is allostery, where the site of drug 

binding and the site of its effect can be spatially distinct. However, by understanding the 

requirements for a structural protein to function properly, we concomitantly identify the 

targets for antiviral effectors.
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Physical Chemistry of Capsid Assembly: A Qualitative Summary

The four critical lessons to be learned from modelling capsid assembly are (••2–6):

i. Subunits are multivalent. They may interact one subunit at a time to build capsid 

shells, or hierarchically first making small oligomers. Multivalency gives them 

avidity.

ii. The pairwise association energy between any two subunits during the assembly 

reaction is weak, but summing the energy of a large number of contacts results in 

a particle that can be very stable (7).

iii. Assembly reactions follow a steep downhill energy gradient. More subunits mean 

more contacts. Like a car rolling downhill, such reactions are very difficult to 

stop.

iv. Assembly and disassembly are not always mirror images. Capsid closure and 

postassembly conformational maturation can both contribute to capsids that are 

much more stable than might be expected (8).

In the simplest model, an assembly reaction consists of subunits adding one at a time to a 

starting nucleus. To model this reaction, one need only consider the geometry of subunits, 

pairwise per-contact association energy, and on-rate (••2–6). Overly strong association 

energy can lead to kinetic traps where the reaction runs out of subunits before completing 

the maximum possible number of capsids or, worse, any defects that are accidentally 

incorporated get cemented in place by subsequent additions (9, ••10). Weak association 

energy allows the reversibility needed to repair defects and escape dead-end kinetic traps.

Nucleation factors are also important to consider (11, 12). Nucleation regulates the number 

of assembling particles, thus decreasing the potential for kinetic traps. Nucleation may also 

direct the path of assembly, affecting the size and shape of the resulting particle. The viral 

genome is often involved in nucleation, and the role(s) of specific sites on the genome may 

direct assembly and genome organization (6, 13, ••14)

Though capsids assemble based on weak interactions, the end products may be remarkably 

stable (6, 8). Some of this stability arises because the first subunit to leave a capsid 

must break many contacts simultaneously, creating a kinetic and thermodynamic barrier 

to dissociation. Capsid stability may also arise from post-assembly conformational and 

chemical changes (e.g. proteolytic maturation, see below) (15).

Enteroviruses and Capsid Stabilization

The enterovirus genus of the picornavirus family includes rhinovirus, poliovirus, and 

Coxsackie virus. They are small unenveloped RNA viruses with pseudo-T=3, or P=3, 

symmetry (16). The immature capsid is comprised of trimers of Vp0, Vp1, and Vp3 

subunits, initially part of a polyprotein. These trimers assemble into stable pentamers 

that can reversibly assemble to empty capsids (17) or package RNA. Assembled capsids 

autoproteolytically mature by cleavage of Vp0 to Vp2 and the ~70-residue Vp4 peptide. 

In response to receptor binding or to heat, mature picornaviruses undergo a conformational 

change to release viral RNA and Vp4, a reaction termed “uncoating” though the capsid may 
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remain largely intact. Unless stimulated to uncoat, mature enteroviruses can be remarkably 

stable.

The “WIN” series of compounds (after Sterling-Winthrop) contributed to the development 

of pleconaril and pirodavir and were found to inhibit the uncoating reaction of rhinovirus 

(18, 19). They show the same effects in many, but not all enteroviruses. Structurally 

first observed in 1986 (•20), these stabilizing compounds fill a long, tubular pocket that 

is entirely within Vp1, distal to sites of pentamer-pentamer interaction (Figure 1). To 

examine mechanism, the temperature dependence of poliovirus uncoating was determined 

in the presence and absence of WIN compounds (••21). Via an Arrhenius analysis, it was 

determined that the entropy of the complex decreased, increasing the barrier to uncoating. 

Consistent with this result, molecular dynamics showed that WIN compounds could 

decrease the volume filled by rhinovirus capsid proteins and alter concerted movements of 

the capsid proteins (22). Similarly, it was observed that WIN compounds suppress transient 

exposure of Vp4 outside the capsid, an indicator of virus “breathing” (23). Though it was 

an effective antiviral, pleconaril did not ultimately gain FDA approval because of off-target 

effects. Furthermore, not all enteroviruses possess a pocket accessible for this class of drugs 

(24).

More recently a new class of uncoating inhibitor was reported for Coxsackie virus (25). 

These molecules, exemplified by “compound 17” (CP17), bind at the junction of three 

subunits, two VP1s and a VP3. This pocket is distal to both the WIN pocket and the 

interaction between pentameric subunits that forms during capsid assembly (Figure 1). 

Yet, like the WIN compounds, CP17 inhibits uncoating. Because the interface between 

proteins is a geometric necessity, the structure of the pocket is well-conserved. Thus, such 

molecules are likely to show activity across many enteroviruses. In summary, stabilization of 

enterovirus capsids interferes with uncoating and RNA release. A likely mechanism is that 

they damp capsid dynamics, increasing the energetic barrier to uncoating.

CpAMs: Targeting Hepatitis B Virus Capsid Assembly

Despite an effective vaccine, Hepatitis B virus (HBV) remains a global health problem, 

particularly in Asia and Africa where chronic infection is underdiagnosed (26). HBV is 

a small enveloped virion with an icosahedral core containing a circular viral genome of 

partially double stranded DNA. Because the genome is not completely double stranded, 

it has been named relaxed circular DNA (rcDNA). After cell entry, the rcDNA genome 

is deposited in the nucleus where it is repaired by host enzymes to yield a covalently 

closed circular DNA chromosome. Viral RNA transcripts are then exported to the cytoplasm, 

which include a pre-genomic RNA (pgRNA). Core protein dimers (Cp) assemble around a 

pgRNA-reverse transcriptase complex, usually forming a T=4 icosahedral capsid. In addition 

to the genome-filled particles, a large fraction of newly assembled capsids in infected cells 

are empty. Reverse transcription of pgRNA to rcDNA occurs inside the capsid and the 

mature particles are notably fragile, partly due to the fact that DNA is a stiff polymer 

compared to the 25nm inner diameter of an HBV capsid (27, 28). Arguably, HBV Cp plays 

roles in almost every step of the viral lifecycle (29), and Cp has become an important target 

of HBV-specific antivirals. Variants of capsid-specific molecules have a proven capability 
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to suppress virus replication in cell culture, and more than ten are currently undergoing 

clinical trials (30). We prefer to call these molecules core protein allosteric modulators 

(CpAMs); other names include assembly agonists, capsid assembly modulators (CAMs), 

capsid assembly affectors (CAEs), and core protein inhibitors (CIs).

Initially, phenylpropenamides (PPAs) were found to reduce HBV replication in cell culture 

(31, 32) and led to accumulation of empty particles by somehow inhibiting RNA packaging 

(33). Soon after, heteroaryldihydropyrimidines (HAPs) were described in the literature, 

where the authors established that their mechanism of action involved Cp and led to reduced 

viral DNA and reduced intracellular Cp levels (34, 35). Much later, sulfamoylbenzamides 

(SBAs) emerged, which also reduced cytoplasmic pgRNA capsids, but did so without 

significantly decreasing total capsid protein (36).

Efforts to identify the target of HAP activity quickly converged on the process of capsid 

assembly (37). Mechanistically, rather than inhibit assembly, CpAMs stimulate assembly, 

increasing both the rate and extent of assembly reactions with purified core protein (38). 

Super-stoichiometric concentrations of HAP (more HAP molecules than Cp sites) caused Cp 

to assemble into larger, flatter structures with distinctly hexameric features (Figure 2) (38, 

39). The shape of these assemblies appears to be tunable, forming the larger flatter structures 

when assembling slowly, and more spherical structures when assembling quickly (•40). 

A cryo-EM study of HAP assembly products was able to selectively reconstruct tubular 

assemblies, and while the HAP was not resolved, the protein subunits exhibited a striking 

pattern of regular repeating hexamers.(41)

An important component to this mechanism is that CpAMs strengthen the association energy 

between subunits, often on the order of −1kcal/mol per-contact (42). This modest energy 

shift is amplified as each Cp dimer is tetravalent, and because assembly is already a steep 

energy gradient.

Crystal structures of core protein bound to CpAMs used pre-assembled capsids, co-

crystalized with a HAP (43, 44) or a PPA (45). All three CpAM-containing capsids 

expanded by about 5% compared to ligand-free capsids, effectively an allosteric response 

to CpAM binding. For both chemotypes, the molecules bound to two of the four quasi-

equivalent protein interfaces of the hexameric capsomers. The molecules bind in a pocket 

formed at the junction of two Cp dimers (Figure 2b, c). The dimers must be oligomerized to 

form a complete pocket, suggesting that subunits associate spontaneously in the absence of a 

CpAM, which can then insert into the pocket and raise the energy barrier for dissociation.

Capsid-CpAM structures have provided a clear view of the CpAM binding site(s) and 

the effect of CpAMs on quaternary structure, however capsids are not convenient for 

crystallographic studies. Dimers with a point mutation (Y132A) that removes a tyrosine 

from the dimer-dimer interface and renders the protein assembly-incompetent (46) will 

co-crystalize with CpAMs, packing as a planar lattice of hexamers with a CpAM bound at 

every inter-subunit interface (47). Using Y132A, structures have been solved of at least three 

HAPs (47–49), a sulfamoylbenzamide (49), and the antifungal derived CpAM Ciclopirox 

(50). All molecules bind at the inter-subunit interface, but each has a distinct binding pose. 
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With assembly-active dimer, each of these molecules drives Cp assembly and therefore 

strengthens Cp-Cp interaction.

The effects of some CpAMs on capsid structure imply that the molecules not only interfere 

with the assembly process but can also disrupt intact capsids. This could have the effect of 

blocking deposition of viral DNA in the nucleus (51). We envision a single antiviral with 

antiviral capability at opposite ends of the viral lifecycle (release of nucleic acid to establish 

infection, packaging of nucleic acid during assembly). Evidence for structural disruption 

includes the capsid crystal structures, where drug binding causes faceting, becoming flatter 

at hexamers (where the molecules bind), and becoming more highly curved at the 5-fold 

vertices. Faceting occurs due to concerted changes in quaternary structure, so it was likely 

constrained due to the inter-dimer crosslinks that were necessary to get diffraction quality 

crystals. Using cryo-EM to visualize capsids with a bound fluorescently-labeled HAP 

CpAM, un-crosslinked capsids were irregular, with elliptical and asymmetrically faceted 

capsids visible (42). The mechanisms for disruption of preformed capsids were investigated 

further with another CpAM, a dibenzothiazapine (DBT), which both drives assembly and 

paradoxically causes pre-formed capsids to ultimately disassemble (••52). HAPs will also 

cause capsids to become strained, eventually rupturing and reassembling into larger flatter 

structures. These observations led to a model where CpAMs induce local deformations that 

propagate to global capsid strain, leading to eventual rupture (Figure 2d). The energetic cost 

of adopting a strained state, an unfavorable quaternary structure, is paid for at every protein 

interface where the binding energy of a CpAM strengthens the interaction. Essentially, 

capsid strain is an emergent property of local changes to the subunit interfaces.

HIV: successfully targeting a non-icosahedral virus

Human immunodeficiency virus (HIV) capsid assembly is a multistep process that starts 

with the Gag polyprotein (53). Starting from the N-terminus, most Gag polyproteins are 

comprised of matrix, capsid (CA), spacer peptide 1 (SP1), nucleocapsid, spacer peptide 

2, and p6 domains. About 5% of HIV Gag translation products incorporate a ribosomal 

frameshift that appends the protease, polymerase, and integrase domains. Formation of a 

new virion starts with Gag localized to the plasma membrane bound to viral RNA (53). 

In nascent virions, Gag is arranged in a hexagonal lattice with numerous flaws, forming 

a partially complete spherical shell (54). Consistent with other examples of virus capsid 

proteins, Gag-Gag interaction (largely mediated by CA-CA association) is weak (55). 

Hexameric and pentameric capsomers are formed by CA N-terminal domains (CA-NTDs) 

which are supported by interdigitating C-terminal domains (CA-CTDs). Capsomers are 

crosslinked by dimerization of CA-CTDs. During or after budding, the viral protease 

becomes active and processes Gag into individual proteins. In the mature virus, about 

1500–2000 CA proteins reorganize into a Fullerene cone, an arrangement of CA hexamers 

and pentamers (56, •57). After mature virus infects a new host cell, the fullerene cone is 

released, and its dissociation appears to play important roles in the transport and reverse 

transcription of the viral genome. Both the maturation and ultimate capsid dissociation steps 

have been targets for antiviral intervention.
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Gag maturation begins with an ordered series of cleavages by the HIV protease (53). Typical 

transition state analogs are effective protease inhibitors. Maturation inhibitors, however, bind 

Gag, not the protease. Maturation inhibitors like the betulinic acid derivative Beviramat 

(BVM) or PF46396 specifically inhibit cleavage of the CA-SP1 peptide bond (58). Normal 

HIV assembly is sensitive to mutations near the CA-SP1 junction (59), implying that the 

mobility and structure(s) of this junction are restricted (60, 61). Remarkably, some PF46396-

resistant mutants are drug-dependent for normal assembly (58, 62). The structure of a 

CA-CTD-SP1 hexamer with a bound BVM was determined to 2.9Å using micro-electron 

diffraction (Figure 3) (••63). The proteins are arranged with approximate 6-fold symmetry 

with a single BVM filling a pore along the oligomer axis. It is presumed that PF46396 

binds near or at the BVM site (58). The CA-SP1 junction is alpha helical and located 

near the hexamer axis; its conformation is unlike the extended conformation of a CA-SP1 

peptide bound to the protease, indicating that the sequence is cleaved in an unfolded state 

(64). Because BVM can support Gag assembly and stabilize Gag polymers (65), we can 

deduce that the small molecule is stabilizing the helical conformation. Of course, it may 

also act to block protease access to the scissile bond. Without proteolytic cleavage, the 

Gag polymer remains trapped as a low energy intermediate in HIV assembly. Maturation 

inhibitors buttress this stable state.

At the other end of the viral lifecycle, uncoating is temporally linked to the processes of 

reverse transcription and nuclear entry, making it a critical step in initiating infection (53). 

Uncoating inhibitors stabilize interactions between CA subunits. The molecule PF74 is a 

much-studied tool compound that informs us of the mechanisms of more recently developed 

molecules (•66). Like DBT1 with HBV, PF74 has the effect of inducing dissolution of HIV 

capsid complexes (67). In the simplest case, from a thermodynamic perspective, this would 

require PF74 bind CA monomer more tightly than capsid: PF74 binds CA monomer with 

a KD of ~4000 nM and hexamers with a KD of 262nM, indicating that it stabilizes CA 

polymers (••68). Historically, efforts to identify molecules that inhibit assembly, binding 

monomer more tightly than oligomer, has led to candidates that only worked at very high 

concentrations and were, in the end, unsuccessful (69, 70). Structurally, it makes sense that 

PF74 binds more tightly to oligomer: PF74 binds an exposed pocket in the CA-NTD that 

is partially capped by the CTD from an adjacent monomer (••68) (Figure 3). The site is 

apparently modified by formation of a complex of hexamers: PF74 stabilizes cylinders of 

CA but induces dissociation of isolated viral cores. By analogy to studies with HBV and 

DBT1, we speculate that PF74 may stabilize local hexagonal conformations that lead to 

ruptures in an irregular conical HIV capsid. Global strain arises because virus capsids are 

an oligomeric network, where a conformational change at one point must be accommodated 

throughout the shell.

Conclusion

Capsid-directed antivirals remain in the early stages of development and will require 

tailoring the medicinal chemistry to each specific protein target. Nevertheless, core 

principles can be identified which generalize across viruses and across specific chemistries. 

Capsid-directed antivirals strengthen the association energy between subunits with the 

following implications:
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a. assembly-directed drugs bind to oligomeric complexes tighter than to single 

subunits

b. dissociation of subunits becomes locally unfavorable

c. the rate and extent of assembly increases

d. free subunit is depleted

e. incomplete and defective particles are kinetically trapped

f. protein dynamics are modulated

In many cases, structural protein-directed molecules modify the preferred orientation of 

adjacent subunits:

a. assembly reactions can proceed off-path

b. reaction products include heterogenous mis-assemblies

c. pre-formed capsids experience a global strain

d. strained capsids may rupture

By preferentially binding subunit oligomer, assembly reactions are driven forward. A 

hypothetical capsid assembly inhibitor would have a much more demanding task: binding 

protein subunit very tightly, and with nearly equivalent stoichiometry. In contrast, a modest 

increase of the subunit interaction energy can be leveraged into a dramatic change in 

the reaction products, as seen with CpAMs driving HBV assembly to yield empty and 

deformed capsids. The proposed mechanism of picornavirus uncoating inhibitors and 

HIV maturation inhibitors also share this theme: picornavirus capsids are over-stabilized, 

preventing uncoating; HIV CA hexamers are over-stabilized at the expense of Gag cleavage 

and subsequent maturation.

A further consequence of using small molecules to strengthen the interface between two 

protein subunits is that the relative orientations of subunits are likely to be modified. This 

could be as simple as extra atoms forming a wedge, or it could be a more dynamic or 

allosteric shift in the conformational ensemble between two subunits. Finally, a combination 

of the two effects (increased local association energy and modified preferred orientation) can 

lead to circumstances where a capsid becomes globally strained and ruptures, as observed 

with DBT1 in HBV and PF74 in HIV.

Antiviral molecules directed against structural proteins facilitate action at a distance. They 

are assembly agonists, maturation inhibitors, modulators of capsid dynamics, inhibitors 

of nucleic acid release, and destabilizers of large complexes. In all cases evolution has 

optimized the structural protein interactions to the requirements of the viral lifecycle. 

Targeted modification of these interactions is disruptive to the virus. These principles 

provide a framework with which to approach further antiviral research.
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Figure 1. Antiviral binding sites on a picornavirus capsid.
(a) A coxsackie virus capsid (1cov), with the viral structural proteins Vp1–3 colored blue, 

red, and green, respectively; Vp4 is inside the capsid and not visible in this image. Two 

distinct sites for capsid-directed antiviral compounds are denoted with arrows. (b) The 

binding site for compound 17 (CP17, pink), from Abdelnabi et al. 2019 (6gzv), is at an 

interface of a Vp3 and the two adjacent Vp1 molecules (one shown in white). The view is 

from the outside of the capsid. (c) In contrast, the binding location for pleconaril (magenta), 

binding the same site as a WIN compound, only contacts a single copy of Vp1 and is 

not located at an intermolecular interface (1ncr). (d) A surface representation of the same 

complex as (c) emphasizes that pleconaril is completely enclosed by Vp1.
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Figure 2. The effects of CpAM binding to HBV core protein.
(a) Electron micrographs of assembled HBV Cp dimer. (left panel) Virus-like particles are 

~35nm icosahedra. Inset: an model of a T=4 capsid structure with chains colored according 

to quasi-equivalent environment. When assembled in the presence of a HAP (right panel), 

reaction products include large misassembled structures (40). (b) A hexamer fragment of 

a T=4 capsid structure in complex with a HAP (44). Coloring is the same as in the inset 

in the left panel of a, except with the HAP molecules colored gray. The HAP molecules 

bind at the interface between two adjacent subunits. (c) One site, multiple chemistries: 

a selection of CpAMs which target the interface between HBV capsid protein subunits. 

Despite occupying the same site, each molecule has a distinct binding mode, and associated 

phenotype (47, 49, ••52) (d) A simplified reaction schematic for how CpAMs disrupt pre-

formed capsids. Increasing the per-contact association energy causes favorable, but modified 

pairwise orientation that induces global strain. Strained capsids will rupture to relieve strain 

(53). Components in this figure are extracted from or adapted from figures in references 

(40), (44), and (••52).
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Figure 3. The HIV CA domain with hexamer-stabilizing small molecules.
(a) A ribbon diagram of a top view of a mature CA hexamer with bound P74 (PDB: 4u0e). 

The P74 molecule (space filling with carbons in gray) fits into a pocket largely formed by 

the NTD (top) and completed by the CTD from the neighboring subunit (CTDs are partially 

obscured by the NTD). (b) A CTD-SP1 construct representing a fragment of immature Gag 

with bound bevirimat (PDB: 6n3u). The CTD is on top. The last residue in the CTD, L363 

(black), and SP1 (gray) are partially obscured. Electron density for bevirimat (magenta), 

contoured at 1.1 σ, fills a cylindrical gap in the ring of helices, presumably stabilizing them 

and blocking accessibility to protease.
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