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Abstract

Humans spend a lifetime learning, storing and refining a repertoire of motor memories. For 

example, through experience, we become proficient at manipulating a large range of objects 

with distinct dynamical properties. However, it is unknown what principle underlies how our 

continuous stream of sensorimotor experience is segmented into separate memories and how 

we adapt and use this growing repertoire. Here we develop a theory of motor learning based 

on the key principle that memory creation, updating and expression are all controlled by a 

single computation – contextual inference. Our theory reveals that adaptation can arise both by 

creating and updating memories (proper learning) and by changing how existing memories are 

differentially expressed (apparent learning). This insight allows us to account for key features 

of motor learning that had no unified explanation: spontaneous recovery1, savings2, anterograde 

interference3, how environmental consistency affects learning rate4,5 and the distinction between 

explicit and implicit learning6. Critically, our theory also predicts novel phenomena – evoked 

recovery and context-dependent single-trial learning – which we confirm experimentally. These 

results suggest that contextual inference, rather than classical single-context mechanisms1,4,7–9, is 

the key principle underlying how a diverse set of experiences is reflected in our motor behaviour.

Throughout our lives, we experience different contexts, in which the environment exhibits 

distinct dynamical properties, such as when manipulating different objects or walking on 

different surfaces. Although it has been recognised that the brain maintains multiple motor 

memories appropriate for these contexts10,11, classical theories of motor learning have 

focused on how the brain adapts to a single type of environmental dynamics1,7,8. However, 
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with multiple memories come new computational challenges: the brain must decide when 

to create new memories12 and how much to express and update them for each movement 

we make. These operations, their governing principles and consequences on motor learning, 

remain poorly understood. Here, we propose a unifying principle – contextual inference 

– that specifies how sensory cues and state feedback affect memory creation, expression 

and updating. We show that contextual inference is the core feature that underlies a range 

of fundamental aspects of motor learning that were previously explained by a number of 

distinct and often heuristic processes.

COIN: a model of contextual inference

In order to formalise the role of contextual inference in motor learning, we developed the 

COIN (COntextual INference) model, a principled nonparametric Bayesian model of motor 

learning (see Methods). The COIN model is based on an internal model that specifies the 

learner’s assumptions about how the environment generates their sensory observations (Fig. 

1a, Extended Data Fig. 1a). Motor learning corresponds to online Bayesian inference under 

this generative model (Fig. 1b, Extended Data Fig. 1b). For this, the COIN model jointly 

infers contexts, their transitions, their dynamical and sensory properties, and the current 

state of each context, such that each motor memory stores the learner’s inferences about 

a different context (for validation, see Extended Data Fig. 2a–b). The major challenge in 

motor learning is that neither contexts nor their transitions come labelled, and thus the 

learner needs to continually infer which context they are in based on a continuous stream of 

experience.

The result of contextual inference is a posterior distribution expressing the probability with 

which each known context, or a yet-unknown novel context, is currently active (Fig. 1b, top 

row). In turn, contextual inference determines memory creation, expression and updating 

(Fig. 1b, numbered arrows). Fig. 1c–f (and Extended Data Fig. 1c–e) illustrates this in 

a simulation of the COIN model (parameters in Extended Data Fig. 3) when handling 

objects of varying weights. For determining the current motor command (Fig. 1e), rather 

than selecting a single memory to be expressed11,12, the state associated with each memory 

(Fig. 1d) is expressed commensurate with the probability of the corresponding context under 

the posterior, computed after observing the sensory cue but before movement (‘predicted 

probability’; Fig. 1b, arrow 1; Fig. 1f1). After movement, the ‘responsibility’ of each 

known context as well as of a novel, yet-unknown context is computed as their posterior 

probability given both the cue and the resultant state feedback. A new memory is created 

flexibly, whenever the responsibility of a novel context becomes high (Fig. 1b, arrow 2; 
Fig. 1f2). Critically, context responsibilities also scale the updating of the previously existing 

memories and any newly created memory (Fig. 1b, arrows 3; Fig. 1f3, red and pink arrows 

respectively showing how high and low responsibility for the red context speeds up and 

slows down the updating of its state, Fig. 1d). Finally, these responsibilities are used to 

compute the predicted context probabilities on the next time step (Fig. 1f1).

In summary, the COIN model proposes that contextual inference is core to motor learning. 

In particular, unlike in traditional models of learning, adaptation to a change in the 

environment (e.g. Fig. 1e, blue and cyan arrows) can arise from two distinct and interacting 
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mechanisms. First, in line with classical notions of learning, proper learning constitutes 

the creation and updating of memories (the inferred states of known contexts; Fig. 1d, 

blue arrow). Second, apparent learning occurs due to the updating of the predicted context 

probabilities (Fig. 1f1, cyan arrow), thereby altering the extent to which existing memories 

are ultimately expressed in behaviour.

Apparent learning underlies memory recovery

As an ideal litmus test of the contributions of contextual inference to memory creation 

and expression (Fig. 1b, arrows 1–2), we revisited a widely-used motor learning paradigm. 

In this paradigm (Fig. 2a and b, top left), participants learn a perturbation P+ applied 

by a robotic interface while reaching to a target. Adaptation is assessed using occasional 

channel trials, Pc, which remove movement errors and measure the forces participants use to 

counteract the perturbation (Fig. 2a, see Methods for details). Exposure to P+ is followed by 

brief exposure to the opposite perturbation, P−, bringing adaptation back, near to baseline. 

Finally, a series of channel trials is administered. As in previous studies1, our participants 

showed the intriguing feature of spontaneous recovery in this phase (Fig. 2c): a transient 

re-expression of P+ adaptation, rather than a simple decay towards baseline.

Although this paradigm has no explicit sensory cues, according to our theory, contextual 

inference plays an important role. When simulated for this paradigm (Fig. 2b), the COIN 

model starts with a memory appropriate for moving in the absence of a perturbation (P0, 

blue Fig. 2b, bottom left) and creates new memories for the P+ (red) and P− (orange) 

perturbations. Spontaneous recovery arises due to the dynamics of contextual inference. 

As P+ has been experienced in most trials, it is quickly inferred to be active with a high 

probability during the channel-trial phase (Fig. 2b, top right). Therefore, as its state has 

not yet decayed (Fig. 2b bottom left), the memory of P+ is transiently expressed in the 

participant’s motor output (Fig. 2b bottom right). This mechanism is fundamentally different 

from that of a classical, single-context model of motor learning, the dual-rate model1. 

There, motor output is determined by a combination of individual memories that update 

at different rates (fast and slow) but whose expression does not change over time. Thus 

the dynamics of adaptation is solely determined by the dynamics of memory updating, i.e. 

proper learning. In contrast, in the COIN model, changes in motor output can occur without 

updating any individual memory, simply due to changes in the extent to which existing 

memories are expressed due to contextual inference, i.e. apparent learning. This mechanism 

allows the COIN model to account robustly for spontaneous recovery (Extended Data Fig. 

4a), including elevated or reduced levels when the P+ phase is extended13 (Extended Data 

Fig. 5a–j) or when P− is experienced prior to the P+ phase14 (Extended Data Fig. 5k–o), 

respectively.

In order to distinguish between proper and apparent learning as the main mechanism 

underlying spontaneous recovery, we designed a novel ‘evoked recovery’ paradigm (similar 

to the reinstatement paradigm in classical conditioning15) in which sensorimotor evidence 

clearly indicates that a change in context has occurred. For this, two early trials in the 

channel-trial phase of the spontaneous recovery paradigm were replaced with P+ (‘evoker’) 

trials (Fig. 2d, top left, akin to trigger trials in visuomotor learning11). In this case, the 
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COIN model predicts a strong and long-lasting recovery of P+-adapted behaviour (Fig. 2d, 

bottom right; Extended Data Fig. 4b), primarily due to the inference that the P+ context is 

now active (Fig. 2d, top right, red) and the gradual decay of the P+ state over subsequent 

channel trials (Fig. 2d, bottom left, red). In addition, our mathematical analysis suggested 

that evoked as well as spontaneous recovery are inherent features of the COIN model 

(Suppl. Inf. and Extended Data Fig. 6a–c). In contrast, the dual-rate model only predicts a 

transient recovery that rapidly decays due to the same underlying adaptation process with 

fast dynamics governing both recovery and decay (Extended Data Fig. 6d).

In line with COIN model predictions, participants showed a strong evoked recovery in 

response to the P+ trials (Fig. 2e). This recovery lasted for the duration of the experiment, 

defying models that predict a simple exponential decay to baseline4,11,16 (Extended Data 

Fig. 6e and Extended Data Table 1). We fit the COIN and dual-rate models to individual 

participants’ data in both experiments (Fig. 2c & e). The COIN model fit the data accurately, 

but the dual-rate model (and its multi-rate extensions, Extended Data Fig. 6d) showed a 

qualitative mismatch in the time course of decay of evoked recovery (insets in Fig. 2c 

& e). Formal model comparison provided strong support for the COIN model overall (Δ 

group-level BIC of 302.6 and 394.1 nats for the spontaneous and evoked recovery groups, 

respectively) and for the majority of participants (6 out of 8 for each experiment; individual 

fits shown in Extended Data Fig. 6f, Extended Data Fig. 2c–e).

The COIN model explains memory recovery by creating a new memory only when existing 

memories cannot account for a perturbation, such as on the abrupt introduction of P+ and 

P−, but not when a new perturbation is introduced gradually. This explains why deadaptation 

is slower following the removal of a gradually (vs. abruptly) introduced perturbation17 

(Extended Data Fig. 5p–s).

Memory updating depends on contextual inference

In the COIN model, contextual inference also controls how each existing memory is 

updated, that is proper learning (Fig. 1b, arrows 3). In the COIN model all memories 

are updated, with the updates scaled by their respective inferred responsibilities (Fig. 1f3). 

This contrasts with models which only update a single memory11,12 or update multiple 

memories independent of context1,18. To test this prediction, we examined the extent to 

which memories for two contexts were updated when we modulated their responsibilities by 

controlling the sensory cue and state feedback – the two observations that determine context 

responsibilities (Fig. 1b).

In many natural scenarios, sensory cues and state feedback provide consistent evidence 

about context (e.g. larger cups are heavier), and thus context responsibilities are 

approximately all-or-none (Fig. 1f3). Thus to test for graded memory updating, we created 

conflicts between cues and state feedback (akin to a light, large cup). Specifically, 

participants experienced an extensive training phase designed to form separate memories 

for two contexts associated with a distinct cue (target location) and perturbation (Fig. 3a; 

context 1 = P1
+ and context 2 = P2

−, with sub- and superscript specifying sensory cue 

and perturbation sign, respectively). These contexts switched randomly (with probability 
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0.5; Fig. 3b). As expected19, participants formed separate memories for each context and 

expressed them appropriately based on the sensory cues (Extended Data Fig. 7a). In a 

subsequent test phase, we studied the updating of one of the memories, that associated with 

context 1, in response to exposure to a single trial of a potentially conflicting cue-feedback 

combination. To quantify single-trial learning for the memory associated with context 1, we 

assessed the adaptation of this memory using channel trials with the appropriate cue (cue 

1) both before and after an exposure trial (Fig. 3c). The change in adaptation from the first 

to last channel trial of this ‘triplet’ (channel-exposure-channel) reflects single-trial learning 

in response to the exposure trial4,5. To bring adaptation back close to baseline before each 

triplet, we used sequences of washout trials, pairing P0 with the sensory cues (P1
0 and P2

0).

The COIN model predicted that the responsibility of context 1, and hence the updating of 

the corresponding memory (as reflected in single-trial learning; Fig. 3d, column 2, Extended 

Data Fig. 4c), should exhibit a graded pattern that arises over training (Extended Data Fig. 

7b): it should be greatest when the cue and state feedback on the exposure trial both provide 

evidence of context 1 (P1
+ exposure trial), least when both provide evidence for context 2 

(P2
− exposure trial) and intermediate when the two sources of evidence are in conflict (P2

+

and P1
− exposure trials; see also Suppl. Inf. and Extended Data Fig. 7c–d for an analytical 

approximation). Comparing the two conditions with intermediate updating, due to the cues 

being paired with P0 in the washout trials, we also expected the cue to have a weaker effect 

than the perturbation and therefore less updating of the memory for context 1 following 

exposure with P1
− than with P2

+.

The pattern of single-trial learning in pre- and post-training confirmed the COIN model’s 

qualitative predictions (Fig. 3d, column 1). Prior to training, there was no significant 

difference in single-trial learning across exposure conditions (two-way repeated-measures 

ANOVA, F1,23 = 2.40, p = 0.135 for cue, F1,23 = 0.97, p = 0.335 for perturbation). 

After learning, single-trial learning showed a gradation across conditions with a significant 

modulatory effect for both the cue and the perturbation (F1,23 = 10.35, p = 3.82 × 10−3 

for cue, F1,23 = 21.16, p = 1.26 × 10−4 for perturbation, with no significant interaction, 

F1,23 = 0.64, p = 0.432; Extended Data Fig. 7e). The modulatory effects of the cue and the 

perturbation were not confined to separate subsets of participants (Fisher’s exact test, odds 

ratio = 1.0, p = 1.00, see Methods and Extended Data Fig. 7f). After fitting to the data, the 

COIN model also accounted quantitatively for how single-trial learning changed during the 

training phase (Extended Data Fig. 7b). Taken together, the pattern of single-trial learning 

shows the gradation in memory updating (at an individual participant-level) predicted by the 

COIN model, with multiple memories updated in proportion to their responsibilities.

Apparent changes in learning rate

The COIN model also suggested an alternative account of classical results about apparent 

changes in learning rate under a variety of conditions. Fig. 4 shows three paradigms 

(column 1) with experimental data (column 2). What is common in all these cases is 

that the empirical finding of trial-to-trial changes in adaptation has been interpreted as 
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proper learning, i.e. changes to existing memories (states). Thus differences between the 

magnitudes of these changes have been interpreted as differences in learning rate. For 

example, savings (Fig. 4a) refers to the phenomenon that learning the same perturbation 

a second time (even after washout) is faster than the first time1,2,20,21. In anterograde 

interference (Fig. 4b) learning a perturbation (P−) is slower if an opposite perturbation (P+) 

has been learned previously3, with the amount of interference increasing with the length of 

experience of the first perturbation. The persistence of the environment has also been shown 

to affect single-trial learning (Fig. 4c)4,5: more consistent environments lead to increased 

levels of single-trial learning.

The COIN model suggests that changes in adaptation can occur without proper learning, 

simply through apparent learning, that is by changing the way existing memories are 

expressed (Fig. 1d–f, blue vs. cyan arrows). Therefore, apparent changes in learning rate 

in these paradigms may be due to changes in memory expression rather than changes 

in memory updating. To test this hypothesis, we simulated the COIN model using the 

parameters obtained by fitting each of the 40 participants in our experiments (Extended 

Data Fig. 3), thus providing parameter-free predictions. The COIN model reproduced the 

pattern of adaptation and single-trial learning seen in these paradigms (Fig. 4 and Extended 

Data Fig. 8, column 3; Extended Data Fig. 4d–f). Crucially, differences in the apparent 

learning rate were not driven by differences in either the proper learning rate (Kalman gain, 

see Methods) or the underlying state (column 4). Instead, they were driven by changes in 

contextual inference (column 5). For example, according to the COIN model, in savings 

P+ is expected with higher probability during the second exposure after having experienced 

it during the first exposure. Similarly, anterograde interference arises as more extended 

experience with P+ makes it less probable that a transition to other contexts (i.e. P−) will 

occur. Finally, more (less) consistent environments lead to higher (lower) probabilities with 

which contexts are predicted to persist to the next trial, leading to more (less) memory 

expression, as reflected in single-trial learning. More generally, our analysis of the COIN 

model indicated that single-trial learning can be expressed mathematically as a mixture of 

two processes that both depend on contextual inference (see Suppl. Inf. and Extended Data 

Fig. 7c–d) and each of which can be dissected by the appropriate experimental manipulation: 

proper learning (as studied in Fig. 3) and apparent learning (as studied in Fig. 4c).

Cognitive mechanisms in contextual inference

In addition to providing a comprehensive account of the phenomenology of motor learning, 

the COIN model also suggests how specific cognitive mechanisms contribute to the 

underlying computations. For example, associating working memory with the maintenance 

of the currently estimated context probabilities explains how a working memory task can 

effectively lead to evoked recovery in a modified version of the spontaneous recovery 

paradigm22 (see Suppl. Inf. and Extended Data Fig. 9a–d). Furthermore, identifying explicit 

and implicit forms of visuomotor learning with inferences in the model about state (i.e. 

estimate of visuomotor rotation) versus a bias parameter (i.e. sensory recalibration between 

the proprioceptive and visual locations of the hand), respectively, explains the complex time 

courses of these components of learning23–25 (see Suppl. Inf. and Extended Data Fig. 9e–l).
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Discussion

The COIN model puts the problem of learning a repertoire of memories — rather than 

a single motor memory — centre stage. Once this more general problem is considered, 

contextual inference becomes a key computation that unifies seemingly disparate data 

sets. By partitioning motor learning into two fundamentally different processes, contextual 

inference (Fig. 1b, top row) and state inference (Fig. 1b, bottom rows), the COIN model 

provides a principled framework for studying the neural bases of learning motor repertoires 

(see Suppl. Inf.).

In contrast to the COIN model, previous theories of motor learning typically did not 

have a notion of context1,4,18. In the few cases in which contextual motor learning 

was considered within a principled probabilistic framework11,16,26, the generative models 

underlying learning did not incorporate fundamental properties of the environment (e.g. 

context transitions, cues or state dynamics) that are critical for explaining a number of 

learning phenomena. Consequently, previous models can only account for a subset of the 

data sets we model (Extended Data Table 1), which they were often hand-tailored to address.

There are deep analogies between the context-dependence of learning in the motor system 

and other learning systems, both in terms of their phenomenologies and the computational 

problems they are trying to solve12,27–30. However, there is one important conceptual issue 

that has been absent from work on contextual learning in other domains that our work has 

brought to the fore – the distinction between proper learning and apparent learning. We 

have shown that many features of motor learning arise not from the updating of existing 

memories (proper learning) but from changes in the extent to which existing memories 

are expressed (apparent learning). This distinction, and the role of contextual inference in 

both proper and apparent learning, is likely to be relevant to all forms of learning in which 

experience can be usefully broken down into discrete contexts – in the motor system and 

beyond.

Methods

Here, we provide an overview of the methods. For full details see Suppl. Inf.

Participants

Forty right-handed, neurologically-healthy participants (18 males and 22 females; age 27.7 

± 5.6 yr, mean ± s.d.) participated in two experiments, which had been approved by 

the Cambridge Psychology Research Ethics Committee and the Columbia University IRB 

(AAAR9148). All participants provided written informed consent.

Experimental apparatus

Experiments were performed using a vBOT planar robotic manipulandum with virtual-

reality system and air table31. Participants grasped the handle of the manipulandum with 

their right hand while their forearm was supported on an air sled and moved their hand in the 

horizontal plane.
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The manipulandum controlled a virtual “object” that was displayed centred on the hand and 

translated with hand movements as participants made repeated movements from a home 

position to a target located 12 cm distally in the sagittal direction.

On each trial, the vBOT could either generate no forces (P0, null field), a velocity-dependent 

curl force field (P+ or P− perturbation depending on the direction of the field) or a force 

channel (Pc, channel trials). For the curl force field, the force generated on the hand was 

given by

Fx
Fy

= g 0 −1
1 0

ẋ
ẏ (1)

where Fx, Fy, ẋ and ẏ are the forces and velocities at the handle in the x (transverse) and y 

(sagittal) directions respectively. The gain was set to ±15 N·s·m−1, with the sign specifying 

the direction of the curl field (counterclockwise or clockwise, which were assigned to P+ 

and P−, counterbalanced across participants). On channel trials, the hand was constrained 

to move along a straight line to the target by simulating channel walls on each side of the 

straight line as stiff springs (3,000 N·m−1) with damping (140 N·s·m−1)32,33.

Experiment 1: spontaneous and evoked recovery

Sixteen participants were assigned to either a spontaneous (n = 8) or evoked (n = 8) recovery 

group. The virtual object controlled by participants was simply a cursor.

Participants in the spontaneous recovery group performed a version of the standard 

spontaneous recovery paradigm1. A pre-exposure phase (50 trials) with a null field (P0) 

was followed by an exposure phase (125 trials) with P+. Participants then underwent a 

counter-exposure phase of 15 trials with the opposite perturbation (P−). This was followed 

by a channel-trial phase (150 channel trials, Pc). In the pre-exposure and exposure phases, to 

assess adaptation, each block of 10 trials had one channel trial (Pc) in a random location (not 

the first). A 45 s rest break was given after trial 60 of the exposure phase, followed by an 

additional 5 P+ trials prepended to the next block.

The evoked recovery group experienced the identical paradigm to the spontaneous recovery 

group except that the 3rd and 4th trials of the channel-trial phase were replaced with P+ trials 

(Fig. 2d).

Experiment 2: memory updating

Twenty-four participants performed the memory updating experiment. The paradigm is 

based on the control point experiment described in Ref. 19 in which perturbations P1
0, P2

0, 

P1
+, P2

+, P1
− and P2

− are presented with one of two possible sensory cues (different control 

points on a rectangular virtual object, denoted by subscripts). The experiment consisted of 

a pre-training, training and post-training phase. In the pre-training and post-training phases, 

participants performed blocks of trials consisting of a variable number (8, 10 or 12 in the 

pre-training phase and 2, 4 or 6 in the post-training phase) of washout trials (an equal 

number of P1
0 and P2

0 in a pseudorandom order) followed by 1 of 4 possible ‘triplets’. Each 
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triplet consisted of 2 channel trials (both with cue 1, P1
c) bracketing a cue-perturbation 

‘exposure’ trial (P1
+, P2

+, P1
− or P2

−, see main text and Fig. 3c). Each of the 4 triplet types 

was experienced once every 4 blocks, using pseudorandom permutations, with a total of 16 

blocks in the pre-training phase and 32 blocks in the post-training phase.

In the training phase (Fig. 3b), participants performed 24 blocks each consisting of 62–70 

trials. The key feature of each block was that 32 force-field trials (equal number of P1
+ and 

P2
− in a pseudorandom order) was followed by 2 triplets (with exposure trials of P1

+ and P2
−). 

Each triplet was preceded by a variable number of washout trials (equal number of P1
0 and P2

0

in a pseudorandom order) to bring adaptation back close to baseline. For full details of the 

block structure see Suppl. Inf.

The control point assigned to sensory cue 1 (used on all triplet channel trials) and sensory 

cue 2 was counterbalanced across participants as was the direction of force field assigned to 

P+ and P−.

Data analysis

On each channel trial, we linearly regressed the time series of actual forces generated by 

participants into the channel wall against the ideal forces that would fully compensate for the 

forces on a force-field trial1. The offset of the regression was constrained to zero, and we 

used the slope as our (dimensionless) measure of adaptation.

To identify changes in single-trial learning between triplets in the memory updating 

experiment, two-way repeated-measures ANOVAs were performed with factors of cue 

(2 levels: cue 1 and cue 2) and perturbation (2 levels: P+ and P−). To test whether 

the modulatory effects of cue and perturbation were confined to separate subsets of 

participants, we quantified the effect of each by computing, on an individual-participant 

basis, the following contrasts in single-trial learning: P1
+ + P1

− − P2
+ − P2

− (cue effect) and 

P1
+ + P2

+ − P1
− − P2

− (perturbation effect). We then split participants into 2×2 groups based on 

whether each effect was below or above the median of each effect and performed a Fisher’s 

exact test on the resulting 2×2 histogram (see Suppl. Inf. for details).

All statistical tests were two-sided with significance set to p < 0.05. Data analysis was 

performed using MATLAB R2020a.

COIN generative model

Fig. 1a shows the graphical model for the generative model. At each time step t = 1, …, 

T there is a discrete latent variable (the context) ct ∈ {1, …, ∞} that evolves as a Markov 

process:

ct ∣ ct − 1, Π Discrete πct − 1 , (2)
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where Π = πj j = 1
∞  is the transition probability matrix and πj = πjk k = 1

∞  is its jth row 

containing the transition probabilities from context j to each context k (including itself). 

In principle, there are an infinite number of rows and columns in this matrix. However, in 

practice, generation and inference can both be accomplished using finite-sized matrices by 

placing a nonparametric prior on the matrix (see below).

Each context j is associated with a continuous (scalar) latent variable xt
(j) (the state, e.g. 

the strength of a force field) that evolves according to its own linear-Gaussian dynamics 

independently of all other states:

xt
(j) = a(j)xt − 1

(j) + d(j) + wt
(j) wt

(j) N 0, σq2 , (3)

where a(j) and d(j) are the context-specific state retention factor and drift, respectively, and 

σq2 is the variance of the process noise (shared across contexts). Each state is assumed to 

have existed for long enough that its prior for the first time it is observed is its stationary 

distribution:

lim
t ∞

xt
(j) N(d(j)/(1 − a(j)), σq2/(1 − a(j) 2)) . (4)

At each time step, a continuous (scalar) observation yt (the state feedback) is emitted from 

the state associated with the current context:

yt = xt
ct + vt vt N 0, σr2 , (5)

where σr2 is the variance of the observation noise (also shared across contexts).

In addition to the state feedback, a discrete observation (the sensory cue) qt ∈ {1, …, ∞} is 

also emitted. The distribution of sensory cues depends on the current context:

qt ∣ ct, Φ Discrete ϕct , (6)

where Φ = ϕj j = 1
∞  is the cue probability matrix (which, in principle, is also doubly infinite 

in size but can be treated as finite in practice) and ϕj = ϕjk k = 1
∞  is its jth row containing the 

probability of each cue k in context j.

In order to make this infinite-dimensional switching state-space model well-defined, we 

place hierarchical Dirichlet process priors34 on the transition and cue probability matrices. 

The transition probability matrix is generated in two steps (Extended Data Fig. 1a). First, an 

infinite set of global probabilities for transitioning into each context β = βj j = 1
∞  (‘global 

transition probabilities’) is generated by sampling from a GEM (Griffiths, Engen and 

McCloskey) distribution:
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β ∣ γ GEM(γ), (7)

where 0 ≤ βj ≤ 1 and ∑j = 1
∞ βj = 1, as required for a set of probabilities. The global transition 

probabilities decay exponentially as a function of j in expectation, with the hyperparameter 

γ controlling the rate of decay and thus the effective number of contexts: large γ implies 

a large number of small-probability contexts (slow decay from a relatively small initial 

probability), whereas small γ implies a smaller number of relatively large-probability 

contexts (fast decay from a relatively large initial probability).

Second, for each context (row of the transition probability matrix), an infinite set of 

local (context-specific) probabilities for transitioning into each context πj = πjk k = 1
∞  (‘local 

transition probabilities’) are generated via a ‘sticky’ variant35 of the Dirichlet process (DP):

πj ∣ α, β, κ DP α + κ, αβ + κδj
α + κ , (8)

where 0 ≤ πjk ≤ 1 and ∑k = 1
∞ πjk = 1, as required for a set of probabilities, and δj is an 

infinite-dimensional one-hot vector with the jth element set to 1 and all other elements set to 

0. The mean (base) distribution of the Dirichlet process is (αβ + κδj)/(α + κ), with large α + 

κ reducing variability around this mean (for a tutorial on the Dirichlet process see Ref. 36). 

Thus the concentration parameter α controls the resemblance of local transition probabilities 

to the global transition probabilities β. The self-transition bias parameter κ > 0 controls the 

resemblance of local transition probabilities to δj (i.e. a certain self-transition, ct = ct−1 = j). 
This self-transition bias expresses the fact that a context often persists for several time steps 

before switching (i.e. that contexts are ‘sticky’), such as when an object is manipulated for 

an extended period of time.

Note that the rows of the transition probability matrix are dependent as their expected 

values (the base distributions of the corresponding Dirichlet processes) contain a shared 

term, the global transition distribution β. This dependency, controlled by α, captures the 

intuitive notion that contexts that are common in general (i.e. have a large global transition 

probability) will be transitioned to frequently from all contexts.

The cue probability matrix Φ = ϕj j = 1
∞  is generated using an analogous (non-sticky) 

hierarchical construction:

βe γe GEM γe ϕj αe, βe DP αe, βe , (9)

where γe determines the distribution of the global cue probabilities βe, and αe determines 

the across-context variability of local cue probabilities around the global cue probabilities.

In order to allow full Bayesian inference over the parameters governing the state dynamics 

ω(j) = a(j) d(j) T
, we also place a prior on these parameters. For this, we use a bivariate 

normal distribution (truncated for a(j) between 0 and 1):
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ω(j) ∣ μ, Σ TN(μ, Σ), (10)

where μ = [μa 0]⊤ and Σ = diag σa2, σd
2  is a diagonal covariance matrix. Here we have set the 

prior mean of d(j) to zero under the assumption that positive and negative drifts are equally 

probable.

Inference in the COIN model

At each time step t = 1, …, T, the goal of inference is to compute the joint posterior 

distribution p Θt ∣ y1:τ, q1:τ′  of all quantities Θt = {ct, {xt
(j), ω(j)}j = 1

∞ , β, Π, βe, Φ} that are not 

directly observed by the learner: the current context ct, the current state of each context 

xt
(j), the parameters governing the state dynamics in each context ω(j), the context transition 

parameters (global β and local Π transition probabilities) and the cue emission parameters 

(global βe and local Φ cue probabilities) based on the sequence of state feedback y1:τ 
and sensory cue observations q1:τ′. made until time τ and τ′, respectively (with τ and τ′ 
each being either t or t − 1, see below). In principle, this posterior is fully determined by 

the generative model defined in the previous section and can be obtained in a sequential 

manner by recursively propagating (‘filtering’) the joint posterior from one time point 

to the next after each new set of observations is made. As exact inference is infeasible, 

we use a sequential Monte Carlo method known as particle learning that computes an 

approximation to this filtered posterior37,38. We extensively validated the accuracy of this 

method (Extended Data Fig. 2a–b). The details of the inference method are given in Suppl. 

Inf. Here we only describe how the approximate posterior is used to obtain the main 

model-derived quantities plotted in the paper.

The predicted probability of context j ∈ {1, …, J,∅}, where J is the number of known 

contexts and ∅ is the novel context, on trial t (computed after observing the cue but before 

observing the state feedback; Fig. 1f1 and corresponding panels in later figures) is

p ct = j ∣ qt, … = ∫ p ct = j, Θt\ct ∣ qt, … dΘt\ct, (11)

where Θt\ct denotes the set Θt excluding ct and … represents all observations before time t 
(as in Fig. 1). The responsibility of context j on trial t (computed after observing both the 

cue and the state feedback; Fig. 1f2−3 and corresponding panels in later figures) is

p ct = j ∣ qt, yt, … = ∫ p ct = j, Θt\ct ∣ qt, yt, … dΘt\ct . (12)

The predicted state distribution for context j on trial t (computed before observing the state 

feedback; Fig. 1d and corresponding panels in later figures) is

p(xt
(j) ∣ …) = ∫ p(xt

(j), Θt\xt
(j) ∣ …)dΘt\xt

(j), (13)
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where Θt\xt
(j) denotes the set Θt excluding xt

(j). The mean of this distribution xt
(j) can be 

shown to evolve across trials (see Suppl. Inf.) as

xt + 1
(j) = Ep a(j) ∣ ct, qt, yt, … a(j) xt

(j) + p ct = j ∣ qt, yt, … kt
(j)et

(j)

+ Ep d(j) ∣ ct, qt, yt, … d(j) ,
(14)

where Ep a(j) ∣ ct, qt, yt, … a(j)  denotes the expected value of a(j) with respect to the 

distribution p a(j) ∣ ct, qt, yt, … , et
(j) = yt − xt

(j) is the prediction error for context j and kt
(j)

corresponds to the ‘Kalman gain’ for context j, which we plot in Fig. 4. Note that this update 

is scaled by the context’s responsibility p(ct = j | qt, yt,…), which underlies the effect of 

contextual inference on memory updating (arrows 3 in Fig. 1b).

The ‘overall’ predicted state distribution on trial t (i.e. the predicted state distribution of 

the context that is currently active, and of which the identity the learner cannot know 

with certainty; purple distribution in Fig. 1e and corresponding panels in later figures) is 

computed by integrating out the context from Eq. 13 using the predicted probabilities from 

Eq. 11 (arrow 1 in Fig. 1b):

Ep(ct ∣ qt, …) p(xt
(ct) ∣ …) = ∑

j = 1, …, J, ∅
p(xt

(j) ∣ …)p(ct = j ∣ qt, …) . (15)

The motor output ut of the learner (cyan line in Fig. 1e and corresponding panels in later 

figures) is the mean of this predicted state distribution:

ut = ∑
j = 1, …, J, ∅

xt
(j)p ct = j ∣ qt, … . (16)

Applying the COIN model to experimental data

Applying the COIN model to experimental data required solving two additional challenges. 

First, participants’ state feedback observations are hidden from the perspective of the 

experimenter, as they are noisy realisations of the ‘true’ underlying states (Eq. 5). To 

appropriately account for our uncertainty about the state feedback participants actually 

observed, we computed the distribution of COIN model inferences by integrating over the 

possible sequences of state feedback observations y1:T given the sequence of true states 

(experimentally-applied perturbations)x1:T* 39. Specifically, on each trial, xt* was assigned a 

value of 0 (null-field trials), +1 (P+ perturbation trials) or −1 (P− perturbation trials) and yt 

was assumed to be distributed around xt* with i.i.d. zero-mean Gaussian observation noise 

of variance σr2 (Eq. 5), except on channel trials (Pc) where we treated yt as unobserved, 

as the state (the magnitude of a force field) was not observed by the participants on those 

trials. Note that the distribution of state feedback given the true state p yt ∣ xt*  shares the 

same parameters as those underlying the COIN model inferences as it is self-consistently 

defined by the generative model. All figures showing COIN model inferences applied to 

Heald et al. Page 13

Nature. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experimental data (i.e. all but Fig. 1) show the quantities described in the previous section 

after the state feedback has been integrated out (Fig. 1d–f shows COIN model inferences 

conditioned on the state feedback sequence shown in Fig. 1c).

Second, real participants’ behaviour can always be subject to influences not explicitly 

included in the COIN model. In order to account for these uncontrolled and unmodelled 

factors, we introduced a phenomenological ‘motor noise’ component that related the motor 

output ut of the COIN model (Eq. 16) to the experimentally measured adaptation at via i.i.d. 

zero-mean Gaussian noise:

at N ut, σm2 , (17)

where σm is the standard deviation of the motor noise.

Model fitting and model comparison

In Experiments 1 and 2, we fit the parameters of the COIN model ϑ to participants’ data 

by maximising the data log likelihood using Bayesian adaptive direct search (BADS)40. In 

Experiment 1, ϑ = {σq, μa, σa, σd, α, ρ, σm}, where

ρ = κ/(α + κ) (18)

is the normalised self-transition bias parameter. In Experiment 2, which included sensory 

cues, an additional parameter αe was also fit. In Experiment 1, we also fit a two-state (dual-

rate) and three-state state-space model to the data of individual participants by minimising 

the mean squared error using MATLAB’s fmincon and BADS. In all cases, optimisation was 

performed from 30 random initial parameter settings (see Suppl. Inf.).

To perform model comparison for individual participants, we calculated the Bayesian 

information criterion (BIC). A BIC difference of greater than 4.6 nats (a Bayes factor of 

greater than 10) is considered to provide strong evidence in favour of the model with the 

lower BIC value41. To perform model comparison at the group level, we calculated the 

group-level BIC, which is the sum of BICs over individuals42.

Parameter and model recovery

We used the parameters from the fits of the COIN and dual-rate models to the data of each 

participant in the spontaneous and evoked recovery experiments to generate 10 synthetic 

data sets per model class (COIN and dual-rate) for each participant from the corresponding 

experiment. In the dual-rate model, the only source of variability across the different 

synthetic data sets for a given participant was motor noise. In contrast, for the COIN model, 

sensory noise provided another source of variability in addition to motor noise. We fit both 

model classes to each synthetic data set as we did with real data (see above).

For parameter recovery (Extended Data Fig. 2c), we compared the COIN model parameters 

that were used to generate the synthetic data (‘true’ parameters) with the COIN model 

parameters fit to these synthetic data sets (‘recovered’ parameters).
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For model recovery (Extended Data Fig. 2d–e), we examined the proportion of times the 

difference in BIC between the COIN and dual-rate fits favoured the true model class that 

generated the data.

Simulating existing data sets

We performed COIN model simulations on a diverse set of extant data in Fig. 4 (similarly 

Extended Data Figs. 5, 8 and 9) in a purely cross-validated manner, such that we used model 

parameters fitted to participants in our own experiments to make predictions for experiments 

conducted in other laboratories using other paradigms.

The paradigms in Fig. 4 and Extended Data Fig. 8 were simulated using the 40 sets of 

parameters fit to our individual participants’ data from both experiments. One hundred 

simulations (each conditioned on a different noisy state feedback sequence) were performed 

for each parameter set. The results shown are based on the average of all of these 

simulations.

The paradigms in Extended Data Fig. 5a–o and Extended Data Fig. 9 were variations of 

the standard spontaneous recovery paradigm. Therefore, we simulated these paradigms (as 

well as the paradigm in Extended Data Fig. 5p–s) using the parameters fit to the average 

spontaneous and evoked recovery data sets. One hundred simulations (each conditioned on a 

different noisy state feedback sequence) were performed. The results shown are based on the 

average of these simulations.

Modelling working memory

A working memory task performed after the last P− trial of a spontaneous recovery 

paradigm has been shown to interfere with spontaneous recovery, producing an effect that 

is reminiscent of evoked recovery on the first Pc trial (Extended Data Fig. 9a, Ref. 22). 

We modelled the effect of the working memory task as selectively abolishing the (working) 

memory of the responsibilities on the last P− trial (Extended Data Fig. 9b–d). This means 

that on the first Pc trial, the predicted probabilities are based on the expected context 

frequencies (the stationary probabilities).

Modelling visuomotor learning and its explicit and implicit components

In visuomotor rotation experiments, the cursor moves in a different direction to the hand 

(which is occluded from vision). Hence, visuomotor rotations introduce a discrepancy 

between the location of the hand as sensed by vision and proprioception. To model this 

discrepancy, we include a context-specific bias parameter b ct  in the state feedback (Eq. 5):

yt = xt
ct + b ct + vt vt N 0, σr2 . (19)

To support Bayesian inference, we place a normal distribution prior over this parameter:

b(j) ∣ μb, σb N μb, σb
2 . (20)
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We set μb to zero based on the assumption that positive and negative biases are equally 

probable and σb to 70−1 by hand to match the empirical data in Extended Data Fig. 9e. We 

extend and modify the inference algorithm accordingly (see Suppl. Inf.).

On each trial, the state feedback was assigned a value of 0 (no rotation trials), +1 (P+ 

rotation trials) or −1 (P− rotation trials) plus i.i.d. zero-mean Gaussian observation noise 

with variance σr2. Visual error-clamp trials (Pc) were modelled in the same way as channel 

trials (i.e. with state feedback unobserved). Adaptation was modelled as the mean of the 

predicted state feedback distribution (Extended Data Fig. 5q and Extended Data Fig. 9f, 

dashed pink) plus Gaussian motor noise.

We also modelled an experiment in which an explicit judgement of the perturbation is 

obtained on every trial, and the implicit component is taken as the difference between 

adaption and the explicit judgement23. We hypothesised that participants have explicit access 

to the state representing their belief about the visuomotor rotation but do not have access 

to the bias in the state feedback, which is therefore implicit. Hence, we mapped the state 

of the context with the highest responsibility on the previous trial (Extended Data Fig. 9h, 

black line) onto the explicit component and the average bias across contexts weighted by 

the predicted probabilities (Extended Data Fig. 9j, cyan line) onto the implicit component. 

Adaptation is then, by definition, the sum of these two components (Extended Data Fig. 9e, 

solid pink) plus Gaussian motor noise. See Suppl. Inf. for full details.

Data availability

All experimental data are publically available at the Dryad repository (https://doi.org/

10.5061/dryad.m63xsj42r). The data include the raw kinematics and force profiles of 

individual participants on all trials as well as the adaptation measures used to generate 

the experimental data shown in Fig. 2c,e and Fig. 3d.

Code availability

Code for the COIN model is available at GitHub (https://github.com/jamesheald/COIN).
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Extended Data

Extended Data Fig. 1 |. Additional details of the COIN model (related to Fig. 1). a-b, Hierarchy 
and generalisation in contextual inference.
a, Local transition probabilities are generated in two steps via a hierarchical Dirichlet 

process. In the first step (top), an infinite set of global transition probabilities β are generated 

via a stochastic stick-breaking process (see Suppl. Inf.). Probabilities are represented by the 

width of bar segments with different colours indicating different contexts. In the second 

step (bottom), for each context (‘from context’), local transition probabilities to each other 

context (‘to context’) are generated (a row of Π) via a stochastic Dirichlet process and 

are equal to the global probabilities in expectation (bar a self-transition bias, which we 
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set to zero here for clarity). (An analogous hierarchical Dirichlet process, not shown, is 

used to generate the global and local cue probabilities.) b, Contextual inference updates 

both the global and local transition probabilities. Context transition counts are maintained 

for all from-to pairs of known contexts and get updated based on the contexts inferred on 

two consecutive time points (responsibilities at time points t and t + 1). These updated 

context transition counts are used to update the inferred global transition probabilities β . The 

updated global transition probabilities and context transition counts produce new inferences 

about the inferred local transition probabilities Π. Note that although the model infers full 

(Dirichlet) posterior distributions over both the global and local transition probabilities, for 

clarity here we only show the means of these posterior distributions (indicated by the hat 

notation). In the example shown, only row 3 of the context transition counts is updated (as 

context 3 has an overwhelming responsibility at time t), but all rows of the local transition 

probabilities are updated due to the updating of the global transition probabilities (if the 

model were non-hierarchical, there would be no global transition probabilities, and so the 

local transition probabilities would only be updated for context 3 via the updated context 

transition contexts). Thus inferences about transition probabilities generalise from one 

context (here context 3) to all other contexts (here contexts 1 and 2) due to the hierarchical 

nature of the generative model. Note that when a novel context is encountered for the first 

time, its local transition probabilities are initialised based on β , thus allowing well-informed 

inferences about transitions to be drawn immediately. c-e, Parameter inference in the 
COIN model for the simulation shown in Fig. 1c–f. In addition to inferring states and 

contexts, the COIN model also infers transition (c) and cue (d) probabilities, as well as the 

parameters of context-specific state dynamics (e). c, Transition probabilities. Top: Estimated 

global transition probabilities (solid lines) to each known context (line colours) and the 

novel context (grey). Pale lines show estimated stationary probabilities of the same contexts 

representing the expected proportion of time spent in each context given the current estimate 

of the local transition probabilities (below). Bottom three panels: estimated local transition 

probabilities from each context (colours as in top panel). d, Estimated global (top panel) 

and local cue probabilities for the three known contexts (bottom three panels) and cues 

(line colours). Although the model infers full (Dirichlet) posterior distributions over both 

transition (c) and cue probabilities (d), for clarity here we only show the means of these 

posterior distributions. e, Posterior distribution of drift (left) and retention parameters (right) 

for the three known contexts (colours as in c, novel context not shown for clarity). Although 

the model infers the joint distribution of the drift and retention parameters for each context, 

for clarity here we show the marginal distribution of each parameter separately. Note that 

drift and retention are estimated to be larger for the red context that is associated with the 

largest perturbation.
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Extended Data Fig. 2 |. Validation of the COIN model. a, Validation of the inference algorithm of 
the COIN model with a single context.
We computed inferences in the COIN model with a single context based on synthetic 

observations (state feedback) generated by its generative model (Fig. 1a). Plots show the 

cumulative distributions of posterior predictive p-values of the state variable (left), and the 

parameters governing its dynamics (retention, middle; drift, right). The posterior predictive 

p-value is computed by evaluating the cumulative distribution function of the model’s 

posterior over the given quantity at the true value of that quantity (as defined by the 

generative model). Empirical distributions of posterior predictive p-value were collected 

across 4000 simulations (with different true state dynamics parameters), with 500 time steps 

in each simulation (during which the true state changes, but the state dynamics parameters 

are constant). Note that although true state dynamics parameters do not change during a 

simulation, inferences in the model about them will still generally evolve, and so a new 

posterior p-value is generated in each time step even for these quantities. If the model 

implements well-calibrated probabilistic inference under the correct generative model, 

all these empirical distributions should be uniform. This is confirmed by all cumulative 

distributions (orange and purple curves) approximating the identity line (black diagonal). 

Orange curves show posterior predictive p-values under the corresponding marginals of the 

model’s posterior. To give additional information about the model’s joint posterior over 

state dynamics parameters, we also show the posterior predictive p-value (cumulative) 

distribution of each parameter conditioned on the true value of the other one (purple 

curves). b, Validation of the inference algorithm of the COIN model with multiple 
contexts. Simulations as in a but with additional synthetic observations (sensory cues) and 

multiple contexts allowed both during data generation and inference. Empirical distributions 

of posterior predictive p-value were collected across 2000 simulations (with different true 
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retention and drift parameters), with 500 time steps in each simulation (during which not 

only states evolve but also contexts transition, and sometimes novel contexts are created). 

Left column shows the true distributions of sensory cues, contexts and parameters. Inset 

shows the growth of the number of contexts over time both during generation (blue) and 

inference (orange). Middle and right columns show the cumulative probabilities of the 

posterior predictive p-values (pooled across data sets and time steps) for the observations 

(top row), contexts and state (middle row) and parameters (bottom row). To calculate 

the posterior predictive p-values for the context, inferred contexts were relabelled by 

minimising the Hamming distance between the relabelled context sequence and the true 

context sequence (see Suppl. Inf.). For the parameters, the posterior predictive p-values 

were calculated with respect to both the marginal distributions (retention and drift) and 

the conditional distributions (retention | drift, and drift | retention) as in a. The cumulative 

probability curves approximate the identity line (thin black line) showing that the inferred 

posterior probability distributions are well calibrated. c, Parameter recovery in the COIN 
model related to Fig. 2. Plots show the COIN model parameters that were recovered 

(y-axes) from fits to 10 synthetic data sets generated with the COIN model parameters (true, 

x-axes) obtained from the fits to each participant in the spontaneous (n = 8) and evoked (n 

= 8) recovery experiments (Extended Data Fig. 3). Vertical bars show the interquartile range 

of the recovered parameters for each participant. While several parameters are recovered 

with good accuracy (σq, μa, σd, σm), others are not (α, and in particular σa and ρ). We 

expect that with richer paradigms and larger data sets, all parameters would be recovered 

accurately. Most importantly, despite partial success with recovering individual parameters, 

model recovery shows that recovered parameter sets taken as a whole can be used to 

accurately identify whether data was generated by the dual-rate or COIN model (d). Note 

that we make no claims about individual parameters in this study as our focus is on 

model class recovery. d-e, Model recovery for spontaneous (d) and evoked recovery 
experiments (e) related to Fig. 2. Synthetic data sets were generated using one of two 

models (COIN model, red; dual-rate model, blue). Parameters used for each model were 

those obtained from the fits to each participant in the spontaneous (n = 8) and evoked (n = 

8) recovery experiments (Extended Data Fig. 3) – i.e. for the COIN model, these were the 

same synthetic data sets as those used in c. Then, the same model comparison method that 

we used on real data (Fig. 2c, e, insets) was used to recover the model that generated each 

synthetic data set (see Methods). Arrows connect true models (used to generate synthetic 

data, disks on top) to models that were recovered from their synthetic data (pie-chart 

disks at bottom). Arrow colour indicates identity of recovered model, arrow thickness and 

percentages indicate probability of recovered model given true model. Bottom disk sizes and 

pie-chart proportions show total probability of recovered model and posterior probability of 

true model given recovered model (assuming a uniform prior over true models), respectively, 

with percentages specifically indicating posterior probability of the correct model. These 

results show that the model recovery process is generally very accurate and actually biased 

against the COIN model in favour of the dual-rate model.
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Extended Data Fig. 3 |. COIN model parameters.
Left column: Parameters for illustrating the COIN model (I: purple), model validation 

(V: brown) and fits to individuals in the spontaneous (S: blue) and evoked (E: green) 

recovery experiments, to the average of both groups (A: cyan), and individuals in the 

memory-updating experiment (M: red). Right: scatter plots for all pairs of parameters for 

the six groups. The overlap of data points suggest parameters are similar across experiments. 

σq: process noise s.d. (Eq. 3); μa, σa: prior mean and s.d. for context-specific state retention 

factors (Eq. 10); σd: prior s.d. for context-specific state drifts (Eq. 10); α: concentration of 

local transition probabilities (Eq. 8); ρ: self-transition bias parameter (Eq. 18); σm: motor 
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noise s.d. (Eq. 17); αe: concentration of local cue probabilities (Eq. 9). Parameters used 

in the figures is as follows. I: Fig. 1 and Extended Data Fig. 1c–e. V: Extended Data Fig. 

2a–b. S: Fig. 2c, Extended Data Fig. 6f (column 1) and Extended Data Fig. 2d. E: Fig. 2e, 

Extended Data Fig. 6f (column 3) and Extended Data Fig. 2e. S & E: Extended Data Fig. 2c. 

A: Fig. 2b & d, Extended Data Fig. 5 and Extended Data Fig. 9 (bias added for visuomotor 

rotation experiments: Extended Data Fig. 5a–j,p–s and Extended Data Fig. 9e–l). M: Fig. 

3 and Extended Data Fig. 7a–d. S, E & M: (all parameters, but αe): Fig. 4 and Extended 

Data Fig. 8. The robustness analyses (Extended Data Fig. 4) used perturbed versions of the 

same parameters as the corresponding unperturbed simulations. To reduce the number of 

free parameters in the model, we set the parameters of the hierarchical Dirichlet process 

that determine the expected effective number of contexts or cues, γ (Eq. 7) and γe (Eq. 9), 

respectively, both to 0.1, the prior mean for context-specific state drifts, μd, to zero (Eq. 10), 

and the standard deviation of the sensory noise, σs, to 0.03 when fitting or simulating the 

model, with the variance of the observation noise (Eqs. 5 and 19) being set to σr2 = σs2 + σm2 . 

For visuomotor rotation experiments (Extended Data Fig. 5a–j,p–s and Extended Data Fig. 

9e–l), we set the mean of the prior of the bias μb to zero (Eq. 20), and its s.d. σb to 70−1.

Heald et al. Page 22

Nature. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4 |. Robustness analysis of the main COIN model results.
To test how robust the behaviour of the COIN model is, we added noise to the parameters fit 

to the individual participants in the spontaneous and evoked recovery, and memory updating 

experiments and re-simulated the paradigms in Figs. 2 to 4: spontaneous recovery (a), 

evoked recovery (b), memory updating (c), savings (d), anterograde interference (e), and 

environmental consistency (f). For each experiment, we simulated the COIN model for the 

same participants as in Figs. 2 to 4 but perturbed each participant’s parameter values. That 

is, for each parameter (suitably transformed to be unbounded) we calculated the standard 

deviation across participants (relevant for the given paradigm or set of paradigms) and then 

perturbed each participant’s (transformed) parameter by zero-mean Gaussian noise whose 

standard deviation was a fraction (λ = 0, 0.05, 0.5, or 1.0) of this empirical standard 

deviation, after which we used the inverse transform to obtain the actual parameter used in 

these perturbed simulations. For parameters that are constrained to be non-negative (σq, σa, 
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σd, α, αe, σm), we used a logarithmic transformation, whereas for parameters constrained to 

be on the unit interval (μa, ρ), we used a logit transformation. Column 1: experimental data 

(plotted as in Figs. 2 to 4). Columns 2–5: output of the COIN model for different amounts 

of noise added to the parameters. Note that the simulations were not conditioned on the 

actual adaptation data of individual participants (in contrast to the original simulations of 

Figs. 2 and 3) because these data are not available for the experiments shown in Fig. 4 (for 

which the original simulations were already performed using this ‘open-loop’ simulation 

approach). The robustness analysis shows that most predictions of the COIN model are 

robust to changes in the parameters, and only start to deviate for large parameter changes (λ 
= 1) in some of their quantitative details (such as the magnitude of spontaneous recovery). 

Note that λ = 1 leads to changes in parameters that are of the same magnitude as randomly 

shuffling the parameters across participants.
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Extended Data Fig. 5 |. History dependence of contextual inference. a-j, Contextual inference 
underlies the elevated level of spontaneous recovery after ‘overlearning’.
a, Spontaneous recovery paradigm for visuomotor learning in which the length of the 

exposure (P+) phase is tripled from 200 trials (‘standard’ paradigm, pink) to 600 trials 

(‘overlearning’ paradigm, green). For comparison, paradigms are aligned to the end of 

the exposure phase. b, Adaptation in the COIN model for the standard and overlearning 

paradigms (same parameters as in Fig. 2b & d but with the addition of a bias parameter; 
see Suppl. Inf. and also Extended Data Fig. 3, parameter set A). Adaptation corresponds 

to reach angle normalised by the size of the experimentally-imposed visuomotor rotation. 

Note elevated level of spontaneous recovery after overlearning compared to the standard 

paradigm, qualitatively matching visuomotor learning data in Fig. 4A of Ref. 13. c-f, 
Internal representations of the COIN model for the standard paradigm. Inferred bias (c) 

and predicted state (d) distributions for each context (colours). e, Predicted probabilities of 

each context (with zoomed view starting from near the end of P+ exposure), colours as in 

c-d, grey is novel context as in Fig. 1f. f, Predicted state feedback (predicted state plus bias) 

distribution (purple), which is a mixture of the individual contexts’ predicted state feedback 

distributions (not shown) weighted by their predicted probabilities (e). Total adaptation 

(cyan line) is the mean of the predicted state feedback distribution. g-j, same as c-f for 

the overlearning paradigm. For comparison, the dashed horizontal lines in both paradigms 

show the final level of each variable for the red context in the standard paradigm. Note that 

overlearning leaves inferences about biases and states largely unchanged (compare 1 in c & 

g and 2 in d & h) but leads to higher predicted probabilities of the P+ context (red) in the 

channel-trial phase (compare 3 in e & i) reflecting the true statistics of the experiment in 

which P+ occurred more frequently. In turn, this makes the P+ bias and state contribute more 

to total adaptation in the channel-trial phase, thus explaining higher levels of spontaneous 

recovery. Therefore, differences between conditions are explained by contextual inference 

rather than by differences in bias or state inferences. The results are qualitatively similar 

when simulated as a force-field paradigm (i.e. without bias, not shown). k-o, Contextual 
inference underlies reduced spontaneous recovery following pre-training with P−. k, 

Adaptation in the channel-trial phase of a typical spontaneous recovery paradigm (standard, 

pink, as in Fig. 2b) and two modified versions of the paradigm in which the P+ phase 

is preceded by a P− (pre-training) phase in which P− is either introduced and removed 

abruptly (Pabrupt
− , dark green) or gradually (Pgradual

− , light green). Data reproduced from 

Ref. 14. l-o, Simulation of the COIN model for the same paradigms (same parameters 

as in Fig. 2b and d; Extended Data Fig. 3, parameter set A), plotted as in Fig. 2b–c. 

In each paradigm, contexts are coloured according to their order of instantiation during 

inference (blue→red→orange). Note that pre-training with P− (either abrupt or gradual) 

leaves inferences about states within each context largely unchanged at the beginning of 

the channel-trial phase (compare corresponding numbers 1–2 in column 2 across m-o). 

However, the pre-training leads to higher predicted probabilities of the P− context initially 

(compare number 3 in m to 3 in n & o) and throughout the channel-trial phase (compare 

number 4 across m-o) reflecting the true statistics of the experiment in which P− occurred 

more frequently (compare column 1 across m-o). In turn, this makes the P− state contribute 

more to total adaptation, thus explaining the reduction in both the initial and final levels 

of adaptation during the channel-trial phase in the Pabrupt
−  and Pgradual

−  groups. Therefore, 
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as in Fig. 4, differences between conditions are explained by contextual inference rather 

than state inference. p-s, Contextual inference underlies slower deadaptation following 
a gradually-introduced perturbation. p, Adaptation (normalised reach angle, as in b) 

in a paradigm in which a visuomotor rotation is introduced abruptly (pink) or gradually 

(green) and then removed abruptly. Data reproduced from Ref. 17. q-s, Simulation of the 

COIN model on the abrupt (q, pink, and r) and gradual (q, green, and s) paradigms (same 

parameters as in Fig. 2b and d but with the addition of a bias parameter; Extended Data 

Fig. 3, parameter set A) plotted as in b-j. Note that contexts are coloured according to their 

order of appearance during inference (blue→red). In response to the abrupt introduction of 

the P+ perturbation, a new memory is created (1). In contrast, the gradual introduction of 

the P+ perturbation prevents the creation of a new memory, thus requiring changes in the 

inferred bias and state of the original memory associated with P0 (2, blue context) to account 

for the slowly increasing perturbation. Therefore, the ‘blue’ context is inferred to be active 

throughout the exposure phase (3) and becomes associated with a P+-like state. However, at 

the beginning of the abruptly introduced post-exposure (P0) phase, a new memory is created 

(4) which has a low initial probability that can only be increased by repeated experience 

with P0 (5). This leads to slower deadaptation in the post-exposure phase compared to the 

abrupt paradigm (6), in which the original context associated with P0 (blue) is protected (7) 

and can be reinstated quickly (8) as the P0 self-transition probability has been learned to 

be higher during the pre-exposure phase. Note that the smaller errors caused by the gradual 

perturbation relative to the abrupt condition are better accounted for by an error in the state 

rather than an error in the bias, and therefore the state is updated more than the bias. The 

results are qualitatively similar when simulated as a force field paradigm (without bias, not 

shown).
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Extended Data Fig. 6 |. Additional analyses of spontaneous and evoked recovery related to Fig. 2. 
a-c, Mathematical analysis of spontaneous and evoked recovery.
The channel-trial phase of spontaneous and evoked (after the two P+ trials) recovery 

simulated in a simplified setting (Suppl. Inf.) with two contexts that are initialised to 

have equal but opposite state estimates (a) and equal (spontaneous recovery, solid) or 

highly unequal (evoked recovery, dashed) predicted probabilities (b). For the two contexts, 

the retention parameters are assumed to be constant and equal, and the drift parameters 

are assumed to be constant, of the same magnitude but opposite sign. Mean adaptation 

(c), which in the COIN model is the average of the state estimates (a) weighted by the 

corresponding context probabilities (b), shows the classic pattern of spontaneous recovery 

(solid, cf. Fig. 2b–c) and the characteristic abrupt rise of evoked recovery (dashed, cf. Fig. 

2d–e). Note that although in the full model, state estimates are different between evoked and 

spontaneous recovery following the two P+ trials, here we assumed they are the same (no 
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separate solid and dashed lines in a) for simplicity and to demonstrate that the difference 

in mean adaptation between the two paradigms (c) can be accounted for by differences 

in contextual inference alone (b, cf. Fig. 2b and d, top right insets). Circles on the right 

show steady-state values of inferences and the adaptation. Note that in both paradigms, 

adaptation is predicted to decay to a non-zero asymptote (see also e). d, State-space model 
fits to adaptation data from the spontaneous and evoked recovery groups. Solid lines 

show the mean fits across participants of the two-state model (5 parameters, top row) 

and the three-state model (7 parameters, bottom row) to the spontaneous recovery (left 

column) and evoked recovery (right column) data sets. Mean ± SEM adaptation on channel 

trials shown in black (same as in Fig. 2c and e). Insets show differences in BIC (nats) 

between the two-state model and the three-state model for individual participants (positive 

values in green indicate evidence in favour of the two-state model, and negative values 

in purple indicate evidence in favour of the three-state model). At the group level, the 

two-state model was far superior to the three-state model (Δ group-level BIC of 64.2 and 

78.4 nats favour of the two-state model for the spontaneous and evoked recovery groups, 

respectively). Individual states are shown for the two-state model (top, blue and red). Both 

the fast and slow processes adapt to P+ during the extended initial learning period. The 

P− phase reverses the state of the fast process, but not of the slow process, so that they 

cancel when summed resulting in baseline performance. Spontaneous recovery during the 

Pc phase is then explained by the fast process rapidly decaying, revealing the state of the 

slow process that has remained partially adapted to P+. Note that this explanation is because 

in multi-rate models all processes contribute equally to the motor output at all times. This 

is fundamentally different from the expression and updating of multiple context-specific 

memories in the COIN model, which are dynamically modulated over time according to 

ongoing contextual inference. e, Evoked recovery does not decay exponentially to zero. 
According to the COIN model, adaptation in the channel-trial phase of evoked recovery 

can be approximated by exponential decay to a non-zero (i.e. positive) asymptote (a-c, Fig. 

2e, Suppl. Inf.). To test this prediction, we fit an exponential function that either decays to 

zero (light and dark green) or decays to a non-zero (constrained to be positive) asymptote 

(cyan) to the adaptation data of individual participants in the evoked recovery group after 

the two P+ trials (black arrow). The two zero-asymptote models differ in terms of whether 

they are constrained to pass through the datum on the first (channel) trial (light green) 

or not (dark green). The mean fits across participants for the models that decay to zero 

(green) fail to track the mean adaptation (black, ± SEM across participants), which shows 

an initial period of decay followed by a period of little or no decay. The mean fit for 

the model that decays to a non-zero asymptote (cyan) tracks the mean adaptation well 

and was strongly favoured in model comparison (Δ group-level BIC of 944.3 and 437.7 

nats compared to the zero-asymptote fits with constrained and unconstrained initial values, 

respectively). Note that fitting to individual participants excludes the confound of finding a 

more complex time course (e.g. one with non-zero asymptote) only due to averaging across 

participants that each show a different simple time course (e.g. all with zero asymptote but 

different time constants). f, COIN and dual-rate model fits for individual participants in 
the spontaneous and evoked recovery groups. Data and model predictions are shown for 

individual participants as in Fig. 2c and e for across-participant averages. Participants in the 

S and E groups are ordered by decreasing BIC difference between the dual-rate and COIN 
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model (i.e. S1’s and E1’s data most favour the COIN model), as in insets of Fig. 2c and e. 

Note that the COIN model can account for much of the heterogeneity of spontaneous (e.g. 

from large in S1 to minimal in S6) and evoked recovery (e.g. from large in E1 to minimal in 

E7).

Extended Data Fig. 7 |. Additional analyses of memory updating experiment (related to Fig. 3). 
a-b, Memory updating experiment: time-course of learning.
a, Adaptation on channel trials at the end of each block of force-field trials in the training 

phase (purple), which occur before P0 washout trials, and on the first channel trial of 

triplets within each block (orange), which occurs after P0 washout trials. Data is mean ± 

SEM across participants and lines show mean of COIN model fits (8 parameters, Extended 
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Data Fig. 3). b, Single-trial learning on triplets that were consistent with the training 

contingencies. Data (mean ± SEM across participants) with mean of COIN model fits 

across participants. Positive learning reflects changes in the direction expected based on 

the force field of the exposure trial (an increase following P+ and a decrease following 

P−). c-d, Mathematical analysis of single-trial learning. Single-trial learning in the COIN 

model (column 1) for the four cue-perturbation triplets in the pre-training phase (c) and 

the post-training phase (d) in the memory updating experiment. The COIN model was fit 

to each participant and model fits are shown as mean ± SEM (single-trial learning) or 

mean (dot product, posterior, prior and likelihood) across n = 24 participants. Single-trial 

learning (column 1) is approximately proportional to a dot product (column 2) between 

the vector of posterior context probabilities (responsibilities) on the exposure trial of the 

triplet and the vector of predicted context probabilities on the subsequent channel trial (see 

Suppl. Inf. for derivation). This dot product can be further approximated by collapsing 

the vector of predicted probabilities to a one-hot vector, i.e. by the responsibility p(ct = 

c∗|qt, yt,…) (column 3) of the context that is predominantly expressed on the subsequent 

channel trial (c∗, the context with the highest predicted probability), where … denotes all 

observations before time t (as in Fig. 1). This responsibility is proportional to a product 

of two terms. The first term is the prior context probability p(ct = c∗|qt,…) (column 4), 

i.e. the predicted context probability before experiencing the perturbation (as in Fig. 1f1), 

which is already conditioned on the sensory cue visible from the outset of the trial. The 

second term expresses the likelihood of the state feedback in that context p(yt|ct = c∗,…) 

(column 5). As prior to learning neither cues nor feedback are yet consistently associated 

with a particular context, the COIN model predicts that the prior and likelihood, and thus 

total single-trial learning should all be largely uniform across contexts before training. e-f, 
The effects of cue and perturbation on single-trial learning in individual participants. 
e, Single-trial learning (post-training) shown as a function of perturbation separated by 

cue (left) or as a function of cue separated by perturbation (right) for each participant 

(lines). Note a significant effect for both the perturbation and the cue. f, Scatter plot of cue 

effect P1
+ + P1

− − P2
+ − P2

−  against perturbation effect P1
+ + P2

+ − P1
− − P2

−  for each participant 

(dots). Solid lines show medians of corresponding effects. Note the lack of anti-correlation 

between two effects.

Extended Data Fig. 8 |. Additional analysis of the effect of environmental consistency on single-
trial learning related to Fig. 4c.
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Columns 1 & 2: experimental paradigm and data replotted from Ref. 5. Participants 

experienced repeating cycles of P+ trials of varying lengths (column 1: 20 P+ trials in 

P20, 7 in P7, 1 in P1 and 1 followed by 1 P− trial in P1N1) in between P0 trials. To assess 

single-trial learning (column 2) during exposure to the environments, channel trials were 

randomly interspersed before and after the first P+ trial in a subset of the force-field cycles. 

Columns 3 to 5 show the output and internal inferences of the COIN model in the same 

format as Fig. 4c (same parameters as in Fig. 4; Extended Data Fig. 3, parameter set S, E & 

M). The COIN model qualitatively reproduced the pattern of changes in single-trial learning 

seen over repeated cycles in this paradigm. As in Fig. 4, differences in the apparent learning 

rate were not driven by differences in either the proper learning rate (Kalman gain) or the 

underlying state (column 4) but were instead driven by changes in contextual inference 

(column 5).
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Extended Data Fig. 9 |. Cognitive processes and the COIN model. a-d, Maintenance of context 
probabilities may require working memory.
a, Adaptation in a spontaneous recovery paradigm in which a non-memory (pink) or 

working memory task (green) is performed at the end of the P− phase before starting the 

channel-trial phase (data reproduced from Ref. 22). Initial adaptation in the channel-trial 

phase (inset) shows the working memory task abolishes spontaneous recovery and leads 

to adaptation akin to evoked recovery (cf. Extended Data Fig. 6a–c). b-d, COIN model 

simulation in which the working memory task abolishes the (working) memory of the 

context responsibilities on the last trial of the P− phase but not the context transition (and 

thus stationary) probabilities (same parameters as in Fig. 2b and d; Extended Data Fig. 3, 

parameter set A), plotted as in Fig. 2b–c. The circles on the predicted probability (zoomed 

view) show the values on the first trial in the channel-trial phase. d, as (c) but for the 

working memory task. The predicted probabilities on the first trial in the channel-trial phase 

are the values under the stationary distribution (shown on every trial in the simulation of 

Extended Data Fig. 1c). We calculate the stationary context distribution by solving ψ = ψΠ
for ψ (a row vector) subject to the constraint that ψ is a valid probability distribution (i.e. 

all elements of ψ are non-negative and sum to 1), where Π.is the expected local transition 

probability matrix. e-l, Explicit versus implicit learning in the COIN model. e, Results 

of a spontaneous recovery paradigm (as in Fig. 2b) for visuomotor learning. Adaptation is 

computed as participants’ reach angle normalised by the size of the experimentally imposed 

visuomotor rotation. Explicit learning (dark green) is measured by participants indicating 

their intended reach direction. Implicit learning (light green) is obtained as the difference 

between total adaptation (solid pink) and explicit learning. In the visual error-clamp phase 

(Pc), participants were told to stop using any aiming strategy so that the direction they 

moved was taken as the implicit component of learning. A control experiment (dashed 

pink) was also performed in which there was no reporting of intended reach direction. 

Data reproduced from Ref. 24. f-l, Simulation of the COIN model on the same paradigm 

(same parameters as in Fig. 2b and d but with the addition of a bias parameter; Extended 

Data Fig. 3, parameter set A). b, Predictions for experimentally observable quantities. Light 

green line: implicit learning is the average bias across contexts weighted by the predicted 

probabilities (cyan line in j). Dark green line: explicit learning is the state of the most 

responsible context on the previous trial (black line in h). Solid pink line: total adaptation 

for the reporting condition is the sum of explicit and implicit learning (as in experiments). 

Dashed pink line: total adaptation for the non-reporting condition is the average predicted 

state feedback across contexts weighted by the predicted probabilities (cyan line in l, as in 

all experiments that had no reporting element). g-h, Inferred bias (g) and predicted state 

(h) distributions for each context (colours), with black line showing the mean state of the 

most responsible context (coloured line below axis) for trials on which an explicit report 

was solicited. i, Predicted probability of each context. Colours as in g-h, grey is novel 

context as in Fig. 1f. j-k, Inferred bias (j) and predicted state (k) distributions (purple), 

obtained as mixtures of the respective distributions of individual contexts (g-h) weighted 

by their predicted probabilities (i), and their means (cyan lines). l, Predicted state feedback 

distribution (purple, computed as the the sum of bias, j, and predicted state, k) and its mean 

(cyan).
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Extended Data Table 1 |
Comparison of the COIN model to other models.

Table shows which experimental phenomena (rows) can be explained by different single 

and multiple-context models (columns). Alphabetical superscripts index the key feature(s) 

missing from each model which are primarily responsible for their inability to explain a 

particular phenomenon. Note that we consider each model as described and implemented by 

its authors (although it might be possible to modify or extend these models to explain more 

features). Orange cross-ticks are for models that can partially explain a phenomenon.

single-context models multiple-context models

dual-
rate

Smith 
et al. 1

memory 
of errors
Herzfeld 

et al. 4

source of 
errors

Berniker 
& 

Körding 16

winner-take-all
Oh & 

Schweighofer 
11

DP-KF
Gershman 

et al. 12

MOSAIC
Haruno et 

al. 26

COIN

spontaneous 
recovery ✔ ✘ 

a ✘ 
b ✘ 

b ✘ 
c ✘ 

d ✔

evoked 
recovery

✘ 
e ✘ 

e
 
f

 
f

 
f

✘ 
d ✔

memory 
updating

✘ 
g ✘ 

g ✘ 
g

✘ 
h ✘ 

g,h
✔ ✔

savings after 
full washout ✘ 

i ✔ ✔ ✔ ✔ ✔ ✔

anterograde 
interference ✔ ✘ 

a
✘ 

b ✘ 
b ✔ ✘ 

j ✔

environmental 
consistency ✘ 

i ✔ ✘ 
b ✘ 

b ✘ 
k ✔ ✔

explicit/
implicit 
learning

 
m

✘ 
l ✘ 

l ✘ 
l ✘ 

l ✘ 
l ✔

Spontaneous recovery, the gradual re-expression of P+ in the channel-trial phase (Fig. 2c), requires a single-context model 
to have multiple states that decay on different time scales or a multiple-context model that can change the expression of 
memories in a gradual manner based on the amount of experience with each context. Therefore, single-context models 

that have a single statea, or multiple-context models that do not learn context transition probabilitiesb or do not have 

state dynamicsd do not show spontaneous recovery. Models that learn transition probabilities but that do not represent 

uncertainty about the previous contextc (the ‘local’ approximation in DP-KF) can either include a self-transition bias or not. 
With a self-transition bias, the expression of memories changes in an abrupt manner (akin to evoked recovery) when, in the 
channel-trial phase, the belief about the previous context changes (e.g. from P− to P+), and thus such models fail to explain 
the gradual nature of spontaneous recovery. Without a self-transition bias, the change in expression of memories is gradual 
based on updated context counts, but this occurs too slowly relative to the time scale on which the rise of spontaneous 
recovery occurs.

Evoked recovery, the rapid re-expression of the memory of P+ in the channel-trial phase (Fig. 2e) that does not simply 
decay exponentially to baseline (Extended Data Fig. 6e), requires a model to be able to switch between different memories 

based on state feedback. Therefore, single-context modelse that cannot switch between memories are unable to show the 
evoked recovery pattern seen in the data. Multiple-context models with memories that decay exponentially to zero in the 

absence of observationsf (as during channel trials) can only partially explain evoked recovery, showing the initial evocation 

but not the subsequent change in adaptation over the channel-trial phase. Models with no state decayd cannot explain 
evoked recovery.

Memory updating requires a model to update memories in a graded fashion and to use sensory cues to compute these 

graded updates. Therefore, models that either have no concept of sensory cuesg or multiple-context models that only update 

the state of the most probable context in an all-or-none mannerh do not show graded memory updating.
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Savings, faster learning during re-exposure compared to initial exposure, after full washout requires a single-context 
model to increase its learning rate or a multiple-context model to protect its memories from washout and/or learn context 

transition probabilities. Therefore, single-context models with fixed learning ratesi do not show savings.

Anterograde interference, increasing exposure to P+ leads to slower subsequent adaptation to P−, requires a single-
context model to learn on multiple time scales or a multiple-context model to learn transition probabilities that generalise 

across contexts. Therefore, single-context models with a single statea, or multiple-context models that either do not learn 

transition probabilitiesb or that learn local transition probabilities independently for each row of the transition probability 

matrixj do not show anterograde interference.

Environmental consistency, the increase/decrease in single-trial learning for slowly/rapidly switching environments, 
requires a model to either adapt its learning rate or learn local transition probabilities based on context transition counts. 

Therefore, single-context models with fixed learning ratesi or multiple-context models that either do not learn transition 

probabilitiesb or that learn non-local transition probabilities based only on context countsk do not show the effects of 
environmental consistency on single-trial learning.

Explicit and implicit learning, the decomposition of visuomotor learning into explicit and implicit components, requires 
a model to have elements that can be mapped onto these components. For most models, there is no clear way to map 

model elements onto these componentsl. It has been suggested that the fast and slow processes of the dual-rate model 
correspond to the explicit and implicit components of learning, respectively. However, in a spontaneous recovery paradigm, 
this mapping only holds during initial exposure and fails to account for the time course of the implicit component during 

the counter-exposure and channel-trial phasesm (see Suppl. Inf.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Contributions of contextual inference to motor learning in the COIN model.
a, Generative model. A (potentially) infinite number of discrete contexts ct (colours) exist 

that transition as a Markov process. Each context j is associated with a time-varying state 

xt
(j). The active context can generate a sensory cue qt independent of movement (e.g. the 

visual appearance of an object) and also determines which state is observed (with noise) as 

state feedback yt as a consequence of movement (e.g. object weight, black vs. grey arrows). 

b, Inference process. The learner infers contexts and states (and parameters, not shown) 

based on observed sensory cues and state feedback. Before movement, predicted context 

probabilities p(ct | qt,…) are computed by fusing prior expectations from the previous 

time point (where … refers to all observations before time t) with the likelihood of the 

current sensory cue qt. For each known context, a predicted distribution over its current state 

p(xt
(j) ∣ …) is represented. A potential novel context is always represented, with a stationary 

state distribution p(xt
∅). Motor output ut is the average of the states of the known and novel 

contexts, weighted by their predicted probabilities (arrow 1). Movement results in state 

feedback yt, which updates the predicted context probabilities to context responsibilities p(ct 

| qt, yt,…). A new memory is instantiated with a probability that is the responsibility of 

the novel context (arrow 2, showing the creation of a red context, initialised as a copy of 

the state distribution of the novel context). Responsibilities also determine the degree to 

which state feedback is used to update the predicted state distribution p(xt + 1
(j) ∣ qt, yt, …) of 

each context (arrows 3). c, Simulated time series of sensory cues (background colour for 

object appearance) and state feedback observations (noisy weight, purple) when handling 

visually-identical cups and a sugar bowl of varying weights (black line, arbitrary scale). The 

weight of cup 3 decreases as liquid is poured from it, other objects have constant weights. 

(d-f) The COIN model applied to the observations in c. d, Predicted state distributions 

for the three contexts inferred by the model and a novel context. e, The predicted state 

distribution (purple) is a mixture of the individual contexts’ predicted state distributions (d) 

weighted by their predicted probabilities (f1). The motor output (adaptation, cyan line) is the 

mean of the predicted state distribution. Intensity of colours in d and purple in e indicates 

probability density, linearly scaled between 0 and the maximum of the corresponding 

density. f, Contextual inferences (colours as in d). 1. Predicted probability (before state 
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feedback) of each known context and a novel context. 2. Responsibility (context probability 

after state feedback) of a novel context. Coloured circles show memory creation events. The 

novel context responsibility is insufficient to generate a new memory when transitioning to 

and from cup 2 (green arrows). 3. Responsibility of each known context. See text for arrow 

explanations in d-f.
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Fig. 2 |. Memory creation and expression accounts for spontaneous and evoked recovery.
a, Participants made reaching movements (thin horizontal arrows) to a target (circle) while 

holding the handle of a robotic manipulandum that could generate forces (thick vertical 

arrows). For clarity, schematic not to scale. The manipulandum could either be passive (null 

field, P0) or generate a velocity-dependent force field that acted to the left (P+) or right 

(P−) of the current movement direction. Channel trials (Pc) were used to assess adaptation 

by constraining the hand to a straight channel (grey lines) to the target and measuring 

the forces generated by the participant into the virtual channel walls. b, Simulation of the 

spontaneous recovery paradigm with the COIN model (parameters fit to average data in c & 

e simultaneously). Top left: perturbation (black) and channel-trial phase (grey). Bottom left: 

predicted state distributions of inferred contexts as in Fig. 1d (for clarity we omit the novel 

context here and in subsequent figures). Top right: predicted probability of contexts as in 

Fig. 1d. Bottom right: predicted state distribution (purple) and its mean (cyan) as in Fig. 1e. 

Note that full state distributions are inferred in bottom left and right but they appear narrow 

due to fitting to the average of all participants’ data (see Methods). c, Mean adaptation 

(black, ± SEM across n = 8 participants) on the channel trials of the spontaneous recovery 

paradigm. The cyan and green lines show model fits (mean of individual participant fits) 

of the COIN (7 parameters) and dual-rate models (5 parameters), respectively. Inset shows 

ΔBIC (nats) for individual participants, positive favours the COIN model. d-e, As in b-c 
for the evoked recovery paradigm (n = 8) in which the 3rd and 4th trials in the channel-trial 

phase were replaced by P+ trials (black arrow). For COIN model parameters see Extended 

Data Fig. 3.
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Fig. 3 |. Memory updating depends on contextual inference.
a, Participants experienced two contexts defined by a sensory cue (right or left target) paired 

with a perturbation sign (P+ or P−). Participants moved a control point (right vs. left, grey 

disk) on a virtual bar to the corresponding target 19. For clarity, schematic not to scale. 

The colours of cues and perturbations indicate the context to which they are associated 

(blue and red for context 1 and 2, respectively). b, Training: cues (background colour) 

were consistently paired with perturbations (black line) randomly selected on each trial 

(only a few trials shown for clarity). c, Triplets: two channel trials (both with cue 1, P1
c) 

bracket an ‘exposure’ trial that uses one of the four possible cue-perturbation combinations. 

Single-trial learning for the memory associated with context 1 is measured as the difference 

(Δ) in adaptation across the two channel trials. d Single-trial learning for context 1 before 

(top) and after (bottom) training. Experimental data (mean ± SEM, column 1) across n 

= 24 participants (dots). Positive values indicate single-trial learning consistent with the 

exposure trial perturbation (increase following P+ and decrease following P−). The average 

(± SEM across participants, column 2) of the individual COIN model fits (8 parameters 

each, Extended Data Fig. 3).
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Fig. 4 |. Contextual inference underlies apparent changes in learning rate.
The COIN model applied to three phenomena: savings (a), anterograde interference (b) and 

the effect of environmental consistency on single-trial learning (c). Column 1: experimental 

paradigms (lines as in previous figures, colours highlight key comparisons). Note the 

lines showing P− perturbations in b have been separated vertically for clarity. Column 2: 

experimental data replotted from Ref. 20 (a), Ref. 3 (b) and Ref. 4 (c). Column 3: output of 

COIN model averaged over 40 parameter sets obtained from fits to individual participants 

in the experiments shown in Figs. 2 and 3 (7 parameters, Extended Data Fig. 3). Error bars 

show SEM based on the number of participants in the original experiments (n = 46 in a, n = 

50 in b and n = 27 in c). Columns 4–5: COIN model inferences with regard to the context 

(c∗) that is most relevant to the perturbation to which adaptation is measured. Specifically, 

c∗ is the context with the highest responsibility on the given trial (that associated with P+ 

in a and P− in b) or, as in Fig. 3d (also single-trial learning), the context with the highest 

predicted probability on the second channel trial of a triplet (that associated with P+, c). 

Column 4: Kalman gain (top) and mean of the predicted state distribution (bottom) for the 

relevant context c∗. Column 5: Predicted probability of the relevant context c∗. Grey lines 

in b represent initial adaptation to P+ and have been sign inverted in columns 2–3 and the 

bottom panel of column 4. Data in c shows averages within blocks, with the bottom panel 

in column 4 showing separate averages for exposure (squares) and subsequent channel trials 

(triangles).
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