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Targeting Inflammation in Diabetic Kidney Disease: Is
There a Role for Pentoxifylline?
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Abstract
Diabetic kidney disease (DKD) is the most common cause of ESKD in the United States and worldwide. Current
treatment for DKD includes strict glycemic control and normalization of BP with renin-angiotensin-aldosterone
system (RAAS) blockade. Although RAAS blockers slow progression of disease, they do not generally prevent ESKD
and none of the studies with these agents in DKD included patients who were nonproteinuric, which make up an
increasingly large percentage of patients with diabetes now seen in clinical practice. Recent studies with glucagon-
like peptide-1 receptor agonists and sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown beneficial
renal effects, and the benefits of SGLT2 inhibitors likely extend to patients who are nonproteinuric. However, there
remains a need to develop new therapies for DKD, particularly in those patients with advanced disease. A role of
chronic low-grade inflammation in microvascular complications in patients with diabetes has now been widely
accepted. Large clinical trials are being carried out with experimental agents such as bardoxolone and selonsertib
that target inflammation and oxidative stress. The Food and Drug Administration–approved, nonspecific phos-
phodiesterase inhibitor pentoxifylline (PTX) has been shown to have anti-inflammatory effects in both animal and
human studies by inhibiting the production of proinflammatory cytokines. Small randomized clinical trials and
meta-analyses indicate that PTX may have therapeutic benefits in DKD, raising the possibility that a clinically
available drug may be able to be repurposed to treat this disease. A large, multicenter, randomized clinical trial
to determine whether this agent can decrease time to ESKD or death is currently being conducted, but results
will not be available for several years. At this time, the combination of RAAS blockade plus SGLT2 inhibition is
considered standard of care for DKD, but it may be reasonable for clinicians to consider addition of PTX in patients
whose disease continues to progress despite optimization of current standard-of-care therapies.
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Introduction
Diabetic kidney disease (DKD) is the most common
cause of ESKD in the United States (1). The patho-
genesis of DKD includes mesangial expansion, endo-
thelial dysfunction, loss of glomerular podocytes, and
interstitial fibrosis. The classic natural history of DKD
is the development of albuminuria, with small amounts
of albuminuria (microalbuminuria) progressing to overt
albuminuria (macroalbuminuria) and nephrotic syn-
drome, eventually leading to ESKD. The characteristic
renal pathologic findings are diffuse and nodular
glomerulosclerosis (2). Proteinuria is an important
predictor of outcome in CKD, including DKD (3,4).
Risk factors for progression to ESKD include hyper-
glycemia, hypertension, severity of albuminuria, and
presence of retinopathy (5). High salt intake and
arteriosclerosis are implicated in the development
of DKD, especially in patients with type 2 diabetes
mellitus (DM) (6). Patients with DKD are at mark-
edly increased risk for cardiovascular events and
mortality (7,8).

Current treatment for DKD includes strict glycemic
control and normalization of BP, with renin-angiotensin-
aldosterone system (RAAS) blockade being the cor-
nerstone of antihypertensive therapy (9). Although
RAAS blockers such as angiotensin-converting enzyme
inhibitors and angiotensin receptor blockers are

effective in slowing progression of disease, they do
not generally prevent progression to ESKD (10,11).
Combination RAAS blockade has not been proven to
be more effective than monotherapy and is associated
with increased adverse events (12). Recent studies with
glucagon-like peptide-1 receptor agonists and, in par-
ticular, sodium-glucose cotransporter-2 (SGLT2) inhib-
itors have shown beneficial renal effects (13,14). In the
CREDENCE study, the first study since those with
RAAS blockers to show a reduction in hard renal end
points, there was an impressive 34% reduction in ESKD
and also a reduction in cardiovascular mortality with
the SGLT2 inhibitor canagliflozin (14).

Albuminuric versus Nonalbuminuric DKD
In recent years, possibly due to better treatment of

diabetes and hypertension and the use of RAAS block-
ers, the prevalence of nonalbuminuric versus albumi-
nuric DKD has increased, especially in type 2 DM. In a
cross-sectional analysis of United States adults with
diabetes from the National Health andNutrition Exami-
nation Survey (NHANES) III (1988–1994), 35% of sub-
jects with an eGFR of ,60 ml/min per 1.73 m2 were
normoalbuminuric, and albuminuria and retinopathy
were both absent in 30% of subjects with reduced eGFR
(15). In subsequent cross-sectional analyses of NHANES
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data, higher adjusted prevalence rates (approximately 50%)
for the nonalbuminuric phenotype among individuals with
reduced eGFR were observed (8). Similar findings have been
observed in cohorts of patients with type 2 DM outside the
United States and in those enrolled in multicenter, multi-
national, interventional studies (16).
Currently there are no large trials that have been per-

formed in nonalbuminuric DKD. It is not known whether
RAAS blockers have similar benefits in these patients. Con-
cern has been raised that RAAS blockers, by preventing
constriction of the efferent arteriole, may actually increase
susceptibility to AKI in patients who are nonalbuminuric
(16). With respect to SGLT2 inhibitors, in a post hoc analysis
of data from the CANVAS program, canagliflozin slowed
the annual loss of kidney function across albuminuria sub-
groups, suggesting that SGLT2 inhibitors may also be ben-
eficial in patients who are nonalbuminuric, although there
was a greater absolute benefit in participants with severely
increased albuminuria (17). The concern about AKI that can
occur with RAAS blockers does not appear to extend to
SGLT2 inhibitors (18). The beneficial effect of SGLT2 inhib-
itors might attenuate with declining kidney function and
there is currently no clear evidence for benefit in those with
eGFR of,30 ml/min per 1.73 m2, although such studies are
being conducted (19). The increasing prevalence of non-
albuminuric or minimally albuminuric DKD underscores
the need to develop new therapies for nonalbuminuric
DKD, particularly in those patients with advanced CKD.
Nonalbuminuric DKD is thought to be predominantly due

to vascular and tubulointerstitial lesions, and decline in renal
function in such patientsmay be at least partly due to ongoing
inflammation not entirely remediated by current therapies
(16). Therefore, there is much interest in the development of
anti-inflammatory agents for the treatment of DKD.

Inflammation in DKD
DKD has traditionally been considered to be caused by the

adverse effects of hyperglycemia (metabolic theory) and
hemodynamic alterations that increase systemic and intra-
glomerular pressure (hemodynamic theory) in patients who
are genetically predisposed. Nearly three decades ago,
Hasegawa et al. (20) initially suggested, based on studies
in diabetic animals, that proinflammatory cytokines might
be involved in the pathogenesis of DKD. The source of
cytokine production by the kidneys in DM is from both
infiltrating macrophages and resident kidney cells. Produc-
tion of reactive oxygen species, proinflammatory factors,
and certain growth factors (such as TGF-b) can induce renal
damage, and macrophage-depletion studies in rodent mod-
els have shown a causal role for macrophages in the pro-
gression of DKD (21). In a human biopsy study, Nguyen et al.
(22) reported that accumulation of macrophages was more
prevalent in the interstitium than in the glomeruli and that
interstitial macrophages correlated strongly with proteinuria,
decline in renal function, and extent of interstitial fibrosis.
Various types of renal cells (endothelial, mesangial, epithelial,
and tubular cells) are capable of synthesizing proinflamma-
tory cytokines such as TNF-a, IL-1, and IL-6. These cytokines,
acting in a paracrine or autocrine manner, contribute to the
pathophysiology of DKD (23). Plasma concentrations of
proinflammatory cytokines are elevated in patients with type

2 DM (24,25) and increase as nephropathy progresses (26,27).
Inflammation and oxidative stress are associated with both
micro- and macrovascular diabetic complications (28,29).
TNF-a is an important proinflammatory cytokine and has

been much studied in DKD. In a study by Navarro et al. in
patients with type 2 DM with mild proteinuria (,1 g/d),
serum concentrations of high-sensitivity C-reactive protein
and serum andurine concentrations of TNF-a correlatedwith
albuminuria. Urinary TNF-a levels increased significantly
as nephropathy progressed (30). In a recent meta-analysis,
serum and urinary concentrations of TNF-a are elevated in
patients with DKD and these concentrations increase con-
comitantly with the progression of CKD (31). This cytokine is
cytotoxic to glomerular cells in vitro (32) and increases protein
permeability in isolated glomeruli, independent of hemody-
namic alterations or effects of recruited inflammatory cells
(33). In diabetic animals, increased urinary as well as renal
interstitial concentrations of TNF-a precede the rise in albu-
minuria (34). In a proof-of-concept study, Moriwaki et al. (35)
found that diabetic rats treated with the chimeric anti–TNF-a
antibody infliximab showed a reduction in albuminuria.
Proinflammatory ILs are also involved in the pathogen-

esis of DKD. In a biopsy study, IL-6 mRNA was expressed
by glomerular resident cells and interstitial cells in patients
with DKD (36). Most cells in the area of mesangial prolif-
eration were strongly stained for IL-6 mRNA, and some
positive cells were found in the Kimmelstiel–Wilson nod-
ular lesions. In the interstitium, some tubules and infiltrat-
ing cells were also positively stained for IL-6mRNA, and the
interstitial expression of IL-6 mRNA correlated significantly
with the degree of interstitial injury. In another biopsy study
in type 2 DM, glomerular basement membrane width was
directly correlated with IL-6 (37), and both IL-1 and IL-6
have been shown to be overproduced by interstitial and
glomerular cells in diabetes (37–39). In streptozotocin dia-
betes in the rat, renal cortical mRNA expression for TNF-a,
IL-1, and IL-6 was 2.4-, 1.2-, and 3.4-fold higher than in
nondiabetic rats. Albuminuria was significantly associated
with renal mRNA expression of TNF-a and IL-6 but not IL-1
(38). Another proinflammatory IL, IL-18, may also play an
important role in DKD (40). Chronically increased levels of
inflammation are associated with an increase in C-reactive
protein, the latter of which is associated with many patho-
logic conditions in diabetes, including atherosclerosis and
DKD (41).

Targeting Inflammation in DKD
A role of chronic low-grade inflammation in the micro-

vascular complications in patients with diabetes has now
been widely accepted (42,43). Several approaches have been
proposed to treat inflammation in DKD, including lifestyle
modifications (diet and exercise) and medications. Anti-
inflammatory effects may explain some of the benefits of
SGLT2 inhibitors and possibly also glucagon-like peptide-
1 receptor agonists (21). In addition, three large random-
ized controlled trials specifically targeting inflammation in
DKD have been or are currently being performed.

Bardoxolone
Bardoxolone targets oxidative stress and reduces inflam-

mation by inhibiting proinflammatory cytokines and
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decreasing TGF-b and extracellular matrix proteins (44).
The BEACON study using the NF erythroid 2-related
factor 2 activator bardoxolone methyl was stopped pre-
maturely due to an increase in adverse cardiovascular
outcomes, and thus its role in ESKD prevention could
not be assessed (45). However, in a subsequent post hoc
analysis, patients treated with bardoxolone were sig-
nificantly less likely to experience the composite renal
end point (46). Bardoxolone is being studied again in
Japan in a Phase 3 Study of Bardoxolone Methyl in
Patients with DKD; AYAME Study (NCT03550443), with
an estimated completion date of March 2022. Patients with
an eGFR of 15–60 ml/min per 1.73 m2 will be studied. The
primary outcome is time to onset of a$30% decrease in eGFR
from baseline or ESKD.

Selonsertib
Glucose can activate the transcription factor NF-kB,

resulting in increased inflammatory gene expression, in part
through oxidative stress, advanced glycation end products
(AGEs), protein kinase C, and mitogen-activated protein
kinases. Apoptosis signal–regulating kinase 1 (ASK1) acts as
an upstream regulator for the activation of p38 mitogen-
activated protein kinases and c-Jun N-terminal kinase.
Oxidative stress increases ASK1 activity, promoting inflam-
mation, apoptosis, and fibrosis. In animal models of DKD,
ASK1 inhibition reduces progressive kidney injury, inflamma-
tion, and fibrosis (47). Selonsertib is a highly selective, potent,
small-molecule inhibitor of ASK1 being developed as a once-
daily oral agent for the management of DKD. In a recent
double-blind, placebo-controlled, phase 2 trial, selonsertib
appeared safe with no dose-dependent adverse effects over
48 weeks. Effects on urinary albumin-to-creatinine ratio
(UACR) did not differ between selonsertib and placebo, but
exploratory post hoc analyses suggest that selonsertib may
slow DKD progression (48). A phase 3 trial, Efficacy and
Safety of Selonsertib in Participants with Moderate to
AdvancedDKD (MOSAIC; NCT04026165) is currently enroll-
ing patients with type 2 DM and eGFR of 20–60 ml/min per
1.73 m2 with albuminuria and is estimated to be completed in
December 2024. Clinical outcome measures are time to$40%
decline in eGFR from baseline, ESKD, or death due to kidney
disease.

Pentoxifylline
Phosphodiesterases (PDEs) are a class of enzymes that

hydrolyze cAMP and cyclic guanosine monophosphate and
are involved in many physiologic processes including cell
proliferation and differentiation, cell-cycle regulation, gene
expression, cellular metabolism, apoptosis, and inflamma-
tion. PDEs are composed of 11 different families and each
family contains different subtypes. Pentoxifylline (PTX) is a
methylxanthine derivative with pleomorphic effects includ-
ing nonspecific inhibition of PDEs. PTX was approved by
the US Food and Drug Administration for the treatment of
intermittent claudication .30 years ago (49). Clinical expe-
rience has indicated that this agent has a favorable safety
profile; therefore, if it can be shown to be efficacious, it could
be an attractive agent to treat DKD (50).
PTX: Mechanism of Action. PTX is known as a hemor-

heologic agent because it results in a reduction in blood

viscosity, erythrocyte aggregation, erythrocyte rigidity, and
platelet aggregation. The increase in red blood cell flexibility
and deformability leads to improved blood flow (51). In
addition, PTX has been shown to have immunomodulatory
and anti-inflammatory effects (52). PDE inactivates the
intracellular secondmessengers cAMP and cyclic guanosine
monophosphate. PTX predominantly inhibits the PDE3 and
PDE4 isoforms and thus primarily affects cAMP. The PTX-
induced increase in cAMP will in turn increase protein
kinase A activation, leading to a reduction in synthesis of the
inflammatory cytokines IL-1, IL-6, and TNF-a (43,50).
PTX: Basic and Translational Studies. PTX has an inhib-

itory effect on primary human renal fibroblasts in a time- and
dose-dependent fashion (53). In animal studies in both dia-
betic and nondiabetic models, PTX exhibited a marked
antiproteinuric effect while attenuating interstitial inflam-
mation and progression of renal injury (34,38,54–57). In the
streptozotocin-diabetic rat, PTX treatment can lead to
improvement in signs of inflammation, oxidative stress, and
subsequent fibrosis by acting on cytokine signaling (28,58).
Similarly, in an alloxan-induced diabetic rat model, PTX
also exerted anti-inflammatory effects via decreasing the
levels of TNF-a and IL-6 (59). PTX may also be able to
decrease inflammation generated by formation of AGEs.
AGEs cause a series of signaling cascade events that result in
an increase in oxidative stress and production of proin-
flammatory cytokines (i.e., IL-6, IL-1, and TNF-a) (60). PTX
has been shown to decrease oxidative stress in diabetic
animal models (58).
Another possible anti-inflammatory effect of PTX may be

stimulation of Klotho, a type I single-pass transmembrane
protein predominantly expressed in the kidneys (61).
Reduced renal Klotho expression has been observed in
biopsies from patients with early stages of DKD (62), and
decreased plasma soluble Klothomay be an early biomarker
for predicting DKD progression in patients with type 2 DM
(63). The proinflammatory cytokines TNF-a and TNF-like
weak inducer of apoptosis decrease renal Klotho expression
mediated by NF-kB (64–66). In a recent post hoc analysis of
the PREDIAN trial by Navarro-González et al. (67), admin-
istration of PTX to patients with type 2 DMwith CKD stages
3 and 4 resulted in some reduction of serum and urinary
TNF-a and increased serum and urinary Klotho concentra-
tions. The mechanisms by which PTX is thought to inhibit
inflammation are depicted in Figure 1.
PTX: Clinical Trials. Clinical data supporting a role for

PTX in DKD have been accumulating for the past two
decades. Most of these trials have used a small number
of subjects and were of short duration, and all used surro-
gate end points such as reduction in proteinuria and
changes in eGFR and not hard end points such as ESKD
and death (Table 1) (68–82). Some, but not all, of these
studies were placebo controlled, and none used intention-
to-treat analysis or reported blinding of data assessors. Only
the PREDIAN trial (73) provided details about the process
of allocation concealment. In this study, the renoprotective
effects of 2 years of PTX therapy in addition to RAAS
blockade was evaluated in 169 white patients with type 2
DM and stage 3 or 4 CKD and urinary albumin excretion of
.30 mg/24 h. Treatment with PTX (1200 mg/d) decreased
proteinuria and urinary concentration of TNF-a and slowed
decline in eGFR. At study end, eGFR had decreased by
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2.1 ml/min per 1.73 m2 in the PTX group versus 6.5 ml/min
per 1.73 m2 (between-group difference of 4.3 ml/min per
1.73 m2, P50.001). The difference in reduction of eGFR was
evident at 6 months and reached statistical significance at
1 year. There were no serious adverse events, and the only
adverse events that occurred more commonly than with
placebo were digestive symptoms (abdominal discomfort,
flatus, dyspepsia, nausea, and vomiting), which were about
twice as common in the treated group. Only one patient
needed to have PTX withdrawn because of side effects. The
favorable safety profile is supported by clinical experience in
using this agent in treatment of peripheral vascular disease
for decades with minimal side effects. Although these
results are very intriguing, there are some limitations to
the PREDIAN trial. First, the study enrolled only white
patients. Second, it was a single-center study, which may
limit its generalizability. Third, the study was open label
and not placebo controlled. Finally, and most importantly,
the study was not powered to detect differences in hard
outcomes such as ESKD and mortality.
The Veterans Affairs Cooperative study Pentoxifylline in

DKD (PTXRx; NCT03625648) is comparing PTX to placebo
in patients with type 2 DM and eGFR of 15–60 ml/min per

1.73 m2, targeting high-risk patients according to the “heat
map” of the Kidney Disease Improving Global Outcomes
(83). Patients will need to have an eGFR of 15 to,30ml/min
per 1.73 m2, or an eGFR of 30 to ,45 ml/min per 1.73 m2

with UACR .30 mg/g, or eGFR 45 to ,60 ml/min per
1.73 m2 with UACR .300 mg/g. The primary outcome is
time to ESKD or all-cause mortality. The study plans to
randomize 2510 patients, began enrolling in November
2019, and is predicted to be completed by 2030.
PTX: Meta-Analyses. An early meta-analysis published

in 2008 suggested that decreased production of proin-
flammatory cytokines was the most likely explanation for
the antiproteinuric action of PTX in patients with DKD
(84). In a Cochrane meta-analysis of the renoprotective
effect of PTX when used in combination with RAAS
inhibitors (angiotensin-converting enzyme inhibitors/
angiotensin receptor blockers) published in 2012 (85), PTX
reduced albuminuria and proteinuria, with no obvious
serious adverse effects in patients with DKD. However,
most included studies were poorly reported, small, and
methodologically flawed. Since the Cochrane analysis there
have been several other meta-analyses published. Tian et al.
(86) reported eight studies with a total of 587 patients (all
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Figure 1. | Pentoxifylline inhibits phosphodiesterase activity, increasing cAMP levels that activate protein kinase A. Active protein kinase A
(aPKA) would inhibit ubiquitination that drives inhibitor of k B a (IkBa) to 26S proteasome degradation and p50/p65 activation of the expression
of cytokines and other genes. Decreased levels of TNF-a (TNF) and TNF-related weak inducer of apoptosis (TWEAK) increases Klotho (KL)
expression, whereas KL inhibits the production of proinflammatory cytokines and TNF-induced adhesion molecules. AC, adenylate cyclase;
CRP, C-reactive protein; ICAM1, intercellular adhesion molecule 1; IFNG, IFN-g; P, phosphorylation; p50, NF-kB p50 subunit (NF-k-light-
chain-enhancer of activated B cells 1); p65, NF-kB p65 subunit (RelA; v-rel avian reticuloendotheliosis viral oncogene homolog A); PTX,
pentoxifylline; VCAM1, vascular cell adhesion molecule 1. Reprinted from reference 43 (Donate-Correa J, Tagua VG, Ferri C, Martı́n-Nú~nz E,
Hernández- Carballo C, Ure~na-Torres P, Ruiz-OrtegaM,Ortiz A,Mora-Fernández C, Navarro-González JF: Pentoxifylline for renal protection in
diabetic kidney disease. A model of old drugs for new horizons. J Clin Med 8: E287, 2019), which is available under the terms of the Creative
Commons Attribution License.
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Table 1. Renal effects of pentoxifylline in clinical trials

Study Duration Entry Criteria Groups N Intervention Placebo
Controlled Outcome

Aminorroaya et al.
(68)

2 mo Type 2 DM; UPE.300 mg/24 h PTX versus captopril 39 PTX 1200 mg/d No Decrease in UPE in both groups (PTX, 29% reduction, P,0.05; captopril, 38%
reduction, P,0.01)

Ghorbani et al.
(69)

6 mo Type 2 DM; persistent UPE
.150 mg/24 h despite RAAS
blockers

PTX1losartan and
enalapril versus
losartan and
enalapril

100 PTX 400 mg/d No Decrease in UPE (PTX, 69% reduction, P,0.001; control, 16% reduction,
P5NS); increase in creatinine clearance (PTX, 6% increase; control, 0.7%
decrease, P50.04)

Guerrero-Romero
et al. (70)

4 mo Type 1 and type 2 DM with
overt proteinuria

PTX versus placebo 86 PTX 1200 mg/d Yes Decrease in UPE (type 1: PTX, 86% reduction, P,0.01; placebo, 7%
reduction, P5NS; type 2: PTX, 93% reduction, P,0.001; placebo, 6%
increase, P5NS)

Han et al. (71) 6 mo Type 2 DM; UACR .30 mg/g PTX versus placebo 174 PTX 1200 mg/d Yes Decrease in UACR (PTX, 23% reduction; placebo, 4% reduction; P50.012)
Harmankaya et al.
(72)

9 mo Type 2 DM; persistent
microalbuminuria

PTX1lisinopril versus
lisinopril

50 PTX 600 mg/d No Decrease in UAE (PTX, 42% reduction, P,0.05; control, 35% reduction,
P,0.05)

Navarro-
González et al.
(73)

24 mo Type 2 DM; stage 3–4 CKD;
UAE .30 mg/24 h

PTX andACEi or ARB
versus ACEi or
ARB

169 PTX 1200 mg/d No Decrease in UAE (PTX, 15% reduction; control, 6% increase; P50.001);
decrease in eGFR decline (PTX, 2.1 ml/min per 1.73 m2; control, 6.5 ml/
min per 1.73/m2; P,0.001)

Navarro et al. (74) 6 mo DM (type not stated) with
creatinine clearance ,35 ml/
min

PTX versus standard
Rx

24 PTX 400 mg/d No Decrease in UPE (PTX, 59% reduction, P,0.05; control, P5NS)

Navarro et al. (75) 4 mo Type 2 DM with proteinuria
(,3 g/d)

PTX andACEi or ARB
versus ACEi or
ARB

45 PTX 1200 mg/d No Decrease in UPE (PTX, 15% reduction, P,0.001; control, 0.5% reduction,
P5NS)

Navarro et al. (76) 4 mo Type 2 DM; UAE .300 mg/24
h, normal renal function

PTX and ARB versus
ARB

61 PTX 1200 mg/d No Decrease in UAE (PTX, 17% reduction; control, 6% reduction, P,0.001)

Oliaei et al. (77) 3 mo Type 2 DM; proteinuria
.500 mg/d

PTX1ACEi or ARB
versus ACEi or
ARB

56 PTX 1200 mg/d Yes Decrease in proteinuria (PTX, 61% reduction; placebo, 20% reduction,
P,0.001)

Rodríguez-Morán
et al. (78)

6 mo Type 2 DM; UAE 20–200 mcg/
min; no RAAS blockers

PTX versus captopril 130 PTX 1200 mg/d No Equivalent decrease in UAE (PTX, 77% reduction; captopril, 76% reduction;
P5NS)

Rodriguez-Morán
et al. (79)

16 wk Type 2 DM; UAE 200–200 mcg/
min; no RAAS blockers

PTX versus placebo 40 PTX 1200 mg/d Yes Decreased UAE (PTX, 74% reduction, P50.02; placebo, 7% reduction,
P5NS)

Roozbeh et al. (80) 6 mo Type 2 DM; UPE .500 mg/d PTX1captopril versus
captopril

70 PTX 1200 mg/d No Decrease in UPE (PTX, 56% reduction; placebo, 28% reduction; P50.007)

Shahidi et al. (81) 6 mo Type 2 DM with
microalbuminuria; eGFR
.60 ml/min per 1.73 m2

PTX versus placebo 40 PTX 1200 mg/d Yes No difference in UACR, BP, or eGFR (PTX, 2% reduction in UACR; placebo,
1% increase in UACR; P5NS)

Solerte et al. (82) 12 mo Type 1 DM; UPE .500 mg/d PTX versus
conventional Rx

21 PTX 1200 mg/d No Decrease in UPE (PTX, 47% reduction, P,0.01; conventional, 42% reduction,
P,0.01); increase in creatinine clearance (PTX, 20% increase, P,0.01;
conventional, 14% increase, P,0.01)

DM, diabetes mellitus; UPE, urine protein excretion; PTX, pentoxifylline; RAAS, renin-angiotensin-aldosterone system; UACR, urinary albumin-to-creatinine ratio; UAE, urine albumin
excretion; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; Rx, prescription.
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diabetic), in which PTX was combined with RAAS blockers.
Addition of PTX resulted in further reductions in albu-
minuria, proteinuria, and urinary TNF-a, but did not result
in significant changes in glycated hemoglobin (hemoglobin
A1c), serum creatinine, creatinine clearance, systolic BP, or
diastolic BP. Jiang et al. (87) reported 12 trials with 613
participants (most included only patients with diabetes).
PTX significantly decreased proteinuria compared with the
placebo or no-treatment groups and led to a lesser decline of
eGFR. There were no significant differences in BP or adverse
events. Most of the included studies were small and of short
duration, with the exception of the PREDIAN trial. Meta-
analyses by Leporini et al. (88) and Liu et al. (89) also
concluded that there is evidence for some renoprotective
effects of PTX but no conclusive data proving the use-
fulness of this agent for improving renal outcomes in CKD.
Moreover, meta-analyses of small trials are insufficient to
guide therapy because they tend to overestimate treatment
effects compared to large trials, partly due to publication
bias.

Conclusions
Although there is much evidence that inflammation is

important in the progression of DKD, there are no large
clinical trials showing benefit of anti-inflammatory thera-
pies. The current literature suggests that PTX may have
therapeutic benefits in addition to RAAS blockade in DKD.
PTX could be beneficial in patients unable to tolerate RAAS
blockade or in those with very advanced CKD in whom
RAAS blockade may carry increased risk. The available
evidence thus suggests the possibility of the use of PTX
as a valuable repurposing of an old drug in the treatment of
DKD. However, a large-scale, multicenter, randomized clin-
ical trial is needed to determine whether this agent can
reduce hard end points such as ESKD and death. Such a trial
is currently being conducted (PTXRx; www.clinicaltrials.
gov, NCT03625648), but the results will not be available for
several years. At this time, the combination of RAAS block-
ade plus SGLT2 inhibition is considered standard of care for
patients with type 2 DM and CKD (eGFR 30 to#60 ml/min
per 1.73 m2 or UACR .30 mg/g, particularly .300 mg/g)
to prevent progression of CKD and adverse cardiovascular
outcomes (90). It may be reasonable for clinicians to consider
addition of PTX in patients with type 2 DM whose CKD
continues to progress despite optimization of current
standard-of-care therapies.
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