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Abstract

Phosphoinositide-3- kinase (PI3K) signaling regulates cellular proliferation, survival and 

metabolism, and its aberrant activation is one of the most frequent oncogenic events across human 

cancers. In the last few decades, research focused on the development of PI3K inhibitors, from 

preclinical tool compounds to the highly specific medicines approved to treat patients with cancer. 

Herein we discuss current paradigms for PI3K inhibitors in cancer therapy, focusing on clinical 

data and mechanisms of action. We also discuss current limitations in the use of PI3K inhibitors 

including toxicities and mechanisms of resistance, with specific emphasis on approaches aimed to 

improve their efficacy.

Introduction

The PI3K pathway is a key regulatory hub for cell growth, survival, and metabolism. 

Activation of PI3K is a frequent hallmark of cancer, highlighted by the prevalence of 

somatic mutations in genes encoding key components of this pathway. Over the last two 

decades, the clinical development of PI3K inhibitors has evolved considerably; from the 

first-in-class tool compounds that lacked potency, specificity, and appropriate drug-like 

properties, all the way to medicines that have been approved by several regulatory agencies 

for the treatment of different types of cancer such as leukemia and breast cancer. These 

most recent agents present improved potency, selectivity, and pharmacological profiles, and 

can be safely administered to patients as monotherapies or in combination with other anti-
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cancer agents. Despite the extraordinary progress in the field, there are still may questions 

surrounding the clinical use of PI3K inhibitors. In this review, we summarize the current 

clinical investigations of compounds targeting PI3K. We also discuss relevant mechanisms 

of action behind the clinical efficacy and current limitations of these therapeutic approaches, 

including drug resistance. Finally, we discuss potential strategies aimed to improve the 

therapeutic index of these inhibitors and how novel chemical entities are required to unveil 

the full potential of PI3K inhibition in cancer therapy.

PI3K activation in cancer

Given its essential cellular functions, PI3K is evolutionary conserved across metazoans and, 

in humans, it has undergone successive gene duplication events giving rise to different 

isoforms. There are four catalytic subunits encoded in our genomes: p110α and p110β 
(encoded by PIK3CA and PIK3CB, respectively) are ubiquitously expressed, while p110δ 
and p110γ (encoded by PIK3CD and PIK3CG, respectively) are restricted to immune 

lineages (reviewed by 1–3) (Figure 1A).

PI3K is an enzyme that catalyzes the synthesis of the second messenger phosphatidylinositol 

(3,4,5)-trisphosphate (PIP3) by phosphorylating phosphatidylinositol 4,5-bisphosphate 

(PIP2), an abundant lipid found at the plasma membrane. This biochemical reaction is 

mediated by a catalytic subunit, p110, which forms a heterodimer with a regulatory subunit, 

p85 (or p84/p101 for the p110γ isoform). The interaction with the regulatory subunit 

controls the appropriate localization, regulation, and stability necessary for the activity 

of the catalytic subunit. The p85 regulatory subunit has two Src Homology 2 (SH2) 

domains that are critical for the interaction with phospho-tyrosine (pTyr) residues found 

in activated receptor tyrosine kinases (RTKs) and/or adaptor proteins (e.g., IRS-1 and 

ERBB3). However, when the SH2 domains are not binding pTyr residues, they mediate 

inhibitory intermolecular contacts with p110, maintaining the catalytic subunit in an inactive 

conformation4. Detailed structural studies have been undertaken in this context and revealed 

a complex network of interactions between catalytic and regulatory subunits required for 

PI3K activation5. The RAS GTPases directly interact with the p110 subunit to regulate PI3K 

activity6. Whether this interaction contributes directly to PI3K catalytic activity or regulates 

PI3K stability or localization remains less understood. Regardless, the interaction between 

RAS GTPases and PI3K appears to be necessary for RAS-driven lung tumorigenesis in 

murine models7.

PI3K is commonly activated by receptor tyrosine kinase (RTK) stimulation. Some RTKs 

are particularly efficient at activating this enzyme, including IR, PDGFR, and HER2. 

The increased concentration of PIP3 at the plasma membrane triggers the recruitment of 

proteins containing the PIP3-binding pleckstrin homology (PH) domain and activation of 

downstream pathways2. Among the proteins that contain PH domains, PDK1 and AKT 

kinases are the key canonical downstream effectors of PI3K activation8,9. Activated AKT 

phosphorylates an array of effector proteins that control fundamental cellular processes, 

including mTORC1, an important downstream effector complex that regulates cell growth, 

translation, and metabolic fitness10. AKT activates mTORC1 by phosphorylating and 

inhibiting TSC2 and PRAS40, two negative regulators of mTORC111. AKT also directly 
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phosphorylates and inhibits the FOXO transcription factors impacting cell survival and cell 

cycle progression, as well as many other processes regulated downstream of FOXO target 

genes12 (Figure 1B). Despite the rapid activation of PI3K upon growth factor stimulation, 

PIP3 is short-lived. Downstream signaling is rapidly attenuated due to the activity of 

phosphatase and tensin homolog (PTEN) and other lipid phosphatases that antagonizes the 

enzymatic activity of PI3K by directly de-phosphorylating PIP313 (Figure 1B).

A frequent mechanism of PI3K activation in cancers is the presence of mutations in the 

PIK3CA gene. Such gain-of-function mutations generally affect two different domains of 

p110α, the kinase and the helical domains, where the mutational hotspots affect the H1047 

and the E542/E545 codons, respectively14. Although mutations at these sites account for 

most PIK3CA mutations, other variants can be found in the p85-binding (ABD) and C2 

domains (Figure 1C). Structural insights into how these mutants lead to hyperactivation 

of PI3K suggest that the helical and kinase domain mutations activate the kinase via 

distinct molecular mechanisms. Helical domain mutations, which lead to a lysine replacing 

a glutamate (i.e. E542K and E545K), abrogates an intramolecular inhibitory interaction 

between p110α and the N-terminal SH2 domain of its regulatory subunit, p85, leading 

to constitutive activity that mimics pTyr stimulation15,16. On the other hand, the kinase 

domain mutations appear to increase the specific activity of p110α by affecting binding lipid 

membranes and its substrate, PIP216.

PIK3CA mutations are most frequently found in gynecological malignancies, breast 

adenocarcinomas, and head and neck cancers (Figure 1D). However, other tumor types 

including lung, bladder, and colorectal adenocarcinomas, as well as overgrowth syndromes, 

often carry PIK3CA activating mutations17–19. Mutation bias has also been observed in 

tumors, similar to other driver oncogenes. For instance, head and neck cancers are more 

likely to carry helical E542/545 hotspot mutations20. PIK3CA amplifications are also 

frequent across cancer types and have been suggested to increase p110α activity. Mutations 

in other genes can also lead to hyperactivation of the PI3K pathway. Deletions, non-sense, 

and loss-of-function missense mutations in PTEN are frequent in many cancers, including 

prostate and breast cancer, glioblastoma, and melanoma, among others. Although loss of 

PTEN results in accumulation of PIP3 and elevated PI3K activity, it is important to highlight 

that this effect appears to be mediated to a greater extent by p110β21. Mutations in PIK3R1, 

the gene encoding for the p85 regulatory subunit, lead to activation of PI3K signaling. 

Although infrequent, they are found in uterine, ovarian, and prostate cancers22.

Mechanism of action of PI3K inhibitors

To date, most PI3K inhibitors that have entered clinical development are reversible, ATP-

competitive inhibitors. The few covalent inhibitors that irreversibly inhibit PI3K are mostly 

natural products and have not been tested in late phase clinical trials.

PI3K inhibitors can induce a diverse set of cellular responses including apoptosis and/or 

cell cycle arrest (Figure 2). These effects can be achieved by different mechanisms that 

are regulated by the PI3K/AKT pathway. For instance, both alpelisib, a p110α inhibitor, 

and copanlisib, a pan-p110 inhibitor, caused apoptosis and cell cycle arrest in a subset of 

breast cancer cells23–25. Although some cell lines undergo apoptosis when treated with these 
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inhibitors, the mechanism by which cells die is not entirely clear and may involve dynamic 

regulation of BH3 proteins (i.e. BAX/BAD are substrates of AKT) and transcriptional 

programs mediated by FOXO transcription factors among other mechanisms26,27. In 

addition, PI3K inhibitors often lead to suppression of mTORC1 in sensitive cells, and 

inhibition of mTORC1 can promote apoptosis by impairing translation, especially of pro-

survival and growth proteins and increasing autophagy10,28–31.

The anti-tumoral effects induced by PI3K inhibitors in vivo are not necessarily the result 

of cancer cell-intrinsic mechanisms, as these drugs have also been shown to affect other 

compartments within the tumor microenvironment (Figure 2). Angiogenesis is highly 

dependent on PI3K signaling, both during embryonic development and tumorigenesis32. 

Inhibitors that specifically target p110α have been shown to impair functional angiogenesis, 

which can also contribute to tumor shrinkage33.

In addition, PI3K is an important signaling node necessary for the maturation and activation 

of different immune cells. Therefore, inhibition of this enzyme can lead to anti-tumoral 

effects that are partially mediated by the immune system. For example, it has been shown 

that macrophages require PI3Kγ for polarization and suppression of T-cell activation in 

syngeneic mouse models of cancer; hence, inhibition of this isoform with selective inhibitors 

has been shown to enhance the immune recognition of a solid tumor model 34. Similarly, 

myeloid suppressive cells can be inhibited with duvelisib, a p110δ/γ inhibitor that enhance 

T-cell-mediated cytotoxicity and tumor regression35. In both experiments, inhibition of PI3K 

increased the efficacy of anti-PD-L1 therapies.

In lymphocytes, PI3Kδ is required for proper antigen receptor signaling and both 

inactivation and hyperactivation of this isoform has important functional consequences36,37. 

In tumors, genetic or pharmacologic blockade of PI3Kδ leads to the inhibition of 

suppressive T-regulatory lymphocytes, hence promoting the activation of cytotoxic 

lymphocytes38. While PI3Kδ/γ inhibitors have been mostly developed and approved in 

the context of hematologic malignancies, there is increasing preclinical evidence for using 

these inhibitors in solid tumors38,35. Additional mechanisms regarding the impact of PI3K 

inhibitors in the tumor stroma have been previously discussed in detail39.

Another effect of PI3K inhibition is the systemic metabolic adaptation. Acute treatment with 

these inhibitors induces hyperinsulinemia, which in turn can activate pro-survival pathways 

in the cancer cell40. However, long-term treatment with PI3K inhibitors has been shown to 

reduce adiposity, hyperglycemia, and increase survival in mice and monkeys41.

Clinical development of PI3K inhibitors

The first inhibitors of the PI3K pathway, isolated and characterized more than 25 years 

ago, were used to study the role of PI3K in lymphocyte activation and trafficking42–45, 

insulin receptor signaling46 and DNA synthesis and repair47–49 among other biological 

processes. Both wortmannin and LY294002 were used as PI3K inhibitors, albeit these are in 

fact promiscuous agents that target also other members of the phosphatidylinositol 3-kinase-

related kinases (PIKK) family such as mTOR and DNA-PK. This broad activity against a 

number of different kinases prevented their clinical implementation and development; of 
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note, wortmannin and LY294002 have been extensively used as tool compounds for more 

than a decade.

More specific inhibitors of PI3K were later developed and began to be tested in preclinical 

models across several cancer types50–53. The rationale behind the development of these pan-

PI3K inhibitors (small molecules that inhibit all of the p110 isoforms) was the attempt of 

widening their therapeutic window by limiting their activity specifically to PI3K. Buparlisib 

is a pan-PI3K inhibitor that exemplifies the initial excitement for these compounds, and 

from which we have learned much in terms of tolerability and specificity. The combination 

of buparlisib and the ER degrader fulvestrant showed convincing efficacy in preclinical 

models of ER-positive breast cancer54,55. After the results from the first-in-human phase I 

clinical trial in solid tumors56, buparlisib was tested in combination with either aromatase 

inhibitors57 or fulvestrant58 in ER-positive breast cancer patients, with some encouraging 

clinical responses but also important tolerability issues. In addition to the common side 

effects also observed with other PI3K inhibitors (rash, hyperglycemia, fatigue and diarrhea 

as discussed more below), buparlisib treatment induced neurological symptoms (e.g., 

depression) in a substantial proportion of patients, likely due to its impact blood brain barrier 

permeability59. In HER2-positive breast cancer, buparlisib was tested in combination with 

trastuzumab, both in the laboratory60,61 and in the clinical setting62–64 where promising 

clinical benefits were again accompanied by serious adverse events that rendered this 

therapeutic strategy impractical. Buparlisib was also tested in combination with olaparib 

in both breast and ovarian cancers65,66. However, the lack of biomarkers of sensitivity 

(beyond BRCA1/2 mutations) and the dose-limiting adverse effects observed in a significant 

proportion of patients precluded the design of larger trials testing the effectiveness of this 

combination. Another PI3K inhibitor with predominant and potent activity against PI3Kα 
and PI3Kδ that underwent substantial clinical development is copanlisib67. Copanlisib 

demonstrated impressive efficacy and encouraging tolerability leading to the FDA approval 

for the treatment of follicular lymphoma68 and it is now being tested with a number 

of combinatory treatments in patients with non-Hodgkin lymphoma (NCT04263584, 

NCT03474744, NCT03877055), including the anti-CD20 antibody rituximab69. Although 

this compound is considered a pan-PI3K inhibitor, its clinical efficacy in lymphoma is likely 

the result of the potent PI3Kδ inhibition. In addition, copanlisib is now being tested in 

clinical trials in patients with thyroid cancers (NCT04462471), with advanced solid cancers 

that have alterations in PIK3CA and PTEN (NCT04317105), and patients with HER2+ 

breast cancers (NCT04108858) among others. However, one of the clinical challenges of 

copanlisib is its administration, which is an intravenous infusion that has to be conducted at 

the hospital.

Despite the disappointing results obtained with buparlisib, clinical trials showed for the first 

time that PIK3CA mutant breast cancers might be particularly sensitive to PI3K inhibition 

and paved the way for the development of isoform-specific p110α inhibitors, which were 

predicted to have a better therapeutic window for cancers bearing this frequent genomic 

alteration. The first clinical PI3Kα-specific inhibitor, alpelisib, was developed with the aim 

of targeting the PI3K pathway (when activated by the p110α isoform), but limiting the 

emergence of toxicities attributed to inhibition of other isoforms of p11025,70. The phase 

I first-in-human trial of alpelisib in solid cancers with PIK3CA mutations demonstrated 
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single-agent activity71, and several clinical studies were launched to test its activity in 

combination with targeted therapies, including anti-hormonal agents, in breast cancer 

patients. The combination of fulvestrant and alpelisib was tested in a phase I trial enrolling 

patients with ER-positive metastatic breast and showed promising clinical activity in the 

PIK3CA mutant subpopulation72. This early observation was confirmed in a large Phase III 

clinical trial (SOLAR1) where the progression-free survival (PFS) of PIK3CA mutant breast 

cancer patients treated with alpelisib plus fulvestrant was 11 months in comparison to 5.7 

months of the patients treated with fulvestrant monotherapy73. These results granted FDA 

approval of this regime in ER-positive PIK3CA mutant metastatic breast cancer patients.

Another p110α inhibitor that was developed for solid tumors is taselisib. This potent 

inhibitor showed remarkable efficacy in preclinical studies74. During clinical trials, taselisib, 

in combination with endocrine therapy, demonstrated significant an increased response rate 

and duration of response compared to the placebo arms75. Nevertheless, the clinical activity 

was negated because of intractable toxicity, such as diarrhea, hyperglycemia, colitis, and 

stomatitis. The main difference between alpelisib and taselisib is the specificity for the p110 

isoforms; taselisib is not only a potent p110α inhibitor but is also very active against p110δ. 

In addition, taselisib half-life is around 39 hours76, which could potentially result in drug 

accumulation with daily treatment regimes. Although PIK3CA mutant breast cancer has 

been the focus for both drugs, they have been tested in many different preclinical models, 

spanning across several cancer types. For example, taselisib showed interesting activity 

in head and neck cancer, another malignancy where genomic alterations of PIK3CA are 

frequently observed77. Preclinical studies suggested cooperativity with radiation therapy78 

and in clinical trials, responses to taselisib monotherapy were also observed in heavily 

pre-treated patients with PIK3CA mutant head and neck cancer77.

More recently a potent and highly selective p110α inhibitor (GDC-0077) has been 

developed for clinical use. Mechanism of action studies indicate that GDC-0077 selectively 

degrades PI3Kα in a proteasome-dependent manner79. Although the completed results 

from the Phase I clinical trial have not yet been published, GDC-0077 is being tested in 

combination with endocrine agents and palbociclib in advanced ER+ breast cancer patients 

that harbor PIK3CA mutations (NCT04191499, NCT03006172).

Despite the efforts in targeting PI3K in solid tumors, the developments in hematological 

malignancies have also been significant. In this regard, specific inhibitors targeting the 

p110δ/γ isoforms have been developed and approved for the treatment of different forms 

of leukemia and lymphomas. For example, the PI3Kδ inhibitor idelalisib is approved by the 

FDA for the treatment of relapsed chronic lymphocytic leukemia, follicular non-Hodgkin 

lymphoma and small lymphocytic lymphoma80. Similarly, duvelisib, a dual inhibitor of 

the p110δ/γ isoforms, was approved by the FDA for the treatment of relapsed chronic 

lymphocytic leukemia, follicular lymphoma, and small lymphocytic lymphoma81. Another 

compound that has been recently approved for the treatment of follicular and marginal zone 

lymphoma is the dual PI3Kδ and casein kinase-1ε inhibitor umbralisib82.

A snapshot of the PI3K inhibitors that have been tested in advanced clinical phases or that 

are currently approved by the FDA can be found in Table 1.
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Finally, another emerging use of p110α inhibitors worth noting is in the treatment of the 

non-cancerous PIK3CA-related overgrowth spectrum (PROS), a group of heterogeneous 

disorders characterized by overgrowth and vascular anomalies. Preclinical and early clinical 

work has shown that alpelisib could be beneficial for the treatment of these disorders83,84 

and clinical trials aimed at testing efficacy are currently underway.

Improving the therapeutic index of PI3K inhibitors

PI3K inhibitors have demonstrated clinically meaningful benefit in breast cancer, and 

additional indications and combinations are being investigated. It is likely that we have yet 

to realize the full benefit of completely inhibiting PI3K signaling in cancers. At a minimum, 

the therapeutic window of PI3K inhibitors is limited by on-target, off tumor toxicity. In 

particular, the induction of hyperglycemia and hyperinsulinemia are observed as major dose 

limiting toxicities for p110α inhibitors73. Insulin signaling in muscle and liver requires PI3K 

signaling, and inhibition of PI3K in these tissues impairs insulin signaling, leading to insulin 

resistance. Thus, it is likely that induction of hyperinsulinemia and hyperglycemia prevents 

dosing high enough to fully suppress PI3K signaling in the tumor.

With the recent approval of alpelisib, there is increased need to find methods to mitigate 

hyperglycemia. In the clinical trial of alpelisib that led to its approval for breast cancer, 

37% of patients developed grade 3–4 hyperglycemia, and this toxicity was one of the main 

causes of dose interruptions and reductions73. Although the progression-free survival (PFS) 

was 11 months for the alpelisib treatment arm (approximately double the PFS of the control 

arm), the majority of patients required dose interruptions and/or dose reductions. Moreover, 

recent laboratory studies reveal that the higher insulin levels may activate P3K signaling in 

cancer cells, thereby decreasing the degree of the PI3K inhibition in the cancer cells40. More 

effective mitigation of hyperinsulinemia and hyperglycemia may lead to more uninterrupted 

dosing, which in turn might result in even superior clinical efficacy. Although metformin 

was employed to treat most patients in early trials, newer and more potent therapeutic 

approaches to manage hyperglycemia may have a significant impact on the patients’ quality 

of life. One such class of agents are the SGLT2 inhibitors, and in preclinical studies, their 

concomitant administration with PI3K inhibitors abrogated induction of insulin and led to 

better tumor growth control in preclinical studies 40. Notably, ketogenic diet also yielded 

promising preclinical results as well. Future clinical studies will reveal the impact of more 

effective management of hyperglycemia on this class of agents85.

To improve the therapeutic index of PI3K inhibitors careful consideration should also be 

given to patient stratification (Figure 3). In fact, alpelisib was only approved for PIK3CA-

mutated advanced breast cancer as detected by an FDA-approved companion diagnostic 

PCR test to select for patients who have PIK3CA mutations in tumor tissue and/or in 

circulating tumor DNA (ctDNA) isolated from plasma. As expected, in SOLAR-1, a 

meaningful benefit was not observed for alpelisib-fulvestrant in the cohort without PIK3CA-

mutated cancer73. Apart from PIK3CA mutations being a powerful biomarker for alpelisib 

sensitivity, the SOLAR-1 study and a phase I/II study of alpelisib plus anti-estrogen therapy 

(NCT01870505) showed a wide range of clinical benefit. These results prompted additional 

investigations for additional molecular stratifiers86, which identified PTEN loss in a subset 
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of cancers with primary resistance. Accordingly, excluding tumors with PTEN loss might 

yield meaningful improvements in the response rates of PI3K inhibitors.

As highlighted above, multiple PI3K inhibitors failed to provide a clinical meaningful 

outcome (i.e buparlisib, pictilisib), in part because of substantial toxicities, highlighting the 

importance of dose and scheduling as another key solution in increasing their therapeutic 

index (Figure 3). Through the lens of targeted therapies, the attention to classical clinical 

pharmacology characteristics (such as dose, regimen, bioaccumulation, and others) has 

often been suboptimally investigated, mostly because targeted agents were anticipated to 

have a positive safety profile and because continuous dosing has been favored with the 

assumption of prolonged target inhibition87. In order to deliver the full potential of PI3K 

inhibitors, new scheduling and dosing may be less toxic while preserving efficacy. For 

instance, in preclinical models both metronomic (daily) and intermittent (weekly) inhibition 

of PI3K using different doses of pictilisib has been studied88. The different treatment 

doses and schedules examined in this study elicited similar tumor responses in combination 

with fulvestrant88. Moreover, a first-in-human, Phase I dose-escalation study of the p110α 
inhibitor serabelisib (TAK-117) found that intermitted dosing had an acceptable safety 

profile and enabled higher doses and total weekly exposures in comparison to once-daily 

dosing89, suggesting that alternative dosing and scheduling strategies might expand the 

therapeutic window of PI3K inhibitors.

In order to overcome the current limitations of PI3K inhibitors, novel strategies to target 

this enzyme have been envisioned. For instance, a potential strategy to mitigate toxicity is 

to develop selective inhibitors for mutant PI3K, targeting either the helical domain, E545K, 

or the kinase domain, H1047R, mutations. Selective compounds that specifically inhibit 

these mutant proteins but spare wildtype p110α have the promise of fully suppressing 

cancer signaling while having minimal effect on PI3K signaling in normal tissues, which 

in turn would ameliorate the metabolic toxicities associated to non-selective PI3K signaling 

inhibition. Since the helical and kinase domain mutations reside in distinct regions of 

p110α, likely increasing the enzyme’s activity via distinct molecular mechanisms, it seems 

unlikely that a single molecular entity would be able to inhibit both mutants while sparing 

the wildtype isoform. Thus, it is quite conceivable that there will be different mutation-

specific selective inhibitors for the helical and kinase domain mutants, respectively. The 

impact of inhibiting wildtype p110α in cancers that harbor an oncogenic variant remain 

largely unknown. Although mutant-selective inhibitors hold great promise, there may be 

indications in which targeting wild-type PI3K may have important anti-tumor activity, and 

in these indications, a pan p110α or AKT inhibitor compound administered concomitantly 

with a potent anti-hyperglycemia regimen may be the preferred approach.

An emerging chemical technology that could be of interest for targeting PI3K is the use of 

proteolysis targeting chimeras (PROTAC) to promote specific degradation of proteins. These 

heterobifunctional molecules have the ability to bind a target and recruit ubiquitin ligase 

complexes (namely CRL2VHL or CRL4CRBN)90. Using the large collection of PI3K kinase 

inhibitors available to date, it is in principle possible to create such molecules; however, the 

advantage of these compounds in terms of therapeutic efficacy and toxicity over the classic 

kinase inhibitors remains to be addressed. For instance, GDC0077 was reported to induce 

Castel et al. Page 8

Nat Cancer. Author manuscript; available in PMC 2022 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



degradation of mutant p110α, although the mechanism that leads to proteolysis has not yet 

been discovered79. If mutant p110α is more prone to degradation, this could represent a 

promising starting point for mutant-specific inhibitors. Bifunctional molecules that enforce 

protein-protein interactions, such as the so-called small-molecule protein ligands interface 

stabilizers (SPLINTs), could be engineered to re-establish and/or stabilize the inhibitory 

interaction with p8591. This would be particularly interesting in PIK3CA helical mutant 

tumors, in which such interaction is compromised.

PI3K inhibitors with clinical experience are orthosteric antagonists and only interact within 

the catalytic pocket of p110α. However, the mechanism of activation of PI3K involves many 

steps that could be potentially targeted with allosteric inhibitors. For instance, structural and 

biochemical studies have shown that pTyr peptides and RAS proteins promote dynamic 

changes in p85-p110α dimers that result in increased kinase activity16,92. Therefore, 

allosteric inhibitors that leverage these mechanisms could lead to novel targeting strategies 

that are selective for cancers with specific mechanisms of activating the PI3K pathway.

Therapeutic combinations

It has long been speculated that PI3K inhibitors would be most effective as part of 

combination strategies, especially when used in earlier lines of therapy. Currently, alpelisib 

is approved in combination with anti-estrogens in breast cancer, where a few additional 

combinations are generating a great interest. Preclinical studies demonstrate that combined 

CDK4/6 and p110α inhibition is highly effective in PIK3CA mutant breast cancers93, and 

clinical trials of the combination are currently underway. Indeed, recent data demonstrate 

that the triplet combination of palbociclib, taselisib, and fulvestrant has promising efficacy in 

heavily pretreated PIK3CA-mutant ER+ breast cancer94. There is also interest in developing 

PI3K inhibitors in ERBB2 amplified breast cancers. HER2 provides a strong signal to 

PI3K (via HER3), and preclinical studies demonstrate that ERBB2 amplified breast cancers 

are among the most sensitive cancers to single-agent PI3K inhibitors. This has led to 

the clinical development of PI3K inhibitors and HER2-targeting agents in this subset of 

breast cancers. In addition, and as mentioned before, PI3K inhibitors have shown intriguing 

activity with PARP inhibitors in BRCA1 mutant breast and ovarian cancers65,66, and trials 

assessing this combo are underway. There is also substantial preclinical data examining 

other combinations with conventional chemotherapy and radiation therapy, and clinical trials 

have begun to assess their efficacies. For example, a trial of buparlisib and paclitaxel for 

head and neck cancer had demonstrated an overall survival benefit compared to paclitaxel95.

It has been long-appreciated that concomitant inhibition of the PI3K-AKT and MEK-ERK 

pathways is effective at killing cancer cells96. However, clinical trials of these combos 

have been disappointing, likely because toxicity prevents full suppression of both pathways. 

Indeed, the challenges with respect to therapeutic index of single agent p110α inhibitors 

underscores the difficulties combining these agents with MEK and/or ERK inhibitors, 

each of which have their own challenges with therapeutic index. Thus, these combinations 

are ripe for mutant selective PI3K inhibitors in PIK3CA mutant cancers. For example, 

a combination of such PI3K inhibitor with a MEK inhibitor would suppress MEK/ERK 

systemically, but concomitant inhibition of PI3K and MEK/ERK pathways would occur 
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exclusively in cancer cells. Furthermore, the advent of mutant KRAS selective inhibitors97 

holds promise for combinations with PI3K inhibitors. Indeed, preclinical experiments have 

demonstrated PI3K inhibitors may be quite powerful combination partners for KRAS G12C 

inhibitors98. Furthermore, some KRAS mutant cancers (e.g. KRAS G12D GI cancers) have 

significant flux through the PI3K pathway in lung cancers50, and concomitant inhibition 

of KRAS and PI3K might have significant anti-tumor efficacy. It is also well-known that 

several colorectal cancers harbor both KRAS and PIK3CA mutations, suggesting that 

combined KRAS and PI3K inhibition might be especially effective in these malignancies. 

In KRAS mutant cancers, a mutant selective KRAS inhibitor might combine well with 

a PI3K inhibitor because both pathways will be suppressed specifically in cancer cells, 

but the MEK/ERK pathway will remain intact in the normal cells of the body, increasing 

significantly the tolerability of the combination.

Resistance mechanisms

Drug resistance continues to be a major challenge in cancer therapy, and is determined 

by the pharmacological properties of the drugs in concert with the cell-intrinsic and 

extrinsic properties of the heterogeneous tumor environment99. Similar to the majority 

of cancer drugs, resistance to PI3K inhibitors is a key factor limiting the impact of 

these agents in the clinic. Resistance mechanisms can be divided into de novo, where no 

initial clinical responses are observed due to intrinsic refractoriness of the tumors (or very 

rapid adaptation to PI3K inhibition), and acquired, when prolonged clinical response is 

followed by therapy escape. There are several well-characterized mechanisms of resistance 

to PI3K inhibitors, encompassing the reactivation of the PI3K pathway and the activation of 

compensatory parallel signaling cascades, which in turn restore cell homeostasis following 

PI3K suppression.

Initial studies conducted over a decade ago identified the expression and activation of 

RTKs as a way that can fuel downstream signaling pathways limiting the response to PI3K 

inhibitors100–103. RTKs such as HER3 and others can stimulate PI3K by binding of pTyr 

to the SH2 domains of p85, thereby relieving its inhibition of p110α. The relevance of this 

cellular adaptation to PI3K inhibitors is underscored by the observation that combinatorial 

treatments targeting RTKs and PI3K led to superior antitumor activity in the preclinical 

setting in PI3K-driven tumors61,104,105.

A clinically validated mechanism of acquired resistance to p110α specific inhibitors is the 

loss of function mutations in the tumor suppressor PTEN, which leads to increased p110β 
signaling106. Loss of PTEN was first found to limit the effectiveness of p110α inhibition 

by analyzing different metastases of a patient that showed an impressive initial response 

to alpelisib monotherapy followed by widespread progression106. In addition, analyses of 

plasma and tumors from a recent clinical trial attesting the combination of alpelisib and 

aromatase inhibitors (NCT01870505) uncovered loss of function PTEN mutations in 25% 

of patients with de novo resistance86. Mechanistically, inhibition of the p110β isoform was 

required to restore antitumor activity in breast cancer cells that lost PTEN expression and 

became resistant to alpelisib106. Likewise, initial efficacy of p110α inhibition was mitigated 

by rapid accumulation of PIP3 produced by the p110β isoform which re-activates PI3K107. 
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Consistently, the addition of a p110β inhibitor to p110α prevented PIP3 rebound and led 

to greater anti-tumor effects compared to single agent treatment in breast cancer and in 

PTEN deficient preclinical models of prostate cancer108. The biological determinants of the 

increased dependency on PI3K p110β in PTEN loss cancer cells remains to be delineated.

Resistance to PI3K inhibitors can also been mediated by parallel activation of related 

kinases that feed into the PI3K pathway. For instance, activation of mTORC1 can drive 

resistance to PI3K inhibitors and everolimus can re-sensitize breast and head and neck 

cancers to PI3Kα blockade23,109–111. Mechanistically, we and others have shown that 

in breast cancer cells resistant to p110α inhibition, the PDK1-SGK axis can overcome 

AKT inhibition by activating mTORC1 signaling110,111. More recently, we identified and 

validated several negative regulators of mTORC1 including TSC1, TSC2, ITFG2, TBC1D7, 

AKT1S1, STK11, NPRL2, NPRL3 among others, whose loss reduced the sensitivity to 

p110α inhibition112. Other kinases that have been proposed to confer resistance to alpelisib 

include the overexpression and/or overactivation of PIM and PKC kinases, which maintain 

downstream pathway activation in an AKT-independent manner109,113. Moreover, inhibition 

of other kinases such as cyclin-dependent kinase 4 and 6 (CDK4/6) can restore sensitivity 

to alpelisib in breast cancer cells in cancers that maintain RB phosphorylation despite 

inhibition of PI3K93.

A more recent mechanism of resistance to PI3K inhibitors involving a cancer-cell extrinsic 

mechanism was described in murine models of breast cancer, showing that an increase in 

blood glucose and insulin following treatment with PI3K inhibitors was sufficient to activate 

PI3K signaling, even in the presence of PI3K inhibitors, through systematic glucose-insulin 

feedback40. As mentioned above, this feedback could be inhibited by sodium glucose 

cotransporter 2 (SGLT2) inhibition or ketogenic diet that prevent hyperinsulinemia40. 

Another study found that expression of the FOXM1 transcription factor upon PI3K 

inhibition is a biomarker of resistance due to metabolic changes driven by the expression 

of lactate dehydrogenase (LDH)114. Thus, changes in the metabolomic milieu could predict 

response to PI3K inhibitors and rapid assessment of these alterations may help identify 

patients who would benefit from PI3K inhibitors. In addition, pharmacological targeting 

of specific metabolic enzymes, which are inherently druggable, may offer effective new 

therapeutic alternatives9.

A critical example of a highly uniform adaptive mechanism is the activation of ER signaling 

upon PI3Kα inhibition, which drives resistance to PI3K inhibitors115. The importance of 

the PI3K pathway in ER+ breast cancer is underscored by the high frequency of activating 

mutations in PIK3CA (~40%) in this cancer subtype116. In this regard, PI3Kα inhibition 

elicited an increased dependency of PIK3CA-mutant breast cancer cells on ER signaling, 

which limited their sensitivity and was reversed by the addition of anti-ER therapies115. 

Mechanistically, PI3Kα inhibition regulated ER activity by the phosphorylation of the 

epigenetic regulator KMT2D by the PI3K effectors AKT/SGK117,118. The clinical utility of 

combined inhibition of ER and PI3Kα was established in the SOLAR-1 clinical trial, where 

the addition of alpelisib to anti-ER therapy led to a substantial increase in progression-free 

survival73.
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In the context of prostate cancer, which is characterized by its dependence on androgen 

receptor (AR) and PI3K signaling through loss of PTEN, inhibition of PI3K paradoxically 

activates AR-mediated transcription as a survival feedforward mechanism119. Similar to ER 

in breast cancer, the inhibition of PI3K (with pan-PI3K inhibitors) or AKT, together with 

anti-AR therapy, led to tumor shrinkage. This has raised hopes for more durable disease 

control through combination of PI3K inhibitors and anti-AR therapy in prostate cancer with 

loss of PTEN. Currently, AKT inhibitors in combination with anti-AR therapy are showing 

promising results in phase II clinical trials120. Altogether, it is notable that the targets whose 

inhibition elicits powerful adaptive responses seem to belong to cellular growth pathways 

that are important for the growth of both normal and cancer cells and that are regulated by 

complex feedback loops.

Conclusion

Although PIK3CA is among the most common oncogenes in cancer and several studies 

have demonstrated its validity as a biomarker for PI3K inhibition, skepticism remains in 

considering this pathway a suitable and satisfactory target for cancer therapy. This could 

be for a number of reasons. First, PIK3CA mutations do not necessarily translate to 

poor prognosis or aggressive phenotypes, as seen in other oncogenes such as EGFR in 

lung cancer. Second, the relatively narrow therapeutic window of these agents, due to the 

relevance of the PI3K pathway for the homeostasis of normal cells, can limit its therapeutic 

window. Even in tumors that are highly addicted to this signaling cascade for proliferation 

and survival, dose-limiting toxicities result in short and incomplete target engagement. 

Third, inhibition of the pathway often causes a fast and tissue-dependent activation of 

molecular feedbacks that limit the long-term efficacy of these agents. However, this can also 

be an opportunity to design rationale-based combinatorial strategies and new drug discovery 

approaches that increase the efficacy and safety of PI3K inhibitors.

In our opinion, and considering the new and exciting body of evidence which led to the 

FDA approval of PI3K inhibitors, these agents should not be limited to very specific 

cancer subtypes and lines of therapy, but rather tested in other cancer types to broaden 

their application. This implies identifying other tumor types, or subtypes, that are likely to 

respond to these medicines, developing appropriate combinatorial therapies that maximize 

their benefit, reducing toxicities that lead to treatment discontinuation, and developing novel 

chemical modalities that would allow cancer-specific inhibition of PI3K.
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Figure 1. The PI3K-AKT pathway and the most common PIK3CA mutations in cancer.
a. The gene expression profile of PI3K isoforms in normal human tissues shown 

in log2 (TPM+1) scale based on http://gepia.cancer-pku.cn (visited on April 2021). 

b. Receptor tyrosine kinase (RTK) activation by insulin or growth factors mediates 

tyrosine phosphorylation which allows the recruitment of the lipid kinase PI3K to 

the plasma membrane through the p85 regulatory subunit. PI3K phosphorylates the 

lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to generate phosphatidylinositol 3,4,5-

trisphosphate (PIP3). The lipid phosphatase PTEN dephosphorylates PIP3 back to PIP2. 

PIP3 recruits the serine/threonine kinase AKT to the plasma membrane, where it gets 

phosphorylated and activated through phosphorylation at T308 by the PDK1 kinase and 

S473 by mTORC2 kinase complex. AKT then phosphorylates a numerous of substrates 

promoting glucose, metabolism, cell cycle arrest, cell growth, proliferation, and translation. 

P denotes protein phosphorylation events. c. The most frequent mutations of the PI3KCA 
gene by MSK-IMPACT. d. The percentages of the alteration frequency of the PIK3CA gene 

across human cancers by MSK-IMPACT. Amino-terminal adaptor-binding domain (ABD); 

Ras-binding domain (RBD); Protein-kinase-C homology-2 (C2).
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Figure 2. The non-cell autonomous and the cell-autonomous effects of PI3K inhibitors.
PI3K inhibitors have well-studied cell-autonomous effects in cancer cells that lead to a 

cytostatic and cytotoxic response. These include the activation of intrinsic apoptosis, the 

reduction of glucose metabolism, translation inhibition, and changes in transcriptional 

regulation through the FOXO transcription factors among others. However, in addition to 

these effects, PI3K inhibitors can also exert non-cell autonomous affects in the organism 

and tumor microenvironment that can significantly contribute to the antitumoral effect. 

For example, administration of PI3K inhibitors lead to short and long-term metabolic 

responses that affect tumor nutrient availability and glycemic and insulinemic response. 
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These compounds also have remarkable anti-angiogenic properties that are mediated by 

the alpha isoform. Inhibitors that target the delta and gamma isoform of PI3K inhibitors 

have been shown to affect macrophage activation (including polarization and phagocytosis), 

inhibition of regulatory T-cells, and inhibition of suppressive myeloid cells and neutrophils. 

Most of these changes result in activation of cytotoxic T-cells that promote cancer cell 

killing. The predominant PI3K isoform mediating each of these cellular effects have been 

highlighted in red (alpha), green (delta), and blue (gamma).
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Figure 3. Proposed approaches to increase the therapeutic index of PI3K inhibitors.
Several factors that may increase the therapeutic index of PI3K inhibitors are required to 

improve the clinical application of these agents. These include pharmacological strategies, 

such as careful consideration of dose and schedule; patient stratification allowing the 

identification of biomarkers and mediators of drug resistance; the effect of metabolism 

and diet, and the successful management of common toxicities such as hyperglycemia, GI 

problems, and rash among others. Similar to many other therapies, there are novel modalities 

to inhibit PI3K that need to be considered, which should overcome the current limitations of 

PI3K inhibitors in the clinic.
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Table 1.
Pharmacological properties of clinical PI3K inhibitors.

PI3K inhibitors that have reached late phases of clinical development and/or have been approved by the FDA 

for the treatment of cancer are listed.

In vitro IC50 (nM)

PI3K 
inhibitor Company Structure PI3Kα PI3Kβ PI3K PI3Kγ Clinical Dose t1/2 

(h)
Registration 

trial Ref

Alpelisib Novartis 4.6 1156 290 250

Approved 
for HR+/

Her2- mBC 
in 

combination 
with 

Fulvestrant

Oral; 
300 
mg 

daily

8 NCT02437318 71–73

Buparlisib Novartis 52 166 116 262
Discontinued 
during Phase 

III

Oral; 
100 
mg 

daily

40 NCT01633060 58,121

Copanlisib Bayer 0.5 3.7 0.7 6.4

Approved 
for relapsed 

follicular 
lymphoma

IV; 60 
mg 

three 
times 

a 
month

39.1 NCT01660451 68,69

Duvelisib Verastem 1602 85 2.5 27

Approved 
for relapsed 

follicular 
lymphoma, 

Chronic 
lymphocytic 

leukemia; 
small 

lymphocytic 
leukemia

Oral; 
25 mg 
twice 
daily

4.7 NCT02004522 81

Idelalisib Gilead 8600 4000 19 110

Approved 
for relapsed 

follicular 
lymphoma, 

Chronic 
lymphocytic 

leukemia; 
small 

lymphocytic 
leukemia

Oral; 
150 
mg 

twice 
daily

8.2 NCT01282424 122,123
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In vitro IC50 (nM)

PI3K 
inhibitor Company Structure PI3Kα PI3Kβ PI3K PI3Kγ Clinical Dose t1/2 

(h)
Registration 

trial Ref

Inavolisib Genentech 0.038 N/A N/A N/A

Ongoing 
Phase III in 
combination 

with 
Fulvestrant 

and 
palbociclib 
for HR+/

Her2- mBC

Oral; 
9 mg 
daily

18 NCT04191499 124,125

Taselisib Genentech 0.029 8 0.12 0.97
Discontinued 
during Phase 

III

Oral; 
4 mg 
daily

39.3 NCT02340221 76,77,94

Umbrasilib TG 
Therapeutics >10000 >10000 6.2 1400

Approved 
for relapsed 

follicular 
lymphoma 

and marginal 
zone 

lymphoma

Oral; 
800 
mg 

daily

91 NCT02793583 82
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