TABLE 5. Prediction Models Performance.
| A | B | C | D | E | F | G | H* | |
|---|---|---|---|---|---|---|---|---|
| AUC | 0.645 | 0.639 | 0.689 | 0.666 | 0.656 | 0.667 | 0.809 | 0.969 |
| Accuracy | 0.455 | 0.452 | 0.602 | 0.562 | 0.484 | 0.506 | 0.654 | 0.968 |
| F1 | 0.321 | 0.316 | 0.390 | 0.363 | 0.342 | 0.357 | 0.511 | 0.945 |
| Sensitivity | 0.362 | 0.356 | 0.403 | 0.384 | 0.376 | 0.391 | 0.556 | 0.960 |
| Specificity | 0.797 | 0.795 | 0.809 | 0.803 | 0.800 | 0.803 | 0.848 | 0.989 |
| Precision | 0.328 | 0.325 | 0.404 | 0.368 | 0.352 | 0.357 | 0.539 | 0.932 |
A: regression analysis without PCA; B: regression analysis with PCA; C: random forest without PCA; D: random forest with PCA; E: SVM without PCA; F: SVM with PCA; G: MLP; H*: CNN (proposed framework). PCA: principal component analysis.