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Abstract

Only a minority of patients derive long-term clinical benefit from anti-PD1/PD-L1 monoclonal 

antibodies. The presence of tertiary lymphoid structures (TLS) has been associated with 

improved survival in several tumor types. Here, using a large-scale retrospective analysis of three 

independent cohorts of cancer patients treated with anti-PD1/PD-L1 antibodies, we showed that 

the presence of mature TLS was associated with improved objective response rate, progression-

free survival, and overall survival independently of PD-L1 expression status and CD8+ T-cell 

density. These results pave the way for using TLS detection to select patients who are more likely 

to benefit from immune checkpoint blockade.

Keywords

Immune checkpoint inhibitors; biomarkers; tertiary lymphoid structures (TLS); tumor 
microenvironment

The discovery of immune inhibitory checkpoints has revolutionized the systemic approach 

to cancer treatment. The programmed death 1 (PD-1) inhibitory checkpoint has played a key 

role in understanding how tumors can evade immune surveillance. Blocking the interaction 

between the PD-1 receptor and its primary ligand (PD-L1) has demonstrated remarkable 

anticancer activity and has led to the recent approval of anti-PD-1/PD-L1 drugs for 

several solid tumor types1. However, most patients receiving anti-PD-1/PD-L1 monoclonal 

antibodies do not derive benefit. Hence, there is a crucial need to identify reliable predictive 

biomarkers of the response to anti-PD-1/PD-L1 agents to develop precision medicine for 

cancer immunotherapy.

PD-L1 expression status as assessed by immunohistochemistry, tumor mutational burden, 

and microsatellite instability status are so far the sole companion diagnostic markers 

approved to guide anti-PD1 therapy2. However, all of them, particularly PD-L1 expression, 

are imperfect predictors of a patient’s response to immune checkpoint inhibition, as 

demonstrated by discordant results reported by multiple studies and the varied and evolving 

scoring systems that have been devised for different tumor types2. In addition to CD8+ T 

cells, other immune cell populations may impact the efficacy of anti-PD1/PD-L1 antibodies. 

Several studies have indeed shown that tumor-associated macrophages and tumor-associated 

neutrophils are associated with resistance to anti-PD1 therapy in multiple tumor types3,4. B 
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cells localized in so-called tertiary lymphoid structures (TLS) may also play a crucial role 

in the tumor immune microenvironment. TLS can be likened to micro-secondary lymphoid 

organs. Mature TLS are composed of prominent B-cell follicles and follicular dendritic 

cells that are adjoined to a smaller T-cell zone containing a mixture of CD4+ and CD8+ T 

cells5. TLS have been identified in several solid tumor types and are associated with better 

survival when present in the tumor microenvironment5-8. Higher densities of TLS were 

associated with an increased density of tumor-infiltrating CD8+ T lymphocytes9-10 and with 

an activated and cytotoxic immune signature8. We and others have recently reported that 

the expression of B cells and TLS gene signatures were predictive of improved outcomes 

in sarcoma and melanoma patients treated with immune checkpoint inhibitors11,12,13. 

Altogether, these data suggest that TLS may be crucial for an effective antitumor immune 

response. We therefore decided to investigate the predictive value of TLS in patients treated 

with anti-PD1/PD-L1 antagonist and validated its assessment in a routine diagnostic setting.

RESULTS

We analyzed tumor samples obtained before immunotherapy onset from 328 patients 

(Discovery cohort) treated with anti-PD1 or anti-PD-L1 monoclonal antibodies who were 

included prospectively in an institutional tumor profiling program (NCT02534649). The 

patient characteristics are summarized in Supplementary Table 1. For each case, the TLS 

status was assessed by two pathologists blinded to the clinical data. We observed the 

presence of TLS in 105 cases (32%), including 84 cases with mature TLS (25.6%) (mTLS, 

as defined by the presence of CD23+ follicular dendritic cells within the TLS structure) 

(Fig. 1a, Extended Data Fig. 1b). Baseline characteristics were not significantly different 

between patients according to their TLS status (Table 1). TLS were present across all the 

tumor histotypes (Table 1).

Thirty-one of 84 patients (36.9%; 95% CI, 26.6%–48.1%) in the mature TLS group had 

an objective response compared with 4 out of 21 patients (19.3%; 95% CI, 5.4%–41.9%) 

with immature TLS and 43 out of 223 patients (19%; 95% CI, 14.3%–25.1%) in the 

TLS-negative group, p=0.015 (Fig. 1b).

Regardless of the efficacy endpoint analyzed, the proportion of patients with mature 

TLS-positive tumors was significantly higher among those displaying clinical benefit. The 

proportion of patients with mature TLS-positive tumors was significantly higher in patients 

with an objective response according to Response Evaluation Criteria in Solid Tumors 

(RECIST) (39.7%) than in patients with stable disease (16.9%) or progressive disease 

(23.4%), p=0.015. Sixty patients (18.3%) were long-term survivors (overall survival ≥ 24 

months). The proportion of patients with mature TLS among long-term survivors was 

significantly higher than in the other patient group: 40% versus 22.4%, p=0.005 (Fig. 1c).

The median follow-up was 25.1 months. The median PFS was 6.1 (95% CI, 2–10.2) months 

in the mature TLS positive group and 2.7 (95% CI, 1.9–3.5) months in the TLS-negative 

group, p=0.015 (Fig. 1d). The 6-month, 1-year, and 2-year PFS rates were 51.7%, 37.9%, 

and 27.0% in the mature TLS positive group and 34.4%, 22.1%, and 11.3% in the negative 

mature TLS group, respectively.
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At the time of analysis, 211 patients (64.3%) had died and 117 (35.7%) were still alive. 

The median overall survival (OS) was 24.8 (95% CI, 6.8–42.8) months in the mature TLS 

positive group and 13.3 (95% CI, 11.1–15.5) months in the TLS-negative group, p=0.016 

(Fig. 1d). The 6-month, 1-year, and 2-year OS rates were 82.6%, 66.3%, and 52.7% in the 

mature TLS positive group and 76.6%, 53.7%, and 30.3% in the TLS-negative group.

We then analyzed within the discovery cohort the correlation between PD-L1 expression 

scores, CD8+ T-cell infiltration, TLS status, and patient outcomes. The PD-L1 tumor 

proportion score (TPS) was ≥ 1% in 70 patients (21.3%). The proportion of PD-L1-positive 

tumors was similar among tumors with a high density of mature TLS (22.4%) and those 

with a low density or absent mature TLS (21.1%). Regardless of the PD-L1 expression 

status, patients with mature TLS positive tumors had a better outcome. Among patients with 

PD-L1-positive tumors (i.e., PD-L1 TPS ≥ 1%) and PD-L1-negative tumors (i.e., PD-L1 

TPS < 1%), the objective response rates in patients with a mature TLS positive tumors 

were, respectively, 69.2% (95% CI, 38.6%–91%) and 40.3% (95% CI, 27.6%–54.2%) versus 

35.6% (95% CI, 21.9%–51.2%) and 14.1% (95% CI, 9.7%–19.4%) for patients with mature 

TLS negative tumors, p=0.001 (Fig. 2b and 2c, Table 2). Similar results were obtained for 

the PD-L1 combined positive score (CPS) (Table 2). Among patients with a PD-L1 TPS < 

1%, the median PFS and OS were, respectively, 4.8 (95% CI, 2.4–7.2) and 18.6 (95% CI, 

4.6–32.5) months in the mature TLS positive group versus 2.6 (95% CI, 1.9–3.3) and 12.7 

(95% CI, 10–15.3) months in the mature TLS-negative group; overall log–rank test p=0.013 

(PFS) and p=0.018 (OS). Among patients with a PD-L1 TPS ≥ 1%, the median PFS and 

OS were, respectively, 31 (95% CI, 6.5–55.4) and 62 (95% CI, 0–131) months in the mature 

TLS positive group versus 5.6 (95% CI, 1.8–9.4) and 16.4 (95% CI, 12.6–20.1) months 

in the /mature TLS-negative group, overall log–rank test p=0.013 (PFS) and p=0.018 (OS) 

(Fig. 2b and 2c). Similar results were obtained for the PD-L1 CPS score (Extended Fig. 2).

The median density of CD8+ T cells was 123/mm2. The proportion of high CD8+ T-cell 

density cases (above the median) significantly correlated with the TLS status: 45% in TLS-

negative cases versus 72% in the TLS-positive group, p=0.0001. Presence of mature TLS 

was significantly associated with an improved objective response rate (Table 2), PFS, and 

OS in the high CD8+ T-cell density group, whereas no significant difference was observed in 

the low CD8+ T-cell density group (Extended Fig. 3).

As shown in Supplementary Table 2 and Table 3, the multivariate analysis showed that the 

presence of mature TLS was the most significant predictive factor for objective response 

and had an independent predictive value for both PFS and OS when adjusted with other 

prognostic factors including the performance status, the PD-L1 TPS score, and the level of 

CD8+ T-cell infiltration (Table 3).

To confirm that our results were representative of all cancer types studied, we performed 

one additional analysis by removing non-small-cell lung cancer (NSCLC) patients (the most 

frequent histology). We observed a significantly higher objective response rate in mature 

TLS-positive tumors than in other tumors (41.2% versus 11.4%, p<0.0001), as well as 

improved PFS (4.8 versus 2.3 months, p=0.018) and OS (18.6 versus 12.5 months, p=0.048). 
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These results indicate that the predictive value of TLS was not solely driven by the NSCLC 

histology (Extended Fig. 4).

To confirm the robustness of the predictive value of TLS across different health care settings, 

we analyzed two additional independent validation cohorts. The first one (Validation cohort 

A) included 131 cancer patients who were treated in a community setting. We observed the 

presence of mature TLS in 44 cases (33.6%), and the median follow-up was 14.9 months. 

We found a significantly higher objective response rate (50% vs 27.6%, p=0.009) and PFS 

(8 vs 3.5 months, p=0.038) and a trend of improvement in overall survival in the mature 

TLS-positive group (37.3 vs 26.9 months, p=0.105) (Fig. 2d). The second validation cohort 

(Validation cohort B) included 81 patients from the MATCH-R study (NCT02517892), 

which was a prospective study specifically designed to investigate biomarkers of sensitivity 

and resistance to anticancer agents. In this study, all the patients underwent a single 

biopsy from one metastatic site immediately before immunotherapy onset. We observed 

the presence of mature TLS in 13 cases (16%). Again, we found that patients with mature 

TLS-positive tumors had a significantly better outcome than patients with no mature TLS, 

with an objective response rate of 38.4% vs 11.8%, p=0.02; a median PFS of 10.9 vs 2.1 

months, p=0.079; and a median OS of 24.6 vs 8.1 months, p=0.036 (Fig. 2e).

Because patients from Validation cohort B consented to genetic analysis, we decided to 

explore the correlation between TLS status and the tumor mutational burden (TMB). Among 

the 81 patients in Validation cohort B, 70 (86.4%) had evaluable TMB scores, 10 had TMB-

high status (14.3%), and the remaining 70 patients (85.7%) had non-TMB-high status. The 

objective response rate in the TMB-high group was 30% versus 15% in the TMB-low group, 

although this difference did not reach statistical significance. No significant difference in 

terms of PFS (6.8 vs 2.1 months, p=0.34) or OS (16.2 vs 10.2 months, p=0.75) was observed 

between the two groups. The proportion of patients with mature TLS was not significantly 

different between the two groups (10% versus 16.5%, p=0.6).

Our results indicate that the presence of mature TLS predicts an improved objective 

response and improved PFS and OS in cancer patients treated with immune checkpoint 

inhibitors independently of PD-L1 status and CD8+ T-cell infiltration level.

We and others have recently provided indirect evidence that B-cell infiltration through 

TLS is associated with better outcomes in cancer patients treated with immunotherapy. By 

analyzing the gene expression profile of 47 samples from soft-tissue sarcoma patients treated 

with the PD1 antagonist, we demonstrated an improved response rate in tumors with a 

high expression of B-cell lineage genes (50% versus 13.5%, p=0.01)11. Cabrita et al. also 

showed that a gene signature associated with TLS was predictive of clinical outcomes in 

three independent cohorts of melanoma patients treated with anti-CTLA4 (n=37, n=40) or 

anti-PD1 monoclonal antibodies (n=40)12. In both studies, additional samples were analyzed 

to confirm that the B gene expression signature correlated with the presence of TLS in 

tumors.

Helmink et al. analyzed the predictive value of TLS in two cohorts—23 melanoma patients 

and 19 renal cell carcinoma patients13. The density of TLS to tumor was higher in 
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responders than in non-responders in both cohorts, although statistical significance was not 

reached given the limited sample size of the study13.

In this pan-tumor study, we were able to identify TLS across 11 different tumor types and 

demonstrate that their presence correlates with immunotherapy efficacy.

Moreover, we show that pathological analysis can reliably detect TLS in tumor samples. 

Although the maturity of TLS was assessed by immunofluorescence in this study to 

enable a multiparametric analysis, we also implemented dual CD20-CD23 immunostaining, 

which is readily accessible in routine pathology laboratories. This assessment yielded 

the same results as those obtained by immunofluorescence in 91.9% of cases (n=57/62, 

Supplementary Table 3).

Altogether, our results strongly support a role for B cells within TLS in the response to PD1/

PD-L1 antagonists in cancer patients. To add further complexity, the role of B cells in the 

tumor microenvironment through the secretion of antibodies and cytokines, the modulation 

of T-cell function, and the regulation of antigen processing and presentation14 may be pro- 

or anti-tumorigenic depending on whether they are involved in immature or mature TLS15. 

In immature TLS, B cells may produce molecules released in the tumor microenvironment 

or expressed on their membrane that impair an efficient antitumor immune response. By 

contrast, in mature TLS, B cells may instruct CD8+ T cells by presenting them tumor-

derived antigen16. Although the precise mechanism by which mature TLS control tumor 

growth and predict the response to checkpoint blockade is not fully understood, it is 

established that plasma cells are generated in TLS germinal centers16-17.

Plasma cells may produce antitumor antibodies17-18 that form antigen–antibody complexes 

with tumor-associated antigens, the latter being internalized by dendritic cells resulting 

in very efficient antigen presentation to T cells19. This amplification mechanism should 

allow a much more efficient activation of CD8+ T cells in the tumor microenvironment, 

particularly in the context of immune checkpoint blockade20. Notably, we found that the 

response rate of immature TLS tumors was not different from that of TLS-negative tumors 

and that mature TLS-positive tumors were more infiltrated by CD8+ T cells. Pre-existing 

T-cell antitumor immunity has been hypothesized as a prerequisite to the anti-PD1/PD-

L1 response. Interestingly, we found that the presence of mature TLS was significantly 

associated with improved outcomes in tumors with a high infiltration of CD8+ T cells, 

whereas outcomes were poor for patients with tumors poorly infiltrated by CD8+ T cells 

regardless of the TLS status. This suggests that the presence CD8+ T cells is necessary 

but not sufficient to induce a sustained antitumor immune response, which indeed requires 

crucial cooperation with B cells. These T cells may become exhausted, explaining why 

treatment with anti-PD1/PD-L1 antagonist may result in substantial efficacy in tumors 

enriched in mature TLS.

One main limitation of our study was its retrospective design. However, thanks to a 

robust methodology (multicentric setting, large sample size, blinded assessment of the 

microenvironment profile and the TLS maturity characterization), our findings indicate that 

when present before treatment, TLS could be considered as a predictor of patient response 
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to immunotherapy. Moreover, mature TLS status was associated with improved outcomes 

irrespective of PD-L1 expression, with mature TLS status enriching for improved response 

and survival in both PD-L1-positive and PD-L1-negative patients, particularly in the latter 

group, which is the most important in terms of prevalence. Additionally, the predictive value 

of mature TLS did not appear to be driven by a particular tumor type, with an increased 

proportion of patients with better outcomes being observed across most tumor types.

Whether the formation of TLS can be induced by specific therapies to improve patient 

outcomes is also an important question to address. Lu et al. have recently demonstrated that 

TLS emerge after neoadjuvant chemotherapy in breast cancer and that these TLS contain 

a specific subset of B cells playing a key role in antitumor T-cell immunity induction and 

response to chemotherapy21. Interestingly, Helmink et al. also observed that treatment with 

immune checkpoint inhibitors can favor the emergence of TLS and showed that patients 

with more abundant TLS in post-treatment tumor samples were more likely to respond to 

treatment13.

For patients with advanced tumors, there is an unmet medical need for treatment options. 

Our results provide direct evidence of the crucial role of mature TLS in response to 

immunotherapy. These findings pave the way for using TLS as a biomarker to select 

patients who are more likely to benefit from immune checkpoint inhibition. Ongoing 

clinical trials are evaluating this innovative approach in sarcoma patients (NCT02406781; 

NCT04095208).

METHODS

Patients

This study was based on retrospectively retrieved data from the medical records of 

three independent cohorts of patients treated between December 2013 and May 2019 

in an academic setting (Discovery: Institut Bergonié, Bordeaux, France, NCT02534649, 

Validation cohort B: Gustave Roussy, Villejuif, France) and in a community setting 

(Validation cohort A: Clinique Marzet, Pau, France). The inclusion criteria were age ≥ 

18 years, histologically proven malignant tumor, unresectable and/or metastatic disease, 

at least one tumor evaluation by imaging after immunotherapy onset, and availability of 

paraffin-embedded tumor material obtained before immunotherapy onset. Institutional ethics 

review board approval and patient informed consent were obtained for this study.

Treatments and evaluation

Patients were treated at the discretion of their physician. The best response to treatment was 

evaluated according to Response Evaluation Criteria in Solid Tumors (RECIST) after central 

review22. Routine follow-up was similar across the two centers involved in the study. PFS 

was defined as the time from the start of treatment until disease progression, death, or last 

patient contact. OS was defined as the time from the start of treatment until death or last 

patient contact.
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TLS screening in pathology (Figure 1)

All cases were reviewed blindly by 2 pathologists (LV, FLL) for the presence and 

state of maturity of TLS according to the hematoxylin eosin saffron (HES), the 

immunohistochemical and immunofluorescence stainings on serial sections. The samples 

analyzed were biopsies (discovery cohort: n=213, 65%; validation cohort A: n=85, 64.9%; 

discovery cohort B: n=81, 100%) or surgical samples (discovery cohort: n=115, 35%; 

validation cohort A: n=46, 33.1%; discovery cohort B: n=0, 0%). The pathological screening 

was validated with an independent set of 138 tumor samples that were scored blindly by 

both the pathologists (FLL, LV) and the immunologists (AB, IG, CSF, WHF) (Extended 

Figure 5, Supplementary Table 3). For the rare discordant cases (n=9/138), the final 

TLS status of samples was agreed upon consensually with a board gathering both teams 

(Supplementary Table 3). The diagnostic criteria used to determine the TLS status were 

inferred from this training set and were validated by both pathology and immunology 

teams, derived and adapted from the initial method by Petitprez et al.11 TLS were defined 

as lymphoid aggregates of B lymphocytes (admixed with a variable proportion of plasma 

cells and T lymphocytes in most cases). Only TLS made up of more than 50 cells were 

included in the analysis. TLS were considered significant when located either among the 

tumor cells or at the invasive margin (defined as fibrous tissue distant of less than 1mm 

from tumor cells), as previously described9. When the TLS status was assessed on lymphoid 

organs (namely lymph nodes, spleen, tonsils), TLS were only taken into account when 

admixed to tumor cells and if distant from the residual parenchyma, to exclude pre-existing 

lymphoid follicles. TLS were classified as “mature” when at least one CD23+ dendritic cell 

was detected in the TLS. When isolated CD23-positive cell were detected, the cells had to 

display a dendritic morphology (i.e. cytoplasmic “dendritic” extensions) to be considered 

significant. In the absence of CD23 positivity, the TLS was called “immature”. Of note, 

mature TLS displaying prominent germinal centers on HES staining were systematically 

confirmed with CD23 staining.

Immunohistochemistry stainings

All stainings were carried out on 3 micrometers paraffin slides using a Ventana Discovery 

Ultra platform (Ventana, Roche Diagnostics). Double immunohistochemistry was performed 

on all cases with i) CD3 (2GV6, Ventana) combined to CD20 (L26, Ventana) and ii) CD8 

(C8/144B, Dako) combined to PD-L1 (QR1, Diagomics). Stainings were performed with the 

protocol RUO discovery universal according to the manufacturer’s recommendations with 

the detection kits OmniMap anti-Rb HRP (760-4311, Ventana) and OmniMap anti-Ms HRP 

(760-4310, Ventana). The slides were scanned using the PerkinElmer Vectra Polaris System. 

The double CD20-CD23 immunohistochemistry staining was performed with the primary 

antibodies CD20 (clone L26, Ventana) and CD23 (clone 1B12, Novocastra). The procedure 

was performed with a Ventana Benchmark Ultra system (Ventana, Roche Diagnostics) 

using the Ultraview AP RED and Optiview DAB detection kits (Ventana) following the 

manufacturer’s recommendations (double stain oDAB-uRED v5 protocol, Ventana).
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Assessment of the inter-rater agreement of the pathological assessment

The reproducibility to assess the TLS status of tumor samples with the pathology method 

was tested by training a third senior pathologist (IS) for TLS screening on a set of 

15 samples. The trained pathologist subsequently analyzed blindly 150 tumor samples, 

selected randomly among tumor samples including 102 biopsies and 48 surgical specimens. 

The Cohen's kappa coefficient (κ) test was used to measure inter-rater reliability for the 

following criteria: 1) presence of TLS and 2) maturity of TLS (Supplementary Table 4). 

The inter-rater agreement rate was 0.7988 (Cohen’s Kappa score, CI95: 0.7082-0.8892) for 

the presence of TLS and 0.7317 to evaluate the maturity of the TLS (range 0.5111-1.0) 

(Supplementary Table 4).

Multiplex immunohistofluorescence assay (Figure 1)

Multiplexed immunohistofluorescence was performed on TLS-positive cases (identified 

with HES and CD3/CD20 stainings) using the following antibodies CD20 (L26, Ventana), 

CD23 (SP23, Ventana), CD21 (2G9, Ventana), CD4 (4B12, Novocastra), CD8 (C8/144B, 

Dako). Bound primary antibodies were detected using OmniMap anti-Rb HRP (760-4311, 

Ventana) and OmniMap anti-Ms HRP (760-4310, Ventana) detection kits followed by 

TSA opal fluorophores (Opal 480, Opal 520, Opal 570, Opal 620 and Opal 690, Akoya 

Bioscience). The slides were counterstained with spectral DAPI (Akoya Bioscience) and 

cover-slipped. The slides were scanned using the PerkinElmer Vectra Polaris System, and 

the multispectral images obtained were unmixed using spectral libraries that were previously 

built from images stained for each fluorophore (monoplex), using the inForm Advanced 

Image Analysis software (inForm 2.4.1, Akoya Bioscience) combined with Opal detection 

kit (Akoya Bioscience).

Concordance of IHC versus IF screenings

All samples were analysed by IF in this study as previously described11. A systematic 

comparison of results achieved with the double CD20/CD23 immunohistochemistry versus 

IF was performed with a set of 63 TLS-positive samples. The Kappa concordance score was 

0.7914 (CI95: 0.6343-0.9484) (Supplementary Table 5).

PD-L1 scoring

For all tumors, the PD-L1 status was determined with both the TPS (tumor positive score) 

and CPS (combined positive score) following the guidelines. For the TPS, only viable 

tumor cells displaying partial or complete staining for PD-L1 membrane expression were 

considered relative to the total number of tumor cells. Positive immune cells and neoplastic 

cells showing only cytoplasmic staining were excluded23. For the CPS, all PD-L1-positive 

cells were considered, including viable tumor cells, lymphocytes, and macrophages, relative 

to the total number of tumor cells. Only complete or partial membranous staining was 

considered, but not cytoplasmic staining24.

Semi-automated and quantitative analysis of tumor surface and T-cell infiltrate

Stained slides were digitized with a multispectral slide-imaging platform (Vectra Polaris, 

Akoya Bioscience). Tumor surfaces were assessed with ImageJ software after manual 
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annotation of the scanned slide by a pathologist (LV, FLL) to calculate the TLS density 

(defined as the number of TLS per mm2 of tumor surface). The density of CD8+ T cells per 

sample was semi-automatically assessed using Inform software (Akoya Bioscience, version 

2.4.1) after tissue segmentation and digital cell phenotyping.

Tumor mutational burden (TMB)

The TMB was assessed using exome sequencing as previously described25. To assess a 

clinically applicable cutoff point, we assessed TMB as a dichotomous variable, with TMB-

high defined as at least 10 mutations per megabase.

Statistics and reproducibility

Patients who were treated with immune checkpoint inhibitors and had available tissue 

material from 2 biomarker prospective studies were included for analyses (NCT02534649: 

discovery cohort, NCT02517892: validation cohort B). Sample sizes for each of the 2 

studies are justified in the sample size justification section of the respective protocols. For 

validation cohort A, patients from Clinique Marzet (Pau, France) who were treated with 

immune checkpoint inhibitors and had available tissue material were included for analyses 

provided they received first infusion before 31 December 2018 in order to ensure sufficient 

follow-up. Patients who did not have at least one imaging tumor evaluation performed 

after immunotherapy onset were excluded from the data set. The reproducibility to assess 

the TLS status of tumor samples was evaluated by assessing the inter-rate agreement 

within three independent pathologists as described above (Assessment of the inter-rater 

agreement of the pathological assessment). The data presented in the main Figures using 

multiplexed immunofluorescence analysis represents multiple tumor specimens from each 

tumor cohort analyzed in one experimental run. This is typical for human tumor tissue 

studies where the same tissue area/ exact cells cannot be analyzed more than once and 

replicates may introduce variations due to tissue heterogeneity or spatial variation. The 

cutoff date for statistical analysis of baseline demographic data and clinical outcome was 

03/31/2020. Survival rates were estimated using the Kaplan–Meier method. Descriptive 

statistics were used to describe the distribution of variables in the population. Differences 

between groups were evaluated by the chi-squared test or Fisher’s exact test for categorical 

variables and by Student’s t-test for continuous variables. Prognostic factors were identified 

by univariate and multivariate analyses using a Cox regression model. Variables tested 

in the univariate analysis included age, gender, tumor type, number of previous lines 

of treatment, performance status, PD-L1 expression status as assessed by the tumor 

proportion score (TPS), CD8+ T-cell density, and mature TLS density. Variables associated 

with PFS and OS with a p-value <0.05 in the univariate analysis were included in the 

multivariate analysis. The univariate and multivariate analyses were performed using SPSS 

25.0 statistical software (IPSS Inc., Chicago, USA). All statistical tests were two-sided, and 

p<0.05 indicated statistical significance. The inter-rater agreement score was assessed by 

Cohen’s kappa score.
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Extended Data

Extended Data Fig. 1. Assessment of the presence of TLS and their maturation stage in tumors.
a: This is a TLS-positive primary pancreatic adenocarcinoma associated with a T CD8+ 

lymphocyte density of 154/mm2 and negative for PD-L1. The TLS are delineated with the 

black lines on the HES slide, highlighting their vicinity to tumor cells. Scale bar indicates 

300μm in size. Representative of 540 tumors analyzed (Discovery cohort n=328, validation 

cohort A n=131, validation cohort B n=81). b: This panel shows representative examples 

of immature and mature TLS observed in tumor samples. Upper panel: This mature TLS 

is detected in a primary pancreatic adenocarcinoma associated with a T CD8+ lymphocyte 

density of 154/mm2 and negative for PD-L1. Mature TLS are defined by the presence of a 

network of CD23-positive dendritic cells on immunofluorescence (note that in this case, the 

presence of a germinal center visible on the HES was already diagnostic of a mature TLS). 

Lower panel: The picture shows an immature TLS detected in a primary adenocarcinoma 
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of the lung concomitantly showing a high T CD8+ lymphocyte infiltrate of 372/mm2 and a 

PD-L1 TPS score of 1%. The tumor was only associated with immature TLS displaying no 

germinal center and no network of CD23-positive dendritic cells on immunofluorescence. 

Representative of 540 tumors analyzed (Discovery cohort n=328, validation cohort A n=131, 

validation cohort B n=81). The pictures from the left to right column correspond to 1) 

Hematoxylin Eosin Saffron (HES) staining, 2) Double immunohistochemistry staining of 

CD3/CD20 (CD3 in brown, CD20 in purple), 3) Double immunohistochemistry staining of 

CD8/PD-L1 (CD8 in brown, PD-L1 in purple), 4) Multiplex immunofluorescence assay of 

CD4 (blue), CD8 (yellow), CD20 (orange), CD21 (green) and CD23 (pink). The scale bars 

on the HES images indicate 50μm and 100μm for the upper and lower panels, respectively. 

Black cropped arrows highlight the tumor cells in the samples.

Extended Data Fig. 2. Predictive value of TLS status according to CPS PD-L1 scores.
Objective response rates (OR: objective response, SD: stable disease; PD: progressive 

disease; chi squared (χ2) test) and Kaplan-Meier curves of progression-free survival 

(log-rank test) and overall survival (log-rank test) of 328 cancer patients treated with anti-

PD1/PD-L1 antagonists according to CPS PD-L1 scores (a: CPS PD-L1 <1, N=223 patients; 

b: CPS PD-L1 ≥ 1, N=105 patients) and TLS status (red curve: mature-TLS positive tumors; 

blue line: mature-TLS negative tumors).
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Extended Data Fig. 3. Predictive value of TLS status according to T CD8 cell density.
Objective Response rates (OR: objective response, SD: stable disease, PD: progressive 

disease; chi squared (χ2) test) and Kaplan-Meier curves of progression-free (log-rank test) 

and overall survival (log-rank test) of 328 cancer patients treated with anti-PD1/PD-L1 

antagonists according to T CD8+ cell density (a: low density, N=165 patients; b: high 

density, N=163 patients) and TLS status (red curve: mature-TLS positive tumors; blue line: 

mature-TLS negative tumors).

Extended Data Fig. 4. Outcome of cancer patients (non-small cell lung cancer excluded) 
according to TLS status
a) Objective Response rates (OR: objective response, SD: stable disease, PD: progressive 

disease; chi squared (χ2) test) and Kaplan-Meier curves (log-rank test) of progression-free 

(b) and overall survival (c) of 201 cancer patients (all tumor types except non-small cell 
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lung cancer) treated with anti-PD1/PD-L1 antagonists according to TLS status (red curve: 

mature-TLS positive tumors; blue line: mature-TLS negative tumors).

Extended Data Fig. 5. Comparison of the TLS screening with pathology and 
immunohistochemistry pathology versus the screening with immunofluorescence (method by 
Petitprez et al).
First line: conspicuous mature TLS with CD23+ follicular dendritic cells network. Second 

line: mature TLS defined by isolated CD23+ cell displaying dendritic morphology. Pictures 

from the left to right column correspond to 1) Hematoxylin Eosin Saffron (HES) staining, 

2) Multiplex immunofluorescence assay of CD23 (pink) and CD20 (orange), 3) Double 

immunohistochemistry staining of CD23/CD20 (CD23 in brown, CD20 in red). The scale 

bars on the HES images indicate 50μm in size. Representative of 540 tumors analyzed 

(Discovery cohort n=328, validation cohort A n=131, validation cohort B n=81).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mature TLS are predictive of outcome in cancer patients treated with immune-
checkpoint inhibitors.
a, The presence of TLS in tumors was systematically screened with a Hematoxylin Eosin 

Saffron (HES) staining and double immunohistochemistry staining of CD3-CD20 (CD3 

and CD20 stained in brown and purple, respectively). PD-L1 status was assessed with a 

double immunohistochemistry staining of CD8/PD-L1 (CD8 and PD-L1 stained in brown 

and purple, respectively). The maturity of TLS was assessed in TLS positive tumors with 

a multiplex immunofluorescence assay combining CD4, CD8, CD20, CD21 and CD23 

markers. This illustrated case is a primary pancreatic adenocarcinoma associated with 

mature TLS displaying a prominent germinal center on HES staining. Representative of 

540 tumors analyzed (Discovery cohort n=328, validation cohort A n=131, validation cohort 

B n=81). This tumor was negative for PD-L1 and displayed a T-cell CD8+ lymphocytes 

density of 154/mm2. Immunofluorescence assay show a dense network of CD23+ follicular 

dendritic cells within the germinal center. The scale bar indicates 50μm in size. Black 

cropped arrow highlights the tumor cells in the sample. Images at the bottom show the 

expression of each single marker assessed with its corresponding fluorescence spectrum. 

b, Response rate as defined per RECIST criteria according to the TLS status: absence 

(no TLS, N=223 patients), immature TLS (iTLS, N=21 patients) or mature TLS (mTLS, 

N=84 patients). PD is indicative of progressive disease, SD of stable disease and OR of 

objective response as per RECIST 1.1 criteria. [chi squared (χ2) test] c, Proportion of 

patients characterized by the absence or presence of either iTLS or mTLS according to 

overall survival endpoint (OS ≤ 24 months versus > 24 months from immunotherapy onset, 

chi-squared test) [panels (B,C), N = 328 patients] d, Kaplan-Meier curves of progression-
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free survival and overall survival in the discovery cohort of 328 cancer patients treated with 

anti-PD1/PD-L1 antagonists according to the mature TLS status (red curve: mature-TLS 

enriched tumors; blue curve: mature-TLS negative tumors). [log-rank test]
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Figure 2. Mature TLS are predictive of response to immune-checkpoint inhibition independently 
of the PD-L1 expression status.
a, Panel A: For each case, from top to bottom, 1) Double staining of CD8/PD-L1 (CD8 

in brown, PD-L1 in purple); 2) Multiplex immunofluorescence assay of CD4 (blue), CD8 

(yellow), CD20 (orange), and CD23 (pink); 3) and 4) Computed Tomography scan obtained 

at baseline and 8-16 weeks after treatment onset. Patient #1: Near complete response in 

a case of mature TLS+ metastasis of a lung adenocarcinoma with a CD8+ T lymphocytes 

density of 159/mm2 and a negative PD-L1 status. Patient #2: Complete response in a case 

of mature TLS+ metastasis of a pharyngeal squamous cell carcinoma negative for PD-L1 

associated with a T-CD8 lymphocytes density of 124/mm2. Patient #3: Near complete 

response in a case of mature TLS+ microsatellite stable (MSS) colorectal adenocarcinoma 

associated with a T-CD8+ lymphocytes density of 115/mm2 and with a low PD-L1 rate 

(TPS score = 1%). Patient #4: Progressive disease in a patient with advanced lung 

adenocarcinoma showing high expression of PD-L1 and no detectable TLS (Representative 

of tumor samples and imaging of N = 4 patients from 540 tumors analyzed [Discovery 

cohort n=328, validation cohort A n=131, validation cohort B n=81]. b, On the left part, 

the histogram highlights the response rates achieved in patients with PDL1-negative tumors 
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(defined as a TPS score < 1%, N=258 patients) according to the absence (no mTLS) or 

presence of mTLS. On the right part, from the left to right the Kaplan-Meier curves depict 

the progression-free survival and overall survival of the patients with PDL1-negative tumors 

according to their mTLS status. [log-rank test] c, On the left part, the histogram highlights 

the different response rates in patients with PDL1-positive tumors (defined as a TPS score 

> 1%, N=70 patients) according to the absence or presence of mTLS. On the right part, 

from the left to right the Kaplan-Meier curves depict the progression-free survival and 

overall survival of the patients with PD-L1-positive tumors according to their mTLS status 

d-e) In validation cohort A (N=131 patients) and in validation cohort B consisting (N=81 

patients) , all treated with PD(L)1 antagonists, (left) illustration of response rate as defined 

per RECIST criteria according to the absence or presence of mature TLS (mTLS) and (right) 

Kaplan-Meier curves of progression-free survival and overall survival of cancer patients 

according to the absence or presence of mTLS. [log-rank test]

Abbreviations: SD: stable disease, OR: objective response, PD: progressive disease, mTLS: 

mature TLS.
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Table 1.

Discovery cohort: clinical characteristics of patients with TLS-positive tumors (according to TLS status)

Presence of
TLS (n=105)

No TLS (n=223)

Median Age 62 (range 35-84) 62 (range 20-88)

Gender

Male 57 (53%) 139 (62%)

Female 48 (47%) 84 (38%)

Tumor Type

Non-small cell lung cancer 37 (37.1%) 90 (41.2%)

Soft-tissue sarcomas 8 (7.6%) 38 (17%)

Bladder cancer 15 (14.3%) 16 (7.2%)

Colorectal cancer 11 (10.5%) 16 (7%)

Head and neck carcinomas 5 (4.8%) 7 (3.1%)

Renal carcinoma 2 (1.9%) 8 (3.6%)

Breast carcinoma 1 (1%) 6 (2.7%)

Other 26 (22.8%) 42 (17.9%)

Performance status

≤ 1 97 (92.4%) 207 (92.8%)

> 1 8 (7.6%) 16 (7.2%)

Previous lines of treatment

≤ 1 65 (61.9%) 138 (61.9%)

> 1 40 (38.1%) 85 (38.1%)

Treatment

Anti-PD1 56 (53.3%) 139 (62.3%)

Anti-PD-L1 38 (36.2%) 62 (27.8%)

Combination PD1 or anti-PD-L1 + another immune checkpoint inhibitor 11 (10.5%) 22 (9.9%)

*
Other tumors: thyroid carcinoma, gastrointestinal stromal tumor, cholangiocarcinoma, pancreatic adenocarcinoma, anal carcinoma, cervical 

cancer, ovarian cancer, vulvar carcinoma, endometrial carcinoma, cervical cancer, gastric carcinoma.
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Table 2.

Response rate according to the density of mature TLS in patients depending on PD-L1 status and CD8 

density*

TPS PD-L1 Score

mature-TLS density

Low High Total p value

<1% RECIST PD 118 (55.4%) 19 (42.2%) 137

SD 65 (30.5%) 10 (22.2%) 75

0.0006CR+PR 30 (14.1%) 16 (35.6%) 46

Total 213 45 258

≥ 1% RECIST PD 26 (45.6%) 4 (30.8%) 30

SD 8 (14%) 0 8

0.06CR+PR 23 (40.4%) 9 (69.2%) 32

Total 57 13 70

Total RECIST PD 144 (53.3%) 23 (39.7%) 167

SD 73 (27%) 10 (17.2%) 83 0.0001

CR+PR 53 (19.6%) 25 (43.1%) 78

Total 270 58 328

CPS PD-L1 Score

<1% RECIST PD 105 (55.6%) 15 (44.1%) 120 0.02

SD 58 (30.7%) 9 (26.5%) 67

CR+PR 26 (13.8%) 10 (29.4%) 36

Total 189 34 223

≥ 1% RECIST PD 39 (48.1%) 8 (33.3%) 47 0.001

SD 15 (18.5%) 1 (4.2%) 16

CR+PR 27 (33.4%) 15 (62.5%) 42

Total 81 24 105

Total RECIST PD 144 (53.3%) 23 (39.7%) 167 0.0001

SD 73 (27%) 10 (17.2%) 83

CR+PR 53 (19.6%) 25 (43.1%) 78

Total 270 58 328

CD8 density Low High p value

Low RECIST PD 83 (55.7%) 7 (43.8%) 90 0.39

SD 49 (32.9%) 6 (37.5%) 55

CR+PR 17 (11.4%) 3 (18.8%) 20

Total 149 16 165

High RECIST PD 61 (50.4%) 16 (38.1%) 77 0.008

SD 24 (19.8%) 4 (9.5%) 28

CR+PR 36 (29.8%) 22 (52.4%) 58

Total 121 42 163
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TPS PD-L1 Score

mature-TLS density

Low High Total p value

Total RECIST PD 144 (53.3%) 23 (39.37) 167 0.0001

SD 73 (27%) 10 (17.2%) 83

CR+PR 53 (19.6%) 25 (43.1%) 78

Total 270 58 328

*
Statistical test: Pearson's chi-squared test
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Table 3.

Univariate and multivariate Cox analyses for progression-free and overall survival

Univariate analysis for PFS
(n=328)

Multivariate analysis for PFS
(n=328)

Variable Median
(Months) 95% CI p value HR 95% CI p value

Whole population 3.3 [2.5-4.1] - -

Performance status (ECOG)
≤ 1 3.6 [2.9-4.3]

<0.0001
0.4 [0.3-0.6] <0.0001

> 1 1.6 [1.1-2.1] 1

Cancer Type
NSCLC 4 [2.3-5.7]

0.003
-

Other 2.6 [1.9-3.3]

Previous lines of treatment
≤ 1 3.9 [2.9-4.8]

0.003
-

> 1 2.5 [1.9-3.1]

TPS score (%)
< 1 2.7 [1.9-3.5]

<0.0001
1.7 [1.3-2.5] 0.001

≥ 1 7.0 [1.4-12.6] 1

CD8 density
Low density 2.7 [1.7-3.6]

0.005 -
High density 3.7 [1.9-5.4]

Presence of mature TLS
No 2.7 [1.9-3.5]

0.015
1.4 [1.1-2.0] 0.04

Yes 6.1 [1.9-10.2] 1

Univariate analysis for OS (n=328) Multivariate analysis for OS
(n=328)

Variable Median
(Months) 95% CI p value HR 95% CI p value

Whole population 14.9 [12.9-16.9] - -

Performance status
≤ 1 15.6 [12.9-18.3]

<0.0001
0.32 [0.20-0.51] <0.0001

> 1 5 [2.1-7.9] 1

Cancer Type
NSCLC 16.8 [13-20.6]

0.06
-

Other 12.9 [10.7-15.1]

TPS score (%)
< 1 13.1 [10.8-15.4]

0.07
-

≥ 1 16.9 [12.8-20.9]

CD8 density
Low 13.1 [10.2-15.9]

0.18
-

High 14.9 [11.9-17.9]

Presence of mature TLS
No 13.3 [11.1-15.5]

0.016
1.5 [1.1-2.3]

0.03
Yes 24.8 [6.8-42.8] 1

*
Statistical test: Cox regression model
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