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Abstract

Objective: Prognostication of neurological status among survivors of in-hospital cardiac arrests 

(IHCA) remains a challenging task for physicians. While models such as the Cardiac Arrest 

Survival Post-Resuscitation In-hospital (CASPRI) score are useful for predicting neurological 

outcomes, they were developed using traditional statistical techniques. In this study, we derive 

and compare the performance of several machine learning models to each other and to the 

CASPRI score for predicting the likelihood of favorable neurological outcomes among survivors 

of resuscitation.

Design: Analysis of the Get With The Guidelines-Resuscitation (GWTG-R) registry

Setting: 755 hospitals participating in GWTG-R from January 1, 2001 until January 28, 2017

Patients: Adult IHCA survivors

Interventions: None

Measurements and Main Results: Out of 117,674 patients in our cohort, 28,409 (24%) had a 

favorable neurological outcome, as defined as survival with a Cerebral Performance Category 

(CPC) Score of ≤ 2 at discharge. Using patient characteristics, pre-existing conditions, pre-

arrest interventions, and peri-arrest variables, we constructed logistic regression, support-vector 

machines, random forests, gradient boosted machines, and neural network machine learning 

models to predict favorable neurologic outcome. Events prior to October 20, 2009 were used 

for model derivation and all subsequent events were used for validation. The gradient boosted 

machine predicted favorable neurological status at discharge significantly better than the CASPRI 

score (c-statistic: 0.81 vs. 0.73, P < 0.001) and outperformed all other machine learning models in 

terms of discrimination, calibration, and accuracy measures. Variables that were consistently most 

important for prediction across all models were duration of arrest, initial cardiac arrest rhythm, 

admission CPC score, and age.
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Conclusions: The gradient boosted machine algorithm was the most accurate for predicting 

favorable neurologic outcomes in IHCA survivors. Our results highlight the utility of machine 

learning for predicting neurological outcomes in resuscitated patients.
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INTRODUCTION

In-hospital cardiac arrest (IHCA) patients that have been successfully resuscitated and 

discharged are likely to be afflicted by severe neurological deficits1,2. Resuscitated patients 

are often intubated, sedated, and in a state of induced hypothermia making neurologic 

assessments particularly challenging. This is distressing to patient families who desire 

accurate patient-specific prognostic information to aid them in goals of care decision-

making. Additionally, incorrect prognostication of neurological recovery may bias studies by 

impacting the rate of true outcomes.3 The Get-With-the-Guidelines-Resuscitation (GWTG-

R) Registry is a large multicenter collection of cardiac arrest data.4,5 These data have been 

leveraged in previous studies for the development of tools, such as the Cardiac Arrest 

Survival Post-Resuscitation In-Hospital (CASPRI) and Good Outcome Following Attempted 

Resuscitation (GO-FAR) scores, that estimate the likelihood of IHCA patients surviving to 

discharge without neurological deficits.6,7 These tools are based on conventional statistical 

methods and have been validated in external studies.8

Alongside the growth of large datasets, there has been a recent surge in the application 

of machine learning algorithms in predicting a variety of patient outcomes.9–13 However, 

it remains to be explored whether combining these algorithms with large-scale data from 

the GWTG-R registry can better identify IHCA resuscitation survivors with favorable 

neurological outcome.

The aim of this study was to determine whether the application of machine learning methods 

improves detection of resuscitated IHCA patients who go on to be discharged from the 

hospital without severe neurological deficits in comparison to the CASPRI model. We 

hypothesize that advanced machine learning models will discriminate patients who survive 

to hospital discharge without neurological deficits better than the CASPRI score. We also 

hypothesize that these models will demonstrate better calibration than CASPRI.

METHODS

Data sources and study population

We accessed the GWTG-R Registry to build our study population. The GWTG-R contains 

IHCA medical data collected from 755 hospitals across the United States since January 1st, 

2000 using the Utstein template.4,5 Hospitals participating in the registry submit clinical 

information regarding the medical history, hospital care, and outcomes of consecutive 

patients hospitalized for cardiac arrest using an online, interactive case report form and 

Patient Management Tool™ (IQVIA, Parsippany, New Jersey). Data entry is performed by 
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trained professionals through manual chart review. We identified 333,793 cardiac arrests 

within the GWTG-R registry. Each patient’s first arrest during a hospitalization was utilized 

for analysis, thereby excluding 53,491 arrests. The following exclusion criteria were applied 

to be consistent with criteria used for the CASPRI model: removal of arrests that took 

place in locations other than general medicine ward or intensive care unit (ICU) settings 

(n=58,817), patients without recorded return of spontaneous circulation (n=91,762), missing 

discharge survival status (n=1,868), or missing Cerebral Performance Category (CPC) 

assessment on discharge (n=10,181, see Supplementary Figure 1). These exclusion criteria 

reflected the goal of including only patients hospitalized in the wards or ICU who had 

return of spontaneous circulation with a known outcome. The institutional review board at 

University of Chicago reviewed and approved the study with a waiver of informed consent 

(IRB 17-1342).

Primary outcome

Our primary outcome of interest was survival with favorable neurological status at 

discharge, as indicated by the discharge CPC score. The CPC score varies from one to 

five. A score of one represents minimal to no neurological deficits, two implies moderate 

disability, and three through five represent severe disability, comatose state, and brain death, 

respectively. For purposes of our analysis we used a threshold of a CPC score of ≤ 2 to 

define favorable neurological outcome, following the outcome definition of the CASPRI 

score.6

Predictor Variables

Our models were trained using variables that are expected to be knowable by providers 

after a successful IHCA resuscitation, similar to those considered for the development of 

the CASPRI score. We therefore obtained patient- and event-level variables from GWTG, 

including patient age, sex, neurologic status prior to arrest (pre-arrest CPC), comorbidities 

and conditions (sepsis, hypotension, heart failure, coronary artery disease, diabetes mellitus, 

renal dysfunction, liver dysfunction, respiratory failure, dementia, focal neurological 

deficits, history of stroke, trauma, metastatic malignancy, hematologic malignancy, or 

metabolic derangement), life support devices in place prior to event (vasopressors, dialysis, 

mechanical ventilation, intra-aortic balloon pumps), and cardiac arrest event descriptors 

(night vs. day, weekend vs. weekday, duration of CPR, initial cardiac arrest rhythm, time to 

defibrillation).

Model Development

We derived the following machine learning models: logistic regression (LR), random forests 

(RF), extreme gradient boosting (XGBoost), support vector machines (SVM), and a multi-

layer perceptron (MLP) neural network model. We split data longitudinally to derive and 

validate all models wherein data including and prior to October 20, 2009 was considered 

as the derivation cohort and data from October 21, 2009 to January 28, 2017 formed the 

validation cohort. The choice of October 20, 2009 for the temporal split was to enable 

direct comparison of our models to the CASPRI score model that was created by using 

GWTG-R data prior to this date. We further considered a split-by-site validation study 

design, wherein models were derived using data from four groups of hospitals and validated 
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on an independent fifth group. The assignment of all hospital sites into one of five groups 

was random and performed prior to splitting. Finally, we considered a split-by-random 

study design, where 70% of data was randomly chosen as the derivation cohort while the 

remaining 30% was selected as the validation cohort.

Missing data for LR, RF, SVM, and MLP models was imputed using predictions from a 

classification or regression tree for categorical and numeric variables respectively. Briefly, 

we constructed decision trees using complete data from the derivation cohort. Missing 

values in both the derivation cohort and the validation cohort was imputed using predictions 

from these trees. Derivation data for the MLP and the SVM model were additionally 

encoded so that numeric variables were centered and scaled and categorical variable were 

dummy-coded. The validation cohort was encoded using center-scale parameters from the 

derivation cohort. No imputation or encoding was performed for the XGBoost model, as it 

can natively handle missing data.

In terms of model hyperparameters and structure, we considered a radial basis kernel for 

the SVM. The MLP was designed as two successive dense and dropout layers followed by 

a softmax classifier. Hyperparameters for all models except MLP were optimized using the 

derivation cohort through 5-fold cross-validation. The MLP was optimized using 20 epochs 

with early-stopping based on 80%-20% training-test split of the derivation data, with AUC 

used for hyperparameter optimization. A complete list of hyperparameters optimized for 

each model is available in Supplementary Table 1. Finally, we estimated variable importance 

using a permutation-based approach that computes changes in loss function based on 

resampling observations for each variable.14

Model Performance

Discrimination of all models was assessed using the area under the receiver operating 

characteristic curve (AUC) metric in the out-of-sample validation cohorts. Comparison of 

AUCs between models was performed using DeLong’s method.15 We also compared model 

calibration curves that depict predicted vs. actual results for all models. We compared 

sensitivity, specificity, positive predictive value, and negative predictive value for the 

best model with that of CASPRI at various model output thresholds to evaluate model 

performance in a clinical context. A sensitivity analysis was conducted to compare model 

performance on the overall test data with a sub-population of patients with admission CPC 

score of less than or equal to 2, as patients with poor neurological status at baseline (CPC 

score > 2) are unlikely to experience favorable neurological outcomes at discharge. We 

followed recent recommendations made by the American Heart Association,3 and have 

reported the performance of the prediction models using the Transparent Reporting of 

multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) (checklist 

in Supplementary Table 2). Analyses were performed using R version 3.6.2 (R Project 

for Statistical Computing) and Python Version 3.6.2 with P < 0.05 indicating statistical 

significance.
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RESULTS

Patient Characteristics

Our cohort consisted of 117,674 cardiac arrest patients who survived resuscitation and were 

neurologically assessed at discharge. Of these, 28,409 (24%) had favorable neurological 

outcomes as indicated by the CPC score ≤ 2 at the time of discharge. Table 1 compares 

patient and arrest characteristics between those with and without favorable outcomes at 

discharge. Comparison of pre-existing conditions and intervention prior to cardiac arrest 

between patients with and without the outcome is given in Supplementary Table 3.

Model Performance

Predictive performances of all models are illustrated in Table 2. On a test dataset of all 

patients post October 20, 2009 (n=65,572), the LR model showed improved performance 

in detecting patients with favorable neurological outcome at discharge over the CASPRI 

model (LR AUC 0.79 [0.79-0.80] vs. CASPRI AUC 0.73 [0.73-0.74], P < 0.001). Predictive 

performance did not improve when comparing the LR model to SVM (SVM AUC 0.78 

[0.78-0.79] vs. LR AUC 0.79 [0.79-0.78], P < 0.001) and to RF (RF AUC 0.79 [0.79-0.79] 

vs. LR AUC 0.79 [0.79-0.80], P = 0.29). However, the MLP and XGBoost architectures 

had higher AUC in comparison to the LR model (MLP AUC 0.80 [0.80-0.80], P < 0.001; 

XGBoost AUC 0.81 [0.80-0.81] vs. LR AUC 0.79 [0.79-0.80], P < 0.001). The XGBoost 

model performance did not change when predicting favorable neurological outcomes in 

patients with admission CPC score ≤ 2 (AUC 0.81 [0.80-0.81]).

Figure 1 depicts calibration plots for all models for predicting favorable neurological 

outcomes. A calibration fit with a slope of 1 and an intercept of 0, indicated by the 

dashed-line, signifies perfect calibration of the model to the outcome. While the prevalence 

estimated by Chan et al. at specific thresholds generally matched the true prevalence, the 

CASPRI score overestimates the true prevalence of patients with favorable neurological 

outcomes. The machine learning models demonstrate varying levels of calibration – while 

the XGBoost, RF and, the LR models show excellent calibration with slopes and intercepts 

approximating 1 and 0 respectively, the MLP and SVM show comparatively weaker 

calibration. Supplementary Figure 2 depicts rate of survival with a favorable neurological 

status compared to the XGBoost predicted probability of favorable neurological outcomes.

Table 2 also depicts model performances when conducting the split-by-site and the random-

split study designs. Because the CASPRI model was trained on data prior to 2009, there is 

potential for data leakage for the split-by-site and split-by-random study designs, wherein 

the derivation and validation cohort may overlap. As can be seen, while there was a 

marginal improvement in performance for all models in the random-split design, there was 

no discernible difference between the longitudinal split and the split-by-site designs. Similar 

trends were also observed in comparing calibration metrics for all models across different 

derivation-validation study designs (see Supplementary Table 4).

Table 3 compares the sensitivity, specificity, positive and negative predictive values for the 

XGBoost model for predicting favorable neurological outcomes at discharge, with that of 

CASPRI scores (inverted to associate higher values with likelihood of favorable neurological 
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outcomes) and the LR model for the split-by-time study design. At a sensitivity of 54%, the 

XGBoost model had a higher specificity (87% vs 79%; 87% vs 85%), positive predictive 

value (57% vs. 44%; 57% vs 54%), and negative predictive value (86% vs. 84%; 86% vs. 

84%) than both the CASPRI and the LR models. At a specificity of 90%, the XGBoost 

model had a higher sensitivity (48% vs. 35%; 48% vs. 44%), positive predictive value 

(61% vs. 54%; 61% vs. 59%), and negative predictive value (85% vs. 82%; 85% vs 84%) 

than both CASPRI and the LR model. At the best performing threshold, as identified 

using Youden’s J- Statistic, the XGBoost model had a sensitivity of 72% (70%-77%), 

a specificity of 74% (69%-76%), a positive predictive value of 90% (89%-90%), and 

a negative predictive value of 45% (45%-48%) for predicting patients with favorable 

neurological outcomes. At the threshold corresponding to a 5% false-positive rate (i.e., 5% 

of patients identified as favorable neurological outcome will experience poor neurological 

outcome), the XGBoost model had a sensitivity of 34% (33%-34%), a positive predictive 

value of 95% (95%-96%), and a negative predictive value of 31% (31%-31%). In contrast, at 

the threshold corresponding to 5% false-positive rate, the CASPRI model had a sensitivity of 

31 % (30%-32%), a positive predictive value of 91% (91%-91%), and a negative predictive 

value of 29% (29%-30%). At a 10% or lower likelihood of surviving to discharge without 

neurological deficits (at XGBoost thresholds of ≤ 23 and Inverted CASPRI scores ≤ 30), the 

XGBoost model had a higher sensitivity than CASPRI (27% [95% CI: 26%-27%] vs. 14% 

[95%CI: 13%-14%]). Similarly, at a 5% or lower likelihood of surviving to discharge with 

favorable neurological outcomes (at XGBoost thresholds of ≤10 and Inverted CASPRI score 

≤ 23), the XGBoost model had a higher sensitivity than CASPRI (7% [95%CI: 7%-8%] vs. 

2% [95%CI: 1%-2%]).

Figure 2 illustrates the variables that were important for predicting favorable neurological 

outcomes within each model, ordered by median normalized importance across all models. 

Variables most important for prediction include duration of resuscitation, initial cardiac 

arrest rhythm, admission CPC score, and age. The most important pre-existing conditions 

were sepsis and cancer, while the top interventions in place were mechanical ventilation 

and administration of vasoactive agents. Supplementary Table 5 depicts the odds-ratios 

for each variable within the logistic regression model. Supplementary Figure 3 depicts 

partial dependence plots from the XGBoost model for age, duration of resuscitation, and 

admission CPC score. As shown, patients 60 or more have a lower probability of surviving 

to discharge without neurological deficits as compared to younger patients. The probability 

of favorable neurological outcome plateaus for patients whose cardiac arrest lasted for at 

least 15 minutes. Finally, admission CPC scores < 3 were associated with higher probability 

of favorable neurological outcomes in the XGBoost model.

DISCUSSION

In this study, we developed machine learning models to predict favorable neurological 

survival in patients who experience in-hospital cardiac arrests using the large, multicenter 

GWTG registry. In a test set of approximately 65,000 patients admitted in a time period 

after development of CASPRI in 2009, we found that a model based gradient boosting 

techniques outperformed the CASPRI as well as other machine learning models in terms of 
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discrimination, accuracy measures, and calibration. Our results indicate the potential of this 

model as a useful tool among resuscitated patients for assessing neurological outcomes.

Determining risk of neurological deficits is challenging in cardiac arrest survivors since 

the presence of intubation precludes proper neurological assessment. Recently, prior studies 

have successfully developed scores that allow accurate prognostication after IHCA. For 

example, the CASPRI score was developed using data from the GWTG registry to predict 

survival to hospital discharge without neurological deficits, as indicated by a discharge CPC 

score ≤ 2.6 A CPC score at discharge of 1 or 2 indicate moderate to mild neurological 

deficit that still allow for the patient to live independently.16 Using the CASPRI score, 

clinicians could estimate where a patient falls in terms of deciles of risk and consider 

appropriate adjustments regarding goals of care. The CASPRI score has also been validated 

in an independent, external setting.8 Another model derived using the GWTG-R data 

is the GO-FAR score, that utilized variables similar to the CASPRI model to identify 

resuscitated patients with likelihood of surviving to discharge with minimal neurological 

deficits (defined as a discharge CPC Score of 1). Here we considered favorable neurological 

outcomes as defined in the CASPRI model as our primary outcome.

Recently, machine learning algorithms have been applied to large-scale, multi-site, national 

registries to predict outcomes such as mortality in rapid response events or risk of 30-day 

readmissions in IHCA patients.17,18 However, their application to predicting patients that 

survive to discharge without neurological deficits has not been explored. Other studies 

have used machine learning to predict neurological outcomes 12-24 hours post cardiac 

arrest using electroencephalogram (EEG) data,19 and for predicting neurological status at 

discharge for out-of-hospital cardiac arrests.20 We derived and compared the performance 

of modern machine learning models in discriminating patients with favorable neurological 

outcomes from those without in a large national registry of in-hospital cardiac arrest 

patients. Among the models explored, the gradient-boosted model was overall the best in 

terms of improvements in discrimination over the CASPRI score, improvements in accuracy 

metrics such as sensitivity, specificity, positive, and negative predictive values at various 

thresholds, and had excellent calibration for the outcome. Our model could be used as a 

baseline risk adjustment or comparator algorithms when considering the association between 

other data modalities, such as EEG, and outcomes.3 Our model offers flexibility in setting 

score thresholds that are specific to the needs of a hospital or additional applications such 

as quality initiatives or risk adjustment for prospective studies. Our study is another example 

of the utility of combining machine learning methods with large datasets for development of 

better risk stratification methods.

The modest improvements of the more advanced methods compared to logistic regression 

linear model may be attributed to the highly structured predictor variables, where all but two 

(duration and age) were categorical variables. The improvement in discrimination observed 

for the gradient boosted technique may be attributed to the model’s capacity to be more 

flexible than a logistic regression model by utilizing possible non-linearity and interactions 

between variables to improve performance, as observed in a recent review article.3 The 

logistic regression and gradient boosted model also demonstrated better calibration to the 

actual rate of the outcome than the other models. We additionally illustrate how partial 
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dependence plots can aid in interpreting direction of risk for the gradient boosted model. It is 

possible that the observed statistical differences in the machine learning model performances 

may not translate to significant change in impact from a clinical standpoint. We note that the 

logistic regression model is more interpretable as a bedside score. However, it does require 

imputation of missing values. On the other hand, the data itself does not need any pre-

processing or imputation before ingesting into the gradient boosted model. Thus, the choice 

behind implementation may be based on accuracy, interpretability, and implementation 

considerations. If the motivation is to acquire accurate prediction of favorable neurological 

survival without need for preprocessing data, then the gradient boosted model is preferred. 

However, the logistic regression model is preferable in cases where data preprocessing is not 

an issue, and there is a need to more directly assess the association between each variable 

and neurological survival for each new patient.

By testing three validation study-designs, our study further informs implementation 

decisions regarding the models. The temporal validation allowed us to assess model 

generalizability to new patient cases, which is of most relevant to clinicians already 

participating in the GWTG database seeking to apply these models to future patients. 

The external validation strategy allows for assessing model performance in a new hospital 

setting. Our objective in conducting random validation, which typically ensures maximal 

performance, was to ensure there was no bias in the temporal or external validation. The 

equivalent performance observed for all validation study designs suggests that these models 

are stable across time and across hospital site.

Our work also highlights the importance of duration of resuscitation, initial cardiac arrest 

rhythm, admission CPC, and patient age in determining likelihood of neurological survival 

in resuscitation survivors. These variables are included in the CASPRI score as well as 

considered to be crucial for outcomes in IHCA patients.6,21–23 Pre-existing conditions such 

as cancer, hepatic insufficiency, and sepsis that were associated with poor neurological 

outcomes in this study are also supported by other studies. 21,24 Similarly, the association 

between poor outcomes and incidence of mechanical ventilation and administration of 

vasoactive agents in IHCA patients have also been documented previously.25,26

Our study has the following limitations. First, our models utilize retrospective data elements 

within the GWTG registry, and thus may miss important features. Second, data from the 

GTWG registry may not be generalizable externally. Further, our exclusion criteria involved 

variables, such as ROSC, that may not be missing at random and could introduce bias in 

our cohort selection. In particular, our data might contain patients with poor neurological 

outcomes due to early withdrawal of life-sustaining treatment who might have otherwise 

survived with a favorable neurologic status.27 Finally, similar to the CASPRI model, our 

models cannot be extended to out-of-hospital survivors nor utilized directly for treatment 

or prognostication. As with any prediction model, individual patient prognosis and care 

decisions need to be made using additional data and context. Previous studies have 

highlighted the limitations of predictive models in neurological prognostication.28 Further, 

prospective studies have demonstrated that a significant proportion of comatose cardiac 

arrest survivors achieved good neurological outcomes even with awakening after 6 days.29 
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Our models are best suited for estimating likelihood of neurological survival for IHCA 

survivors for the purpose of quality initiatives and risk-adjustment.

CONCLUSION

We developed machine learning models using large-scale multicenter data that improve 

detection of resuscitation survivors who are likely to be discharged without poor 

neurological deficits. These models may provide clinicians with important information for 

quality initiatives as well as could be used in risk adjustment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Calibration plot for CASPRI (score in depicted in reserve) and all machine learning models 

demonstrating alignment between predicted probability of favorable neurological outcome at 

discharge against true outcome rate.
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Figure 2: 
Variable importance across all models.
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Table 1:

Clinical and Arrest Characteristics of Patients With and Without Favorable Neurological Outcome at 

Discharge

Variable type Variable Patients with favorable 
neurological outcome 

(n=28409)

Patients without 
favorable neurological 

outcome (n=89265)

P-value

Demographics Age, mean (sd) 64.1 (14.8) 66.1 (15.5) <0.001

Female, n (%) 11838 (41.7%) 38931 (43.6%) <0.001

Race, n (%)

 Black 4764 (16.8%) 20572 (23.0%) <0.001

 White 21371 (75.2%) 60035 (67.3%)

 Other 2226 (7.8%) 8429 (9.4%)

 Missing 48 (0.2%) 229 (0.3%)

Characteristics of Arrest, n (%) Initial Cardiac Arrest Rhythm

 Asystole 5712 (20.1%) 25246 (28.3%) <0.001

 Pulseless Electrical Activity 9557 (33.6%) 42797 (47.9%)

 VT/VF T2FS<2min 5950 (20.9%) 7446 (8.3%)

 VT/VF T2FS 2-3 1776 (6.3%) 2268 (2.5%)

 VT/VF T2FS 3-4 677 (2.4%) 787 (0.9%)

 VT/VF T2FS 4-5 347 (1.2%) 543 (0.6%)

 VT/VF T2FS >5min 920 (3.2%) 1992 (2.2%)

 Unknown 3470 (12.2%) 8186 (9.2%)

Duration of Resuscitation, minutes, 
median (IQR)

7 (3-14) 11 (6-21) <0.001

Hospital Location

 Telemetry 7706 (27.1%) 15408 (17.3%) <0.001

 Intensive Care Unit 15063 (53.0%) 55856 (62.6%)

 Inpatient 5640 (19.8%) 18001 (20.2%)

Time and Day of Arrest

 Night 8255 (29.1%) 29980 (33.6%) <0.001

 Weekend 8220 (28.9%) 28476 (31.9%) <0.001

Use of AED

 Yes 6450 (22.7%) 21063 (23.6%) 0.002

 No 13795 (48.6%) 43232 (48.4%)

 Not used-by-facility/NA 8164 (28.7%) 24970(28.0%)

CPC Score prior to arrest <0.001

 1 19261 (67.8%) 35609 (39.9%)

 2 5250 (18.5%) 16291 (18.3%)

 3 1017 (3.6%) 9559 (10.7%)

 4 or 5 720 (2.5%) 5585 (6.3%)

 Missing 2161 (7.6%) 22221 (24.9%)
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Table 2:

Comparison of Model Performances for Predicting Favorable Neurological Outcome at Discharge Based on 

Various Strategies for Constructing Derivation and Validation Data

Model Split-by-time study design (AUC, 
95%CI)

Split-by-site study design (AUC, 
95%CI)

Split-by-random study design (AUC, 
95%CI)

CASPRI 0.73 (0.73-0.74) 0.74 (0.74-0.75)* 0.74 (0.74-0.75)*

SVM 0.78 (0.78-0.79) 0.79 (0.79-0.79) 0.79 (0.78-0.79)

LR 0.79 (0.79-0.80) 0.79 (0.79-0.80) 0.80 (0.79-0.80)

RF 0.79 (0.79-0.79) 0.79 (0.79-0.80) 0.80 (0.79-0.81)

MLP 0.80 (0.80-0.80) 0.80 (0.80-0.80) 0.81 (0.80-0.81)

XGBoost 0.81 (0.80-0.81) 0.81 (0.81-0.81) 0.81 (0.80-0.81)

*
Potential data leakage: the test data in the split-by-site and the split-by-random study design may include observations before 2009, which was 

used to derive the CASPRI model

AUC: Area Under the receiver operating characteristic Curve

CI: Confidence Interval

CASPRI: Cardiac Arrest Survival Post-Resuscitation In-hospital score

SVM: Support Vector Machine

LR: Logistic Regression

RF: Random Forest

MLP: Multi-Layer Perceptron

XGBoost: eXtreme Gradient Boosted machine
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Table 3:

Sensitivity, specificity, positive and negative predictive values at various thresholds for the XGBoost, LR, and 

CASPRI models for predicting favorable neurological outcomes. Both XGBoost and LR model outputs were 

multiplied by 100. CASPRI scores were inverted (by subtracting from maximum score of 50) in order to 

associate higher scores with favorable neurological outcomes.

Model Cutoff Sensitivity(%, 95%CI) Specificity (%, 95% CI) Positive Predictive Value (%, 
95% CI)

Negative Predictive Value (%, 
95% CI)

XGBoost (Predicted Probability x100)

≥ 4 99 (99-99) 14 (14-14) 27 (27-27) 98 (97-98)

≥ 10 93 (92-93) 41 (41-42) 33 (33-33) 95 (94-95)

≥ 20 78 (77-79) 67 (67-67) 43 (42-43) 91 (90-91)

≥ 30 63 (62-63) 82 (81-82) 52 (51-52) 87 (87-88)

≥ 36 54 (53-55) 87 (87-88) 57 (57-58) 86 (86-86)

≥ 40 48 (47-49) 90 (90-90) 61 (60-61) 85 (85-85)

≥ 50 36 (35-36) 95 (95-95) 68 (67-69) 82 (82-82)

≥ 60 24 (24-25) 98 (97-98) 75 (74-76) 80 (80-81)

≥ 70 15 (15-16) 99 (99-99) 81 (80-82) 79 (79-79)

LR (Predicted Probability x100)

≥ 4 98 (98-99) 16 (15-16) 27 (27-27) 97 (96-97)

≥ 10 92 (91-92) 41 (41-42) 33 (33-33) 94 (94-94)

≥ 20 77 (76-78) 66 (65-67) 41 (41-42) 90 (90-90)

≥ 30 61 (60-62) 81(80-81) 50 (50-51) 87 (87-87)

≥ 34 54 (54-55) 85 (85-85) 54 (53-54) 85 (86-86)

≥ 40 44 (44-45) 90 (90-91) 59 (58-60) 84 (83-84)

≥ 50 29 (29-30) 95 (95-96) 67 (66-68) 81 (81-81)

≥ 60 18 (18-19) 98 (98-98) 74 (73-75) 79 (79-79)

≥ 70 10 (10-10) 99 (99-99) 82 (80-83) 78 (78-78)

Inverted CASPRI score

≥ 26 97 (96-97) 15 (15-15) 26 (26-27) 94 (93-94)

≥ 30 89 (89-90) 33 (32-33) 30 (29-30) 91 (90-91)

≥ 32 83 (82-83) 46 (46-46) 32 (32-33) 89 (89-90)

≥ 37 54 (54-55) 79 (78-79) 44 (44-45) 84 (84-85)

≥ 40 35 (35-36) 90 (90-91) 54 (53-55) 82 (81-82)

≥ 43 20 (19-21) 96 (96-97) 63 (62-65) 79 (79-79)
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