Skip to main content
. Author manuscript; available in PMC: 2023 Feb 1.
Published in final edited form as: Crit Care Med. 2022 Feb 1;50(2):e162–e172. doi: 10.1097/CCM.0000000000005286

Table 2:

Comparison of Model Performances for Predicting Favorable Neurological Outcome at Discharge Based on Various Strategies for Constructing Derivation and Validation Data

Model Split-by-time study design (AUC, 95%CI) Split-by-site study design (AUC, 95%CI) Split-by-random study design (AUC, 95%CI)
CASPRI 0.73 (0.73-0.74) 0.74 (0.74-0.75)* 0.74 (0.74-0.75)*
SVM 0.78 (0.78-0.79) 0.79 (0.79-0.79) 0.79 (0.78-0.79)
LR 0.79 (0.79-0.80) 0.79 (0.79-0.80) 0.80 (0.79-0.80)
RF 0.79 (0.79-0.79) 0.79 (0.79-0.80) 0.80 (0.79-0.81)
MLP 0.80 (0.80-0.80) 0.80 (0.80-0.80) 0.81 (0.80-0.81)
XGBoost 0.81 (0.80-0.81) 0.81 (0.81-0.81) 0.81 (0.80-0.81)
*

Potential data leakage: the test data in the split-by-site and the split-by-random study design may include observations before 2009, which was used to derive the CASPRI model

AUC: Area Under the receiver operating characteristic Curve

CI: Confidence Interval

CASPRI: Cardiac Arrest Survival Post-Resuscitation In-hospital score

SVM: Support Vector Machine

LR: Logistic Regression

RF: Random Forest

MLP: Multi-Layer Perceptron

XGBoost: eXtreme Gradient Boosted machine