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Introduced less than two decades ago, glucagon-like peptide-1 receptor agonists rap-

idly reshaped the field of Type 2 diabetes mellitus (T2DM) care by providing

glycaemic control in tandem with weight loss. However, FDA-approved GLP-1 recep-

tor agonists are often accompanied by nausea and emesis and, in some lean T2DM

patients, by undesired anorexia. Importantly, the hypophagic and emetic effects of

GLP-1 receptor agonists are caused by activation of central GLP-1 receptors. This

review summarizes two different approaches to mitigate the incidence and severity

of nausea and emesis related to GLP-1 receptor agonists: conjugation with vitamin

B12, or related corrin ring-containing compounds (‘corrination’), and development of

dual agonists of GLP-1 receptors with glucose-dependent insulinotropic polypeptide

(GIP). Such approaches could lead to the generation of GLP-1 receptor agonists with

improved therapeutic efficacy, thus decreasing treatment attrition, increasing patient

compliance and extending treatment to a broader population of T2DM patients. The

data reviewed show that it is possible to pharmacologically separate the emetic

effects of GLP-1 receptor agonists from their glucoregulatory action.

LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands

(BJP 75th Anniversary). To view the other articles in this section visit http://

onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc
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1 | INTRODUCTION

1.1 | Type 2 diabetes mellitus is a global health
problem, and pharmacological intervention requires
refinement to increase tolerability for patient quality
of life in disease management

Diabetes is one of the most common chronic diseases in the world.

According to the International Diabetes Federation (IDF), the incidence of

diabetes has tripled over the last 20 years, reaching a prevalence of nearly
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10% among adults today (www.idf.org). Of the different forms of diabe-

tes, Type 2 diabetes mellitus (T2DM) is the most prevalent form and

accounts for the vast majority (�90%) of the total diabetic population

(Saeedi, Petersohn et al., 2019). T2DM is a progressive metabolic disorder

characterized by hyperglycaemia and deterioration in beta-cell function,

paradoxically accompanied by defective insulin action due to the develop-

ment of insulin resistance (Nauck & Meier, 2016). The global prevalence

of the disease is increasing rapidly, largely due to concomitant increases

in obesity (Leitner et al., 2017), as clear underlying mechanistic co-

morbidities exist between these two pathologies. Unfortunately, lifestyle

interventions alone (i.e., diet and exercise-based interventions) are largely

ineffective, in part due to poor adherence/compliance but also due to

evolutionary metabolic mechanisms that intrinsically prevent sustained

weight loss (Grill, 2020) and obfuscate T2DM management tools.

In the last few decades, many families of hypoglycaemic drugs have

been developed for the treatment of T2DM such as synthetic insulin,

metformin, dipeptidyl peptidase-4 (DPP-4) inhibitors, sodium/glucose

cotransporter-2 inhibitors and glucagon-like peptide-1 (GLP-1) analogues

(American Diabetes Association, 2020; Buse et al., 2020; Lovshin &

Drucker, 2009). Despite cases of remarkable success, all these drugs have

been characterized by pitfalls and side effects that limit efficacy and narrow

therapeutic windows, requiring intensified research efforts to fully manage

T2DM (McGovern et al., 2018; Thrasher, 2017). Second-generation GLP-1

receptor agonists have now been approved by the Food and Drug Admin-

istration (FDA) for the treatment of T2DM. The development and market-

ing of albiglutide, dulaglutide and semaglutide have been extensively

discussed and reviewed elsewhere (Avgerinos et al., 2020; Grill, 2020;

Jendle et al., 2016; Madsbad, 2016; Rendell, 2018; Sharma et al., 2018). In

this review, we highlight recent advances in the development of promising

GLP-1 receptor agonist-based approaches that have not yet received FDA

approval and will describe the underlying mechanisms identified in preclini-

cal studies, discussing potential translational relevance of these novel phar-

macotherapies with special emphasis on ‘in-build’ strategies to mitigate

the most prominent side effects of the GLP-1 receptor agonists, such as

nausea and vomiting. Specifically, we discuss the advantages of GLP-1

agonism in conjunction with glucose-dependent insulinotropic polypeptide

(GIP), and GLP-1 conjugation with vitamin B12 (B12) as potential future

strategies to mitigate or eliminate the side effects characteristic of current

GLP-1 receptor agonists.

1.2 | The GLP-1 system and the history of GLP-1
analogues: Remarkable control of glycaemia, if tolerated

The search for insulin-stimulating factors (the incretins) began over

100 years ago in the hopes of uncovering endogenous peptides

with potential hypoglycaemic utility (Kim & Egan, 2008). GLP-1 is a

multifaceted hormone with broad pharmacological potential

(Drucker, 2018). First isolated in 1986 from the gut, GLP-1 has since

been found to both stimulate insulin secretion and inhibit glucagon

release (Drucker et al., 2017). Together with GIP, these two proteins

are the only two known endogenous incretins (Holst, 2019). Glucose-

stimulated insulin secretion by GLP-1 is only one of the beneficial

effects for T2DM management. Other known GLP-1 effects on

metabolism that are relevant to T2DM include the slowing of gastric

emptying, inhibition of food intake and modulation of beta-cell prolif-

eration (Holst, 2007; Muller et al., 2019; Rowlands et al., 2018).

GLP-1 is a post-translational product of the peptide

preproglucagon (PPG) expressed in the enteroendocrine L cells of the

small intestine and in pancreatic alpha-cells (Eissele et al., 1992; Kauth

& Metz, 1987). Within minutes of the ingestion of nutrients, GLP-1 is

released by enteroendocrine L cells (Jorsal et al., 2018). However, due

to rapid degradation by the enzyme DPP-4, only �10% of endoge-

nously released GLP-1 reaches the systemic circulation (Muller

et al., 2019). PPG is also expressed centrally, primarily in the nucleus

tractus solitarius (NTS) (Merchenthaler et al., 1999) of the caudal

brainstem, an integrative relay nucleus for satiety and emetic signals

controlling ingestive and malaise behaviour (Grill & Hayes, 2012).

GLP-1-expressing NTS neurons project to various GLP-1 receptor-

expressing nuclei throughout the CNS (Llewellyn-Smith et al., 2011)

implicated in the control of food intake and energy balance (Dunphy

et al., 1998; Merchenthaler et al., 1999). Central administration of

GLP-1 or GLP-1 receptor agonists reduce food intake and body

weight, reproducing the effects of systemically delivered GLP-1 recep-

tor agonists (Alhadeff et al., 2016; Barrera et al., 2011; Hayes

et al., 2010; Turton et al., 1996) and highlighting a predominant role of

the central GLP-1 system in the regulation of feeding.

As a treatment for the management of metabolic diseases, native

GLP-1 has proven largely ineffective as a pharmacotherapy due to

the necessity for repeated, large doses to overcome the extremely

short half-life, �2 min, due to degradation by DPP-4 (Muller

et al., 2019). Nearly 30 years ago, it was discovered that a compound

extracted from the salivary gland secretions of the Gila monster has

similar properties to human GLP-1, which led to the development of

the peptide exendin-4 and its synthetic form, exenatide (Eng

et al., 1992). Exendin-4 exhibits a modified amino acid sequence, rela-

tive to human GLP-1, thereby allowing the compound to be remark-

ably resistant to enzymic degradation by DPP-4 and extending its

half-life to �2.5 h (Copley et al., 2006; Kieffer et al., 1995). In 2005,

exenatide became the first FDA-approved GLP-1 analogue for the

treatment of T2DM. Shortly after, in 2008, exendin-4 was approved

the by European Medicines Agency (EMA) for the treatment of obe-

sity (Davidson et al., 2005). The entry of exendin-4 into the T2DM

landscape was followed in 2009 by liraglutide, an acylated

(i.e., lipidated) and DPP-4-resistant GLP-1 analogue derived from

human GLP-1 (Nauck & Meier, 2019), which was approved by the

FDA for the treatment of obesity in 2014 (Muller et al., 2019). In

doing so, exendin-4 and liraglutide became the first glucose-lowering

medication options for reducing body weight, according to FDA/EMA

standards, thus providing additional health benefits for the over-

weight T2DM patient population. With advances in biotherapeutic

engineering, studies focused on exendin-4 and liraglutide inspired

drug discovery campaigns over the subsequent two decades to

deliver ‘second-generation’ GLP-1 receptor agonists for treating

T2DM, most notably albiglutide, dulaglutide and semaglutide

(Williams et al., 2020). These developments yielded substantial overall
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metabolic improvements in patients compared with the first-

generation GLP-1 receptor agonists that include superior and longer

lasting hypoglycaemic actions and greater body weight loss. However,

these compounds were still plagued by a high incidence of side

effects, mostly of gastrointestinal (GI) nature, such as nausea and

vomiting (Ahren et al., 2018; Bettge et al., 2017; Pratley et al., 2018).

1.3 | Nausea and emesis are the most common
side effects of all existing GLP-1-based therapies and
limit T2DM management

The 13th US Surgeon General, C. Everett Koop, famously stated,

‘Drugs don't work in patients who don't take them’, encapsulating an

important segment of T2DM patients and challenges to treatment

adherence over time. Current GLP-1 receptor agonists are extraordi-

nary medicines but importantly are not immune to pitfalls character-

ized by all-too-common side effects such as GI distress, nausea,

vomiting and diarrhoea (Bettge et al., 2017; Filippatos et al., 2014).

These side effects occur in a dose-dependent manner, which generally

limits the use of higher doses to drive satisfactory glycaemic control

and proper disease management. Evidence-based medical reports

are now clear that nausea and emesis are the principal reported

side effects of existing GLP-1-based therapeutic agents (Bettge

et al., 2017). A recent report from GlaxoSmithKline concluded that

‘Patients reported that GI-related issues “Made me feel sick” (64.4%)

and “Made me throw up” (45.4%) as their top reasons for discontinua-

tion’ (Sikirica et al., 2017). The same report showed ‘disparities
between patient experiences and physician perceptions’ and

suggested major ‘gaps in physician–patient communication’ regarding
GLP-1-therapeutic agents and incidence of illness. Indeed, it has been

reported for decades in the cancer literature that physicians and

nurses vastly underestimate incidence of nausea and emesis in outpa-

tient settings (Aapro, 2018). Additionally, the documentation of these

side effects in clinical trials is often via self-reporting rather than vali-

dated, structured and homogenized questionnaires, which further

complicates assessments and between-study comparisons. Report

after report for every GLP-1 based therapeutic agent reads with inci-

dence of nausea and emesis warranting strategies for improvement

(see Bergenstal et al., 2010; Bettge et al., 2017; Buse et al., 2004;

John et al., 2007; Jones et al., 2018; Kendall et al., 2005; Lean

et al., 2014; Nauck et al., 2016; Ratner et al., 2010). These effects are

not transient nor insignificant as they lead to discontinuation of treat-

ment in �6–10% and reduced dose tolerance in another �15% of

T2DM patients (Bergenstal et al., 2010; Buse et al., 2004; Capehorn

et al., 2020; John et al., 2007; Kendall et al., 2005; O'Neil et al., 2018;

Trujillo, 2020). To put this major issue into a different set of numbers

demonstrating the magnitude of this problem, approximately one in

four T2DM patients (�6.5 million US citizens) are prevented from the

full benefit of current FDA-approved GLP-1-based therapeutic agents,

and up to 50% of patients (�13 million Americans) that may be pre-

scribed an existing GLP-1-based therapeutic agent will experience

nausea and emesis. These statistics together support the notion that

future GLP-1 receptor agonists designed to eliminate nausea and

emesis have a high therapeutic potential for T2DM patients.

Any strategy addressing emesis and emetic behaviour improve-

ments must consider that the vomiting response is largely controlled

by an emetic centre located in the brainstem (Babic & Browning, 2014;

Baker et al., 2005; Hesketh, 2008; Horn, 2014; Miller & Leslie, 1994).

This anatomical emetic ‘hub’ is composed of three distinct nuclei—the

NTS, the adjacent dorsal motor nucleus of the vagus (DMV) and the

area postrema (AP). Physiological and pathological modulators of

energy balance share many common neural substrates and anatomical

nodes within the brain including the AP/NTS (Babic &

Browning, 2014; Hesketh, 2008; Miller & Leslie, 1994). The AP/NTS

is the primary target of vagal afferent projections originating from the

gut. Additionally, the presence of fenestrated capillaries allows neu-

rons in the AP/NTS to be easily reached by circulating emetic/

anorectic agents that cannot readily cross the blood–brain barrier

(Miller & Leslie, 1994; Price et al., 2008). Increased neuronal activity

in the AP/NTS is associated with emesis and nausea (Baker

et al., 2005). Importantly, virtually, all existing approved GLP-1 ana-

logues, as well as other emetic stimuli, such as the highly emetogenic

chemotherapeutic agent cisplatin, activate neurons in the AP/NTS

and upstream CNS targets implicated in the regulation of not only

feeding behaviour but also in the development of aversion and illness

behaviours, such as the parabrachial nucleus (PBN) and the central

nucleus of the amygdala (CeA) (Alhadeff et al., 2017; Baraboi

et al., 2011; De Jonghe & Horn, 2009; Gabery et al., 2020; Salinas

et al., 2018). Direct activation of the GLP-1 receptors expressed in

various nuclei of the CNS reproduces the body weight and food

intake suppressive effects, as well as the behavioural signs of malaise

observed following systemic administration of GLP-1 receptor ago-

nists (Kanoski et al., 2011; Kanoski et al., 2012; Mietlicki-Baase

et al., 2018; Secher et al., 2014; Sisley et al., 2014).

Despite the enhanced half-life (i.e., sustained agonism) and the use of

titration schemes to slowly increase drug levels as a means to reduce

some side effects (Nauck & Meier, 2019), significant attrition due to intol-

erance to GLP-1 pharmacotherapy has and continues to occur mainly due

to reported GI side effects. Thus, considering the dose-limiting side

effects, there is a clear clinical need for safer and more effective GLP-

1-based analogues. In this review, we discuss the advantages of GLP-1

agonism in conjunction with GIP, as well as GLP-1 conjugation with corrin

ring-containing molecules such as vitamin B12 (B12) or cobinamide (Cbi).

2 | CONJUGATION WITH B12 AND Cbi:
ALTERING PHARMACODYNAMICS TO
PREVENT GLP-1 RECEPTOR-INDUCED
EMESIS AND NAUSEA

2.1 | General vitamin B12 physiology

Coined ‘nature's most beautiful cofactor’ due to its deep red colour,

B12 is the largest and most complex of all vitamins and one of

nature's rare organometallic compounds. B12 is a water-soluble
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molecule that is critical for red blood cell formation, proper neuro-

logical function, and DNA and protein synthesis (Nielsen

et al., 2012). Because B12 can only be synthesized by bacteria,

mammals (including humans and rats) must ingest the vitamin for

survival as an essential nutrient. A highly efficient system for the

absorption and cellular uptake of B12 exists (see Figure 1 and

Green et al., 2017). Once B12 is released in the gastric lumen, the

glycoprotein haptocorrin (HC) binds it, protects it from the sto-

mach's low pH and carries it to the duodenum (Morkbak

et al., 2007), where HC is then degraded and B12 is free to bind

another glycoprotein, the intrinsic factor (IF) (Allen et al., 1978;

Gordon et al., 1991). This IF transports B12 through the intestine

into the terminal ileum, where the IF-B12 complex undergoes

receptor-mediated endocytosis into the ileal enterocyte (Birn

et al., 1997; Fyfe et al., 2004; Kozyraki et al., 1998). In the cyto-

plasm of the ileal absorptive cells, B12 becomes bound to

transcobalamin (TC), which mediates its secretion into the blood

plasma and carries it to cells that require B12 (Russell-Jones &

Alpers, 1999).

2.2 | The B12 corrination technology

The structural heart of B12 is a corrin ring: a 19-carbon, asymmetric,

mono-protonated, tetrapyrrole ring system with a centrally coordi-

nated cobalt atom (Co3+). This structure allows for multiple areas that

can be chemically modified and/or conjugated to other moieties.

However, maintaining recognition of B12 by its key transport pro-

teins is critical but can be achieved through select modification of,

and/or conjugation to, B12. Several modifications of B12 have been

published, including those at the amide side chains, the phosphate

group, the cobalt centre or the ribose secondary hydroxyl group

(Figure 2) (�o Proinsias et al., 2013). Our team has successfully gener-

ated, validated and characterized several peptide conjugates, such as

those with insulin (Petrus et al., 2007), PYY3–36 (Fazen et al., 2011)

and GLP-1 (Clardy-James et al., 2013) at the 50-OH position (see

Table 1). This site was previously shown to be reactive in a coupling

reaction with 1,1-dicarbonyl-di-(1,2,4-triazole) (CDT) coupling agent,

and such conjugates retained binding with IF and TC (Fedosov

et al., 2006).

F IGURE 1 Schematic representation of the
dietary uptake pathway of vitamin B12 in humans.
Cbl, cobalamin/B12; HC, haptocorrin; IF, intrinsic
factor; P, protein
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Successful conjugation strategies utilized for the improvement of

GLP-1 have focused on the use of lipidation and conjugation to

antibody fragments. Dulaglutide, developed by Eli Lilly, successfully

conjugated GLP-1 (7–37) to an Fc fragment of IgG4. The use of

fatty acid GLP-1 conjugates is highlighted by liraglutide and

semaglutide—compounds developed by Novo Nordisk. An additional

conjugation strategy, although less explored, is corrination;

the use of B12 or any of its biosynthetic corrin-containing precursors

(e.g., dicyanocobinamide [CN2Cbi]) (Figure 2), with the aim of altering

pharmacology. Although exendin-4 readily penetrates the CNS (Kastin

& Akerstrom, 2003; Mietlicki-Baase et al., 2018), less is known about

the penetrance of B12 into the adult brain (Kanazawa &

Herbert, 1983). Uptake of B12 into the brain is likely to be a receptor-

mediated process with megalin, a receptor capable of TC–B12 uptake,

being expressed in the choroid plexus (Carro et al., 2005). Additional

evidence points to the importance of the CD320 receptor, as well as

the transmembrane protein, amnionless (Luder et al., 2008). Collec-

tively, this information points to a receptor-mediated process of B12

blood–brain barrier penetrance. It is, however, clear that in the adult

brain with limited neurogenesis, uptake of B12 by the CNS is very low

and considerably lower than in other organs, especially the liver and

kidney (Ikotun et al., 2014; Sah et al., 2014). A recent study using

radioactively labelled B12 (B12-89Zr) reveals less than 0.1% injected

dose per gram (ID�g�1) of B12 in brain in mouse models with over 5%

ID�g�1 observed in pancreas (Kuda-Wedagedara et al., 2017). Impor-

tantly, evidence collected post-mortem from human brain and liver

clearly demonstrates negligible amounts of B12 (11.3 pmol�g�1) and a

�10-fold lower relative concentration of corrinoid-type analogues

(1.3 pmol�g�1; including Cbi) in the brain, with the liver being the main

site of concentration for both B12 and corrinoid analogues (total

>600 pmol�g�1) (Kanazawa & Herbert, 1983).

Overall, from a therapeutic perspective aimed at normalizing the

chronic hyperglycaemia of T2DM patients, designing a GLP-1 recep-

tor agonist that does not penetrate readily into the CNS, but retains

enhanced pharmacological action on beta cells, would theoretically

provide an improved tool for glycaemic control without eliciting

unwanted nausea/malaise and/or anorexia. Corrination has been uti-

lized to deliver several bioactive and/or imaging molecules, ranging

from 99mTc to insulin (see Table 1). The conjugation of peptides to

corrins offers a unique delivery system of peptides through the B12

uptake pathway. Unlike other conjugation strategies, corrination

increases the hydrophilicity of the peptide and thus increasing

F IGURE 2 Schematic representation
of vitamin B12 (B12), corrin ring (shown
deprotonated) and dicyanocobinamide
(Cbi). ‘Corrination’ is derived from the use
of corrin ring-containing molecules such
as Cbi or B12

TABLE 1 List of corrinated peptides tested in the context of energy balance and diabetes preclinical models

Corrination
moiety

Peptide/
protein

In vivo
model

Mode of
administration Key outcomes Reference

B12 Insulin Rat Oral Prolonged hypoglycaemic activity and

increased half-life

(Petrus et al., 2007)

B12 Ex4 Rat

Mouse

Shrew

s.c., i.p. and i.c.v. Maintained glucoregulation, no effect on

food intake and body weight, and near

absence of emetic events

(Borner, Shaulson, et al., 2020;

Mietlicki-Baase et al., 2018)

B12 PYY3–36 Rat s.c. Augmented hypophagia and weight loss (Henry et al., 2015)

IF-B12 Ex4 Not

tested

Not applicable Increased gut and kidney protease

resistance

(Bonaccorso et al., 2015)

Cbi Ex4 Rat

Shrew

i.p. Improved glycaemic response in IPGTT

and reduction of emetic events

(Borner, Workinger, et al., 2020)

Abbreviations: B12, vitamin B12; Cbi, cobinamide; Ex4, exendin-4; IF, intrinsic factor; IPGTT, intraperitoneal glucose tolerance test.
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solubility, a common limitation to peptide therapeutic agents. The

use of corrins for conjugation to peptides and other low MW com-

pounds has been well explored, and their synthesis is simple and

direct. As an additional benefit, corrination has also been shown to

be successful at limiting proteolytic degradation of exendin-4

(Bonaccorso et al., 2015).

2.3 | In vitro and in vivo characterization of
B12–exendin-4: Do conjugates with reduced brain
penetrance reduce GLP-1-induced nausea and
vomiting?

Initial in vitro screenings demonstrated that covalent conjugation of

the GLP-1 receptor agonist exendin-4 to B12 between the vitamin

5-OH group and the K12 position of exendin-4 retains potent

agonism (68 pM) of the GLP-1 receptor, either as the free conjugate

or bound to the critical transport protein for B12 absorption IF

(126 pM), confirming the ability of B12–exendin-4 to interact with

both systems. Results of in vivo evaluation of the effects of systemic

B12–exendin-4 and unconjugated exendin-4 on food intake and body

weight, glucose tolerance and in the development of taste avoidance

(CTA, an assay of illness behaviour) in rodents showed that the B12–

exendin-4 conjugate improved glucose tolerance but did not elicit

CTA and anorexia produced by unconjugated native exendin-4

(Mietlicki-Baase et al., 2018). Follow-up studies also showed that the

B12–exendin-4 enhanced glucose clearance, relative to exendin-4 and

similar to liraglutide in Goto–Kakizaki (GK) rats, a lean, polygenetic

model of T2DM (Goto et al., 1976; Ostenson & Efendic, 2007), but

did not produce the CNS-dependent outcomes of anorexia and body

weight loss characteristic of these two compounds (Borner, Shaulson,

et al., 2020). Rats treated with native exendin-4 exhibit an acute

hyperglycaemic response, a phenomenon tied to the high CNS pene-

trance of exendin-4 and commonly observed across different rat

models (Gao & Jusko, 2011; Perez-Tilve et al., 2010). Conversely,

B12–exendin-4 did not produce a transient stress-induced hyper-

glycaemic in lean healthy and GK diabetic rats (Borner, Shaulson,

et al., 2020; Mietlicki-Baase et al., 2018). To further evaluate whether

differences in the effect profiles of B12–exendin-4 and unconjugated

exendin-4 are the result of altered CNS penetrance, rats received

systemic injections of fluorescein– exendin-4 (Flex), Cy5–B12 or

Cy5–B12–exendin-4, and brain penetrance was evaluated using con-

focal microscopy. Although Flex robustly penetrates the brain (dorsal

vagal complex and paraventricular nucleus of the hypothalamus),

Cy5–B12 and Cy5–B12–exendin-4 fluorescence were not observed

centrally, supporting a lack of CNS penetrance into these regions of

the brain, in line with observed reduction in CNS-associated side

effects of exendin-4. However, Cy5–B12–exendin-4 colocalized with

insulin in the pancreas, suggesting direct pancreatic action as a

potential mechanism underlying the hypoglycaemic effects of

B12–exendin-4 (Mietlicki-Baase et al., 2018).

To definitively address the question of whether B12 conjugation

would prevent emesis induced by exendin-4, the musk shrew (Suncus

murinus) was used to evaluate the in vivo efficacy and tolerability of

B12–exendin-4. In contrast to rodents, shrews are capable of emesis

(Ueno et al., 1987) and are believed to have a nearly identical B12

binding profile in blood as humans (71% amino acid sequence identity

to human HC in Tupaia chinensis [Chinese tree shrew], Accession

No. XP_006147468.1). Importantly, in the context of modelling the

GLP-1 system, previous studies conducted by John Rudd and his

research team amply demonstrated the ability of existing GLP-1

receptor agonists to induce hypoglycaemia, anorexia and emesis in

this model (Chan et al., 2011, 2013). In line with the rodent data, all

exendin-4 doses tested induced anorexia and body weight loss in

shrews, but no such effects occurred after B12–exendin-4, even at

suprapharmacological doses (Borner, Shaulson, et al., 2020).

Importantly, B12–exendin-4 administration at �10� the effective

dose necessary for glucoregulation did not cause emesis compared

with the potent emetic effects of exendin-4 that were observed in all

animals tested (Borner, Shaulson, et al., 2020). Additional evidence

showing that B12–exendin-4 induced profound emesis when

administered centrally (i.e., direct CNS stimulation) further validates

the thesis of an altered pharmacodynamic profile of the corrinated

peptide.

2.4 | The B12 precursor dicyanocobinamide (Cbi)
as an alternative to B12

Cbi, a corrinated precursor of B12, has been identified in humans

(Hardlei & Nexo, 2009) but has no known influence on normal B12

homeostasis because it is not recognized by the B12 blood-

transporting protein TC, critical for blood–brain barrier penetrance

and cell entry via the CD320 receptor (Green et al., 2017; Luder

et al., 2008). Instead, Cbi is recognized in the blood only by the

B12-binding protein HC. The function of circulating HC is unknown,

and no known specific receptor for the Cbi–HC complex has been

identified (Furger et al., 2012). Congenital defects in plasma HC are

asymptomatic, suggesting that HC and Cbi are not physiologically rel-

evant in humans (Rosenblatt et al., 2001). The theoretical major

advantage of the Cbi–exendin-4 construct over the B12–exendin-4 is

that by using Cbi as a pharmacodynamic/pharmacokinetic modifier of

a target peptide pharmaceutical agent, one can generate an ‘inert’
carrier that does not alter B12 homeostasis. This is especially relevant

for possible future applications in humans over chronic use (as it

would be the case for T2DM patients), as there is a very limited, albeit

possible, outcome where B12–exendin-4 could interfere with the nor-

mal B12 physiology, potentially causing pernicious anaemia. This risk

is completely avoidable by using Cbi, as it is only recognized by HC,

and not by TC. A library of corrinated constructs of exendin-4 were

synthetized by introducing two specific conjugation sites (at position

K12 and K40) into the exendin-4 amino acid sequence and using vari-

ous linkers with diverse chemical properties including hydrophobicity,

amphiphilicity and rigidity (Borner, Workinger, et al., 2020; Tinsley

et al., 2021). Two optimized conjugates were subsequently assayed

ex vivo for GLP-1 receptor-binding in HEK-239 cells stability
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transfected with hGlp1r and for insulin secretion in rat islet cells

(Borner, Workinger, et al., 2020; Tinsley et al., 2021). Functional

agonism screening revealed EC50 values between �10 and 200 pM

for the Cbi–exendin-4 conjugates, thus effectively proving the suc-

cessful generation of compounds with agonist activity comparable to

that of than native exendin-4. Using radio-57Co–B12 binding assays

and serum B12 protein isolation, the presence of both HC and TC in

shrew blood was confirmed (Borner, Workinger, et al., 2020). Subse-

quent ELISA-based pharmacokinetic studies in shrews showed that

Cbi– exendin-4 exhibited reduced plasma clearance relative to native

exendin-4, most likely due to improved stability of the conjugate to

proteolytic activity, as previously demonstrated for B12

conjugates (Bonaccorso et al., 2015), and/or reduced renal clearance,

both key factors in determining the half-life of exendin-4 in vivo

(Copley et al., 2006; Simonsen et al., 2006). Similar to what was per-

formed for the B12– exendin-4 conjugate, as a first validation in vivo,

it was tested in shrews whether Cbi– exendin-4 retained ability to

reduce blood glucose following an intraperitoneal glucose tolerance

test (IPGTT), across a wide dose range. At all doses tested, similar

enhanced glucose clearance actions of Cbi–exendin-4 and exendin-4,

compared with vehicle, were observed, indicative of a comparable glu-

coregulatory potency (Borner, Workinger, et al., 2020). It is likely that

Cbi– exendin-4 may also retain pharmacological actions for a longer

duration compared with the native peptide as Cbi– exendin-4, but not

native exendin-4, effectively suppressed plasma glucose concentra-

tions following an IPGTT 6 h after drug administration. Extensive

dose–response studies were conducted analysing the effects of Cbi–

exendin-4 on various aspects of feeding behaviour (food intake and

body weight emesis) in shrews. Overall, the outcome of these studies

was similar to results with B12– exendin-4 (Borner, Workinger,

et al., 2020), highlighting that Cbi can be leveraged for the generation

of active corrinated compounds as shown previously for B12 con-

structs, which can improve glycaemic control without producing

anorexia and drug treatment-induced malaise but without the risk of

causing alteration in the physiological B12 system.

By exploiting a B12 or its precursor Cbi, it is possible to generate

potent and metabolically stable GLP-1 receptor agonists via

‘corrination’, with enhanced and prolonged peripheral glucoregulatory

action minimal effects on feeding and without emesis and nausea (see

Figure 3). The striking difference in occurrence and severity of nausea

and emesis described here is likely to be attributable to reduced pene-

trance of the corrinated constructs due to the presence of the highly

polar nature of Cbi or B12 and the lack of an active transport mecha-

nism into the adult brain. Consequently, this translates into a reduced

activation of central GLP-1 receptors, including those located in the

AP/NTS, the activation of which is key for the induction of emesis/

nausea following GLP-1 receptor agonist treatment. Although longitu-

dinal animal studies, as well as clinical trials, are needed to evaluate

the long-term efficacy and tolerability of the corrinated exendin-4s,

these preclinical data highlight the translational potential of the

corrination technology in the context of GLP-1 receptor agonists.

3 | DUAL GLP-1 RECEPTOR AGONISTS

Dual agonism via a peptide–peptide conjugate or chimeric co-agonism

has several advantages often translating to improved clinical utility

compared with the administration of individual single active peptides

in combination, including a singular pharmacokinetic and pharmacody-

namic profile (e.g., affecting rates of absorption, distribution and half-

life). In recent years, inspired by the early successful outcomes of

GLP-1/glucagon (Gcg) co-treatment as a means to increase weight

F IGURE 3 Main effects and mechanisms of vitamin B12 (B12)/cobinamide (Cbi)–GLP-1 receptor agonist (GLP-1RA) and GIP receptor (GIPR)/

GLP-1 receptor (GLP-1R) strategies. Corrination reduces brain penetrance, radically changing the pharmacodynamic profile of GLP-1 receptor
agonists. Corrinated GLP-1 receptor agonists retain a peripheral site of action when systemically administered, providing a pancreatic mechanism
for GLP-1 receptor-mediated glycaemic control, without producing any centrally mediated illness-like behaviours (i.e., nausea and emesis). GIPR/
GLP-1 receptor dual agonism enhances peripheral effects on glucose handling, while simultaneously decreasing feeding and body weight via
direct central actions. Such a combinatorial approach offers valuable opportunity to increase the therapeutic window/index via dose
modifications. Moreover, GIP receptor agonism may also antagonize GLP-1 receptor emetic signal(s) by engaging a yet unknown central
mechanism(s) that could reduce the incidence and severity of nausea and emesis characteristic of current GLP-1 receptor-based approaches
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loss in preclinical models (Pocai et al., 2009), several peptide hybrids

quickly populated the pharmacological landscape including dual recep-

tor agonists of GLP-1/Gcg (Ambery et al., 2018; Boland et al., 2020),

GLP-1/GLP-2 (Wismann et al., 2018), GIP/GLP-1 (Coskun et al., 2018;

Finan et al., 2013; Frias et al., 2017, 2018, 2020) and GLP-1 /NPY-Y2

receptors (Chepurny et al., 2018; Milliken et al., 2021; Ostergaard

et al., 2021). These dual agonists have been extensively reviewed

elsewhere (Baggio & Drucker, 2020; Tschop et al., 2016). Their utility

is currently being evaluated in the clinical setting, with the latter class

being the most promising so far. Unfortunately, most of these studies

did not include an exhaustive description of nausea and emesis side

effects in humans and lack a proper in-depth investigation of nausea

and emesis in preclinical models. Additionally, groups such as a ‘classi-
cal’ GLP-1 receptor agonist at doses matched for efficacy in body

weight reduction or glucoregulatory effects were not included in

many of the clinical trials. Therefore, interpretations regarding their

ability to reduce nausea and emesis in humans and/or preclinical

models, when matched for effect size in glucose regulation or body

weight loss, are challenging.

3.1 | GIP/GLP-1 dual agonists, greater than the
sum of their parts

GIP is a gut hormone released from the enteroendocrine cells in the

duodenum and jejunum shortly after a meal (Baggio & Drucker, 2007).

Together with GLP-1, GIP plays an important role in orchestrating the

body's response to the increase of postprandial glucose levels by

augmenting insulin secretion (Dupre et al., 1973; Fehmann

et al., 1995; Muller et al., 2019). GIP binds to its receptor (GIP

receptor), which is widely expressed throughout the body including in

several areas of the brain involved in regulating energy balance, such

as the hypothalamus and the caudal hindbrain (Adriaenssens

et al., 2019; Kaneko et al., 2019). Although GLP-1 receptor agonists

have been developed and employed with success for the treatment of

T2DM and obesity, preclinical and clinical data regarding the potential

use of GIP analogues are limited and controversial (seeFinan

et al., 2016; Samms et al., 2020). Compounds targeting the GIP recep-

tor alone were initially abandoned due to an overall weak biological

effect, in part because of early findings suggesting GIP resistance in

diabetes (Nauck et al., 1993) alongside incongruent results on its

hypophagic and body weight-lowering effects (Boylan et al., 2015;

Finan et al., 2016; Killion et al., 2018; McClean et al., 2007; Miyawaki

et al., 2002; Mroz et al., 2019). There is convincing evidence that the

increase in glucose-stimulated insulin secretion following administra-

tion of exogenously applied GIP is mediated by direct activation of

GIP receptors expressed on pancreatic beta cells (Baggio &

Drucker, 2007; Khan et al., 2020), but the role of GIP receptors

expressed within the CNS is less clear and only a few studies have

investigated the central actions of GIP ligands on feeding behaviours

(Ambati et al., 2011; Kaneko et al., 2019; NamKoong et al., 2017;

Zhang, Delessa, et al., 2021). Recent studies using long-acting GLP-1/

GIP receptor dual agonists, however, have yielded promising results in

preclinical models and clinical trials, providing greater body weight

loss and better glycaemic control than GLP-1 receptor agonists alone

(Coskun et al., 2018; Frias et al., 2017; Frias et al., 2018; Killion

et al., 2018; Norregaard et al., 2018).

The first characterization of a dual GIP/GLP-1 receptor agonist

was reported in 2013 via landmark publications in multiple preclinical

models and human subjects (Finan et al., 2013; Frias et al., 2017).

Using an approach that leveraged the high degree of homology

between GIP and GLP-1 to generate hybridized GLP-1/GIP mono-

molecules, amino acids from native GLP-1 and GIP were introduced

into the native glucagon sequence and the resulting peptides were

screened for activity at the GLP-1 and GIP receptors (Finan

et al., 2013). The final, unimolecular balanced dual agonist

(NNC0090-2746/RG7697) was further modified to prevent DPP-4

degradation and to extend solubility (Finan et al., 2013). In two mouse

models for T2DM (i.e., diet-induced obese and leptin-deficient mice),

daily administration of this dual agonist reduced body weight, hyper-

glycaemia and dyslipidaemia (Finan et al., 2013). In cynomolgus mon-

keys, GIP/GLP-1 co-agonism was shown to be superior in reducing

blood glucose levels and increasing plasma insulin, compared with

equimolar doses of liraglutide (Finan et al., 2013). The dual agonist

also decreased plasma insulin and decreased blood glucose during a

glucose infusion challenge, more effectively than liraglutide, in

healthy, nondiabetic human subjects. Collectively, these data highlight

the translational potential of this class of drugs. Importantly, there

was a reported reduction in the incidence of gastric-related adverse

events for the co-agonist as compared with GLP-1 mono-agonist

treatment (Finan et al., 2013). In subsequent clinical trials conducted

by the same research team in healthy and T2DM patients, the same

peptide and further optimized versions demonstrated high tolerability,

dose-dependent reductions in fasting and postprandial plasma

glucose, and reduced body weight, total cholesterol and leptin levels,

relative to placebo controls (Frias et al., 2017). Together, these data

clearly support the beneficial effects of targeting both incretin sys-

tems to provide enhanced effects, as well as to offer valuable oppor-

tunity of increasing the therapeutic window or index, via dose

modifications (Finan et al., 2016; Samms et al., 2020) (see Figure 3).

3.2 | Central GIP receptor activation: Anti-emetic
counteraction of GLP-1-induced emesis?

Activation of GIP receptors may have surprising anti-emetic effects,

as recently described in a patent application filed by the pharmaceuti-

cal company Takeda (Asami et al., 2018). In these studies, GIP recep-

tor agonists were capable of reducing CTA and emetic responses that

usually occur following administration of the gut peptide PYY and

cisplatin, in ferrets and beagles (Asami et al., 2018).

One can therefore speculate that GIP could not only potentiate

the peripheral effects of GLP-1 receptor agonists on glucose handling

but also antagonize GLP-1 receptor emetic signal(s) by engaging a yet

unknown central mechanism(s) that ultimately reduces the incidence

and severity of nausea and emesis characteristic of current GLP-1
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receptor agonist-based approaches. The mechanism(s) and the cir-

cuitry engaged by GIP, in particular those underlying its anti-emetic

actions, are lacking, despite recent work describing the phenotype of

GIP receptor-expressing neurons in the various CNS nuclei involved

in the control of energy homeostasis, including the AP and NTS

(Adriaenssens et al., 2019; Ludwig et al., 2021; Zhang, Kaye,

et al., 2021). In one of these studies, Zhang, Kaye, et al. (2021) gener-

ated the full transcriptome profile of each individual AP neuron via

single-nuclei RNA sequencing of murine AP tissue. Intriguingly, a

significant portion of the neurons expressing Gad1- and Gad2, genes

that encode for enzymes responsible for GABA synthesis, also

expressed Gipr, whereas only a few neurons expressed Glp1r and Gipr

(Zhang, Kaye, et al., 2021). These data suggest the presence of two

unique and very distinct neuronal circuitries within the AP and high-

light the hypothesis of a local inhibitory network within the caudal

hindbrain that could be exploited via activation of GIP receptors to

reduce nausea and emesis mediated by hindbrain GLP-1 receptors.

More exhaustive studies are required to further investigate the

applications of this promising, yet understudied system.

Several GIP/GLP-1 receptor dual agonists have been or are cur-

rently being investigated in the clinical setting (see Bastin &

Andreelli, 2019, for review) with none currently approved by the

FDA. Tirzepatide (originally named LY3298176), a dual ‘sequence-
mixed’ GIP and GLP-1 receptor agonist under development by Eli

Lilly, Inc. for the treatment of T2DM, obesity and non-alcoholic

steatohepatitis was designed to increase the half-life and resist enzy-

matic degradation to allow for once-weekly administration

(Frias, 2020; Hartman et al., 2020). In addition to an Arg to Lys substi-

tution to protect from DPP-4 degradation, its 39-amino acid structure

contains a C20 unsaturated di-acid acyl side chain for enhanced albu-

min binding, further extending the peptide half-life to approximately

5 days (Coskun et al., 2018). Preclinical evidence showed glucose-

dependent insulin secretion and improved glucose tolerance by acting

on both GIP and GLP-1 receptors in mice (Coskun et al., 2018).

Chronic tirzepatide treatment in a mouse model of diet-induced

obesity, potently suppressed feeding, body weight and food intake

with significantly greater effect than the GLP-1 receptor agonist

dulaglutide (Coskun et al., 2018). Early phase trials in T2DM patients

indicate that tirzepatide improves clinical outcomes beyond those

achieved by a selective GLP-1 receptor agonist (Coskun et al., 2018).

Phase II clinical investigations of tirzepatide actions in T2DM patients

showed high efficacy for glucose handling and body weight reduction

with approximately one third of patients receiving the 15-mg dose

attaining normoglycaemia (defined as HbA1C < 5.7%) and one fourth

of the subjects losing ≥15% of their initial body weight after only

6 months (Frias et al., 2018). In addition, tirzepatide treatment

reduced fasting glucose, insulin and triglyceride concentrations and

improved insulin sensitivity. Importantly, tirzepatide showed signifi-

cantly greater efficacy with regard to glucose control and weight loss

than did monotherapy with a GLP-1 receptor agonist (i.e., dulaglutide),

with an acceptable safety and tolerability profile (Coskun et al., 2018;

Frias et al., 2018, 2020). Several large-scale Phase 3 clinical trials in

T2DM (SURPASS) and obese (SURMOUNT) patients are currently

ongoing (Frias, 2020; Min & Bain, 2021), with interim positive/

promising results in line with the outcome of previous studies. This

general metabolic improvement further underlines the beneficial con-

tributions of GIPR activation to GLP-1 agonist therapy.

Nausea and emesis were still present at a relatively high rate in

tirzepatide-treated T2DM patients (Frias et al., 2018, 2020), despite

initial Phase 1 studies suggesting a potential improved tolerance and a

greater therapeutic index compared with classical GLP-1 receptor-

based monotherapies (Coskun et al., 2018). The incidence of GI

events was dose-related with most events being transient and catego-

rized as mild to moderate in intensity. Nevertheless, it is surprising

and contra-intuitive to the ‘GIP anti-emetic hypothesis’, as well as

being in contrast with preclinical GIPR studies, in the context of eme-

sis and malaise (Asami et al., 2018). Despite having an acceptable

safety and tolerability profile, comparable with what is seen with

GLP-1 agonist monotherapies such as dulaglutide, GI events

(e.g., nausea and vomiting) were the most common adverse events

related to tirzepatide treatment. One possible explanation could be

that the dose range and/or the administration regime employed were

suboptimal. Another possible explanation could lie in the pharmacody-

namic profile of tirzepatide compared with the individual profile of

the two single separate components. A recent study demonstrated

that tirzepatide possesses an imbalanced agonism favouring GIP

receptors over GLP-1 receptors (Willard et al., 2020). Additionally, at

the GLP-1 receptor, its action is biased in favour of cAMP generation

over β-arrestin recruitment, coincident with a weaker ability to drive

GLP-1 receptor internalization, compared with native GLP-1 (Willard

et al., 2020). Such experiments were conducted ex vivo in primary

islets. Whether similar effects also occur in the CNS and whether they

contribute to an enhanced ‘emetic’ signalling via GLP-1 receptor acti-

vation or a reduction in the GIP receptor ‘anti-emetic’ activity, thus
cancelling the anti-emetic effects of GIP receptor signalling in the

hindbrain, still need to be elucidated.

4 | GENERAL CONCLUSIONS AND
OUTLOOK

After their introduction less than two decades ago, GLP-1 receptor

agonists reshaped the field of diabetes care. Pharmacological side

effects such as nausea and emesis have often been downplayed or

dismissed, left in the shadow of the overriding goal of glucoregulation

and weight loss. In recent years, differently designed strategies were

employed that led, to some extent, an improved tolerability of GLP-1

receptor agonists. The data summarized here show high translational

potential of new GLP-1-based approaches that will hopefully further

reduce the incidence and severity of nausea and emesis, thus increas-

ing the therapeutic efficacy, decreasing treatment attrition and exten-

ding their use to a broader population of T2DM patients (see

Figure 3). In conclusion, these emerging findings demonstrate that it is

possible and technically achievable to both physiologically and phar-

macologically separate the emetic effects of GLP-1 receptor agonists

from their glucoregulatory actions.

550 BORNER ET AL.

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=11429


The use of corrination combined with peptides that offer

polypharmacy offers great scope for development. Combining B12 or

Cbi with dual agonists of GLP-1/GIP receptors or GLP-1/NPY-Y2

receptors is currently ongoing. In addition, the use of corrination to

solubilize and/or stabilize challenging peptides such as glucagon or

dual agonists integrating glucagon with GLP-1 receptor agonists might

solve issues with clinical development related to such problems and

thus allowing the exploitation of exciting pharmacodynamic out-

comes. Extensive preclinical and clinical studies investigating the

effects of ‘corrinated’ GLP-1 analogues, as well as GLP-1/GIP dual

agonist(s), are required to fully evaluate the effects of these drugs in

these medical conditions, and we will soon have insights into how to

broaden the pharmacopoeia of GLP-1 receptor-based therapies.

4.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY (http://www.guidetopharmacology.org) and are permanently

archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander, Christopoulos, et al., 2019; Alexander, Fabbro et al., 2019;

Alexander, Kelly, et al., 2019).
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