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Abstract

Advances in quantitative biomarker development have accelerated new forms of data-driven 

insights for patients with cancer. However, most approaches are limited to a single mode of 

data, leaving integrated approaches across modalities relatively underdeveloped. Multimodal 

integration of advanced molecular diagnostics, radiological and histological imaging, and codified 

clinical data presents opportunities to advance precision oncology beyond genomics and standard 

molecular techniques. Yet most medical datasets are still too sparse to be useful for the training 

of modern machine learning techniques, and significant challenges remain before this is remedied. 

Combined efforts of data engineering, computational methods for analysis of heterogeneous data, 

and instantiation of synergistic data models in biomedical research are required for success. In 

this Perspective, we offer our opinions on synthesizing complementary modalities of data with 

emerging multimodal artificial intelligence methods. Advancing along this direction will result 

in a re-imagined class of multimodal biomarkers to propel the field of precision oncology in the 

coming decade.

Introduction

As patients with cancer traverse diagnostic, treatment, and monitoring processes, physicians 

order a suite of diagnostics across distinct modalities to guide management. A significant 

opportunity thus emerges to aggregate, integrate, and analyse these complementary digital 

assets across large patient populations to discover multimodal prognostic features, learning 

from the collective history of large cohorts of patients to inform better management of future 

patients. For example, genomic profiling of tumor tissue has significantly enhanced clinical 

decision-making, and the genomic data produced in turn yield a rich molecular repository 

for further study 1. This leads to further understanding of the cancer genome, drug sensitivity 
2 and resistance mechanisms, 3 and prognostic associations 4,5. During and after treatment, 

serial radiological imaging, such as positron emission tomography (PET) and computerized 

tomography (CT), quantifies tumor burden in response to intervention, yielding digital 
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archives for large-scale machine learning [G] (ML). Pathology specimens depicting 

cell morphology, tissue architecture, and tumor–immune interfaces also are increasingly 

digitized 6. Other modalities in development, such as cell-free DNA analysis and serial 

laboratory medical tests of biochemical and metabolic analytes, provide longitudinal read-

outs of tumor progression and recurrence 7-11.

We contend that integrated anatomical, histological, and molecular measurements approach 

a comprehensive description of the state of a cancer, resulting in an effective ‘digital 

biobank’ 12 for each patient. However, at present, even when these data are available, they 

are rarely integrated, and few advances have been reported that computationally exploit the 

research discovery potential of large-scale, multi-modal integration. Artificial intelligence 

[G] (AI) and ML techniques have enormous potential to convert data into a new generation 

of diagnostic and prognostic models and to drive clinical and biological discovery, but the 

potential of these techniques often goes unrealized in biomedical contexts, where research-

ready datasets are sparse. Cultural and infrastructural changes toward scaled research-ready 

data archives and development of multimodal ML methods will advance our understanding 

of the statistical relationships among diagnostic modalities and the contextual relevance of 

each. Repurposing aggregated, multimodal data—the digital biobanks—therefore presents 

opportunities to develop next-generation, data-driven biomarkers [G] to advance patient 

stratification and personalised cancer care.

The central premise of multimodal data integration is that orthogonally derived data 

complement one another, thereby augmenting information content beyond that of any 

individual modality. Concretely, modalities with fully mutual information would not yield 

improved multimodal performance compared to each modality alone. Modalities with fully 

orthogonal information, conversely, would dramatically improve inference. For example, 

radiological scans and pathological specimens describe tumors spatially at different scales 

and thus are expected to describe disparate elements of tumor biology. Each modality is 

incomplete and often noisy, but integrating weak signals across modalities can overcome 

noise in any one modality and more accurately infer response variables of interest, such as 

risk of relapse or treatment failure.

To exemplify this premise, we will focus on four major modalities in cancer data: 

histopathology, radiology, genomics, and clinical information (Figure 1). While rapid 

progress using deep learning [G] (DL) and other ML methods has been made in each of 

these individual modalities, major unresolved questions about multimodal data integration 

remain. What are the latent relationships and underlying causal mechanisms at the 

molecular, cellular, and anatomical scales? Can rational multimodal predictive models 

enhance clinical outcomes for patients with cancer? Can cancer research exploit advances 

in computational methods and AI models to realise new insights from multimodal data 

integration? How much data is enough to realise such generalisable predictive models? 

How can annotations produced during routine clinical care and focused research studies 

be repurposed to train robust models? How can we fully engage and academically credit 

both clinicians and data scientists in collaborative studies? How do we establish data 

infrastructures to enable meaningful and rapid scientific advances while preserving the 

integrity of patient consent? Herein, we explore these questions through literature review 
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and by developing a blueprint for navigating the infrastructural, methodological, and cultural 

challenges along the path to achieving robust multimodal data integration in cancer research.

Unimodal machine learning methods

Cancer imaging data have been exploited to predict molecular features of tumors and 

to discover new prognostic associations with clinical outcomes, and we refer readers to 

a number of excellent reviews in these areas 13-15. In radiology specifically, previous 

work analyzed features manually extracted by radiologists, such as the VASARI (Visually 

Accessible Rembrandt Images) set of imaging features for glioma, and their association with 

clinical outcomes and molecular biomarkers 16. However, such features are highly prone to 

inter-reader variability, and the laborious nature of extraction limits cohort size. As radiology 

data are digital by construction, automatically extracting deterministic, quantitative features 

is tractable 17. These features have been associated with clinical outcomes, such as response 

to immune checkpoint blockade (ICB) in pan-cancer analyses 18, residual tumor volume 

after resection in ovarian cancer 19, and progression of disease in pediatric optic pathway 

glioma 20. Furthermore, when cohorts are sufficiently large, convolutional neural networks 

[G] (CNNs), a type of deep neural network [G] (DNN) [Box 1] have been shown to 

predict isocitrate dehydrogenase 1 (IDH1) mutational status of glioma from magnetic 

resonance imaging (MRI), pathological grade of prostate cancer from MRI, epidermal 

growth factor receptor (EGFR) mutational status of lung adenocarcinoma from CT, and 

BRCA1 or BRCA2 mutational status of breast cancer from full-field digital mammography 
21-25. Three-dimensional CNNs have shown success in stratifying patients with non-small-

cell lung cancer (NSCLC) by overall survival (OS) 26 and empirically outperformed 

two-dimensional CNNs in other radiology tasks, such as diagnosing appendicitis 27. The 

relative performance of DL versus conventional ML-based methods on human-defined 

(‘engineered’) features is largely determined by cohort size.

In histological imaging, similar computational models have advanced biomarker 

identification, particularly from hematoxylin and eosin (H&E)-stained whole slide images 

(WSIs) 28-32, beyond the previously dominant practice of using pathologist-extracted 

features 33. One notable multi-center example in colorectal cancer showed that H&E 

WSIs contain information predictive of microsatellite instability (MSI) status as a 

biomarker for response to ICB34,35. However, these DL analyses suffer from poor 

interpretability and depend heavily on large training cohorts (depending on the task 

and data complexity, generally thousands of labeled examples are required for excellent, 

generalizable performance). Interpretable quantitative analyses of histological images also 

can be conducted using expert-guided cellular and tissue annotations, identifying biological 

features such as tumor-infiltrating lymphocytes (TILs) and other properties of the tumor 

microenvironment and their correlation with molecular features 36. A recent pan-cancer 

analysis found that annotation-guided interpretable features predict endogenous mutational 

processes and features of the tumor microenvironment 37, and other studies have linked 

biologically interpretable features with clinical outcomes 38,39,40. Deeper assessment of 

the tumor microenvironment is also possible through characterizing spatial niches derived 

from multiplexed imaging as well as spatial transcriptomics methods, which can be used to 

develop biomarkers for precision oncology 41,42.
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Molecular features are the true targets of intervention, either directly or through synthetic 

lethality, and they are thus the most direct measure for predicting drug response. Examples 

include mutations in BRAF in melanoma 43, EGFR in NSCLC 44, ERBB2 (also known 

as HER2) in breast cancer 45, IDH1 in acute myeloid leukemia (AML) 46, BRCA1 or 

BRCA2 in ovarian 47 and prostate cancer 48 and even rare events such as neurotrophic 

tyrosine kinase (NTRK) fusions 49 for solid tumors, among many others. Targeted cancer 

therapies are continually being added to the clinical arena, for example, ongoing clinical 

trials of KRAS (G12C) inhibitors 50,51 and the PI3Kα-specific inhibitor targeting PIK3CA 
mutations 52 in lung and breast cancer, respectively. Higher-order genomic properties such 

as tumor mutational burden (TMB) 53, endogenous mutational processes such as MSI 54 

and homologous recombination deficiency (HRD), and large-scale features such as whole 

genome duplication 55 are also clinically meaningful. In a recent study, VÖhringer et al. 56 

present an algorithm (TensorSignatures) to characterise transcription-associated mutagenesis 

in seven cancer types. Copy number signatures from low-pass whole genome sequencing 
57 and integrated ML models across single nucleotide variant (SNV) and structural variant 

scales 58 have also effectively stratified patients into prognostic subgroups. Both studies 

find that patients with HRD tumors have better prognosis, but further granularity is needed 

to better resolve clinically meaningful subgroups. Emerging spatial genomics techniques 
59,60,61 and complementary clinical and imaging modalities are opportunities to enrich these 

data and refine prognostication.

Multimodal machine learning

We suggest that such unimodal models across radiology, histopathology, molecular, and 

clinical domains discussed above will become the building blocks of integrated multimodal 

models (Figure 2). A major design choice for multimodal approaches is the extent to which 

each data input should be modeled before encoding joint representations (Figure 3). In 

early fusion architectures, features are simply concatenated at the outset and used to train 

a single model (Figure 3a). At the other extreme, late fusion architectures model unimodal 

data fully individually, and then aggregate learned parameters or derived scores (Figure 3b). 

Intermediate fusion architectures develop a representation of each modality and then model 

intermodal interactions before joint modeling (Figure 3c). Most multimodal architectures 

have more parameters to fit than their unimodal counterparts, making them prone to 

overfitting (learning to represent the training data too exactly, resulting in an ungeneralizable 

model), which paradoxically can result in worse performance in the supervised learning 

[G] setting 62. One mechanism to address this is incorporating the estimated generalization 

error in the training objective, using techniques such as gradient blending, a technique to 

weight each unimodal contribution to the overall loss based on its estimated generalization 

error 62. A related design choice in multimodal machine learning is the complexity of 

the constituent unimodal models. Although overparameterized DL models can outperform 

traditional ML, their performance is highly dependent on the size of the training dataset. 

This data size requirement often precludes DL application in biomedical multimodal studies, 

where missingness of individual data modalities, and requirement of laborious—often costly

— curation of multiple data modalities limits studies to the very small data regime, defined 

loosely as ~5000 or fewer data points 63. This makes ML on engineered features an essential 
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approach in the field and suggests that studies with resource constraints requiring very large 

cohorts, such as those in cancers with high heterogeneity, or those where a single modality 

overwhelmingly carries the important discriminative features, may opt for a unimodal study.

Preliminary uses of multimodal machine learning to stratify patients

Multimodal patient stratification using complementary multi-omics cancer data is 

well developed 64-69. The Cancer Genome Atlas (TCGA) catalogues of genomic, 

transcriptomic, epigenomic and proteomic data enabled integrated, multimodal inference. 

For example, integrating bulk transcriptomics, microRNA (miRNA) sequencing, and 

promoter methylation status with early fusion autoencoders [G] showed enhanced ability 

to stratify patients with hepatocellular carcinoma by OS 65. A similar approach identified 

distinct survival subtypes in the majority of TCGA cancer types, outperforming existing 

stratification methods 66. Joint dimensionality reduction [G] techniques, such as integrative 

non-negative matrix factorization, learn unsupervised representations of multi-omic profiles 

for downstream association with outcomes and biomarkers 70. The Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) provides another public catalogue of correlated 

genomic and proteomics data across a diverse number of sites of cancers, with overlap 

with TCGA. As experimental and computational techniques advance, these data will more 

completely characterize the molecular state of patients’ disease 71,72, yet they still only 

capture a fraction of the informative data. Several multi-omic models also incorporate 

traditional clinical features 73,74. For example, dimensionality reduction, early fusion (Figure 

3), and a deep Cox Proportional Hazards (CPH) model [G] to integrate multi-omics with 

age and hormone receptor status stratified patients with breast cancer by OS more accurately 

than unimodal models 74. Adding additional modalities paradoxically failed to increase 

performance, with most clinico-genomic models in the study slightly underperforming the 

genomic model alone, except when TMB and copy number burden were integrated 74. 

Further work is needed to determine when and why adding particular modalities is useful. 

CPH models also are limited by their assumption of linear dependence on each variable and 

challenges with handling tied samples (when events occur at the same time). Deep binned 

time survival 75 overcomes these limitations by discretizing follow-up times and predicts 

risk of NSCLC recurrence from 30 clinical and histopathological features. Recurrent neural 

networks [G] (RNNs) and transformers, leading methods for time series prediction [Box 1], 

have not yet been widely applied in oncology, but have been shown to accurately predict 

clinical events from multimodal serological, radiomic, and clinical data 76-78

Although under-developed relative to clinical and ‘omics integration, multimodal models 

including histopathology imaging features have recently emerged. One such model uses 

deep highway networks [Box 1] to integrate H&E images with mRNA-sequencing (mRNA-

seq) and miRNA-seq data to learn the importance of individual genomic features rather 

than perform a priori dimensionality reduction 79, embedding the individual data modalities 

in the same, shared information space by minimizing the similarity loss. The model 

achieves a concordance index [G] (c-Index) of 0.78 to stratify patients by OS80 and is 

robust to missingness, but it conceptually encourages mutual information, potentially at 

the expense of complementary information gained via fusion methods (Figure 3), though 

this remains to be tested in a head-to-head comparison. Similarly, Imaging-AMARETTO 
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81, a framework developed on TCGA glioma data, advances associations between imaging 

phenotypes and molecular multi-omics, but it does not integrate information explicitly for 

prognostication. Other examples of multimodal ML studies using histopathology include 

cellular morphological features and mRNA-seq data integration in NSCLC 82, combined 

histological and gene expression features in breast cancer 83, and histopathological and 

genomic features in glioma using genomic survival CNNs84 and tensor fusion networks 

(TFNs) 85. TFNs are intermediate fusion architectures using the outer product of deep 

unimodal embeddings 86, which enables the model to learn intermodal dynamics and 

outperform models based only on grade and molecular subtype (c-Index 0.83 vs 0.78) 

or any individual modality 85. It also outperforms simpler multimodal models, such as 

genomic survival CNNs (c-Index 0.83 vs 0.78) 85. In general, these studies demonstrate that 

multimodal integration with histopathological imaging improves outcome predictions and 

stratification over unimodal and molecular methods alone.

Few multimodal models include radiological imaging. However, a model to diagnose 

breast cancer using digital mammography and diffusion contrast-enhanced MRI achieved 

an AUROC [G] (area under the receiver operating characteristic curve) of 0.87, higher 

than the respective unimodal AUROC values of 0.74 and 0.78 87. Another study found 

that the combination of deep features from histological imaging and engineered features 

from MRI outperformed unimodal classifiers for stratification of brain tumor subtypes 88. 

MRI radiomic features also refine survival stratification beyond IDH1 mutational status 

and World Health Organization (WHO) classifications alone, demonstrating the potential 

of multi-scale information to improve stratification 89. Multiple kernel [G] learning has 

been used on small, noisy datasets to integrate clinical factors with MRI- and PET-derived 

imaging features 90,91. PET imaging is a particularly promising area for multimodal 

integration, providing spatial profiles of metabolic activity 92. Similarly, MRI sequences 

such as dynamic contrast enhanced images depicting vasculature and diffusion weighted 

images, whose voxel [G] intensities are influenced by cellularity, provide rich physical 

profiles with potentially complementary prognostic information. Despite the shortage of 

multimodal works incorporating radiology, preliminary results are promising 78,93,94.

Promising methodological frontiers for multimodal integration

Multimodal ML in the medical setting is most limited by the disparity between 

data availability and amount of data needed to fit multimodal models. Hence, many 

methodological frontiers involve increasing robustness to overfitting and dealing rationally 

with missingness. For example, transfer learning in unimodal models involves pre-training 

a model on a large, tangentially related dataset and then fine-tuned on the actual dataset of 

interest, which is typically small. Some example datasets used are ImageNet 95, a database 

of more than 14 million labeled images used to train image classification algorithms for two-

dimensional CNNs, and Kinetics, a curated collection of approximately 650,000 YouTube 

videos depicting human actions for three-dimensional CNNs (reported in a preprint 96). 

However, recent evidence shows that small models without pre-training, such as ResNet-50, 

for small medical imaging datasets can perform comparably to pre-trained large models 63. 

This is consistent with the hypothesis that the benefits of pre-training for small medical 

imaging datasets are related to low-level feature reuse and feature-independent weight 
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scaling 63. It remains an open question whether pre-training multimodal fusion models 

can combat overfitting through similar weight scaling of the parameters involved in fusing 

unimodal representations. Both prospective clinical trials and highly curated retrospective 

cohorts often have low numbers of patients, highlighting the importance of studying how to 

use DL techniques appropriately to discover patient strata in the very small data regime.

One of the root causes of data scarcity is the need for extensive annotation: tumors need 

to be localized on CT scans or H&E images, and survival outcomes typically require 

manual review of medical records. Harnessing data at scale requires reducing this burden 

of annotation, especially in multimodal studies. Automated annotation approaches could 

provide solutions. For example, RetinaNet, an object detection CNN, has been used to 

localize lung nodules on CT, enabling use of 42,290 CT cases for training 97. Analogously, 

an ML-based model to automatically delineate representative tumor tissue from colorectal 

carcinoma histology slides enabled training on 6,406 specimens 35. Weakly supervised 

learning (WSL) also helps reduce the burden of annotation by using informative-yet-

imperfect labels for the training dataset. While weak labels may be incomplete, inexact, 

or inaccurate 98, WSL applications in computational pathology have resulted in robust 

models to infer genomic alterations 31 and diagnose cancer 99. Weaknesses of this approach 

include the absence of a ground-truth dataset (a dataset with expert annotations that are 

exactly correct and can be treated as the gold standard) for model evaluation when all 

labels are inexact or inaccurate and its dependence on large dataset sizes. Active learning 

is a form of machine learning that solicits precise labels for targeted instances, selected 

using either informativeness or representativeness of an instance 98. For example, it can be 

used to prioritize expert annotations in real time for pathology tissue-type labeling (Figure 

4). These strategies are essential in clinical contexts, where most data elements possess 

only weak labels, and are a leading strategy to learn robust models from large, information-

poor datasets. Therefore, WSL is a useful strategy to augment annotations, dramatically 

increasing the size and robustness of usable multimodal datasets for clinical oncology.

As more such datasets become annotated and integrated, oncology will benefit from 

multimodal recommender systems [G] , analogous to inferring cancer drug response based 

on unimodal gene expression data 100. Retrospective observational studies contain no 

matched controls, which biases training data and requires methods such as counterfactual 

ML [G] to learn accurate recommendation policies from logged interventions and resultant 

outcomes 101. In oncology, a counterfactual recommender system (Figure 5) would learn 

policies to recommend future therapies for new patients based on historical patient records 

of administered treatments, patient contexts (for example, a pre-treatment CT scan and 

H&E-stained biopsy), and survival outcomes 101,102. In general, this is not currently possible 

because patient data are not accessible and annotated at the scale required, but such methods 

have great potential as datasets are assembled and prospective data collection methods 

improve.

Finally, unsupervised learning [Box 1] continues to develop in general, with potential to 

both facilitate discovery of new cancer phenotypes and probe multimodal associations. 

For example, deep probabilistic canonical correlation analysis jointly learns parameters 

for two DNNs and a transformation to embed them in the same information space, all 
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with Bayesian inference [G] suitable for small datasets 103. This method is especially well 

suited for probing the mutual information to generate hypotheses for experimental biology, 

such as genomic drivers of cellular morphological heterogeneity. At the patient level, an 

unsupervised Bayesian topic model has been applied to learn multimodal topics that stratify 

patients by risk of mortality 104 and in deriving mutational process activities in genomic 

datasets 58. Surprisingly, progress in this area demonstrates statistical power across feature 

spaces from data measuring signals at vastly disparate scales (for example, histological–

genomic, or radiomic–molecular). We therefore anticipate that generative methods have 

potential to discover new phenotypes and to generate hypotheses to guide experimental 

biology.

Challenges with multimodal data

The challenges inherent in multimodal integration of clinical cancer data fall into three 

broad categories: data engineering and curation, ML methods, and data access and 

governance provisions. These challenges extend to both retrospective studies seeking 

to discover biomarkers from standard-of-care data and prospective studies focused on 

bespoke or advanced data types. The field also shares two broad categories of challenges 

with unimodal ML studies in medicine, which are interpreting results and ensuring their 

reproducibility. Here, we describe these five categories of challenges along with potential 

solutions to address them.

Data availability

Perhaps the greatest challenge in multimodal machine learning is data scarcity. Data 

acquired during the standard of care are not structured in a research-ready format: stained 

tissue specimens typically must be manually located and scanned, and radiological images 

are stored in the picture archiving and communication system (PACS) 105 with limited 

clinical annotation. The modalities are typically organized with different patient identifiers, 

complicating alignment. A related challenge is spatial colocalization, which is especially 

important for studying biological correlation of multimodal features. Small datasets such as 

Ivy Glioblastoma Atlas Project (IvyGAP) 106 richly profile the genomics and multi-scale 

tumoral architecture of patients with matched clinical outcomes and represent the promise of 

spatial colocalization. To achieve this at scale, image-guided biopsies or 3D-printed molds 

based on tumor morphology 107,108 are possible solutions, but challenges remain before 

these approaches are scaled for prospective research.

The general limits of using healthcare records to conduct research are widely discussed 
109: one challenge is unobserved patient outcomes, which can be handled for time-to-event 

analysis but requires excluding patients for categorical outcomes. Another major bottleneck 

is retrospective chart review, or manually reviewing patient records to extract specific 

features into spreadsheets. It is error prone and variable, and repeated review is often 

required to capture new clinical events 110,111. Efforts are underway to build models to 

automatically codify clinical information from unstructured text, and ontologies such as 

Observational Health Data Sciences and Informatics (OHDSI)112 and American Association 

for Cancer Research project Genomics Evidence Neoplasia Information Exchange (AACR 
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project GENIE)1 structure disparate clinical elements to facilitate retrospective research. 

These models ought to be extended to incorporate additional data modalities.

As structured data emerge, data lakes [G] are a scalable solution to organize original data 

and track their use during subsequent analysis 113. Data lake technologies unify siloed 

data and accommodate both known and unforeseen file types. Cost-effective data lake 

storages are readily available from commercial vendors (for example, Amazon S3) as well 

as open source products (for example, Delta Lake 114). The ensuant technical challenges 

vary depending on whether the data lake is set up in the cloud, on premises, or in a hybrid 

solution 115. There are specific challenges when applying data lakes for biomedical research, 

such as the stripping of protected health information (PHI) to protect patient privacy and 

facilitate inter-institutional sharing.

Such cross-institutional data sharing is essential to promote and test model generalizability. 

Leading platforms include the database of Genotypes and Phenotypes (dbGaP), the 

European Genome-phenome Archive (EGA), The Cancer Imaging Archive (TCIA), the 

Genomic Data Commons (GDC), and other resources in the National Cancer Institute 

(NCI) Cancer Research Data Commons. However, beyond matched genomic data and 

H&E WSIs of TCGA and Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC), public resources contain only small patient cohorts with multiple data 

modalities.

Major causes of this public data scarcity include the logistical challenges of anonymizing 

data and institutional privacy policies. Federated learning [G] is a potential solution116. 

Depending on the choice of model, federated learning can require novel training approaches 
117 but enables training on multi-institutional cohorts without data having to leave local 

networks.

Data integration and analysis

As integrated datasets mature, challenges will shift to data analysis. Complete data on all 

patients of a study of interest is rare, and this missingness complicates multimodal data 

integration. Most traditional multivariate models, such as Cox models, cannot handle this 

directly and thus require either exclusion of patients without all data modalities or overly 

simplistic interpolation (for example, by median). Both of these strategies fail to harness 

all available data to train effective models. To circumvent this, one simple solution is to 

use late fusion (Figure 3b), where each unimodal model can be trained separately to infer 

the outcome of interest, which can then be integrated. Bayesian approaches 118 also offer 

analytical solutions for missingness.

Data modeling will also be complicated by institution-specific biases in the data, such 

as staining and scanning particularities in histopathology 119-121, scanner parameters in 

MRI, and differing ontologies in clinical data. Preprocessing techniques in MRI 122 and 

H&E 123,124 address this heterogeneity, and with large cohorts, DL is somewhat robust to 

noise 28,125, but such heterogeneity is a major reason that AI systems fail when trialed 

in the clinic 126. An additional complexity in multimodal studies is that unimodal biases 

are likely to be correlated. For example, biasing factors such as MRI manufacturers and 

Boehm et al. Page 9

Nat Rev Cancer. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H&E staining artifacts likely differ more between institutions than within an institution. 

This will make it more challenging to model general intermodal relationships, motivating 

greater cross-institutional data representation and potentially motivating the development 

of methods that explicitly model these multimodal biases or normalise against them. The 

decision to acquire one data modality may also be based on another modality, which 

necessitates either limiting multimodal input to a single time point or accounting for these 

dependencies during time series modeling. Different modalities with different levels of 

heterogeneity may require different training dataset sizes—in this case, training the overall 

model may involve pre-training the unimodal sub-model using the larger unimodal cohort.

Another analytical challenge is overfitting. Multimodal ML is more prone to overfitting 

because, in most cases, multimodal datasets are smaller and multimodal models have more 

parameters to fit. Traditional ML models enable investigators to calculate the necessary 

dataset size for a tolerable generalization error before analysis. Black box models such as 

DNNs do not offer such analytical forms. Instead, target dataset size is decided empirically 

by comparing performance when the model is trained on different proportions of the full 

data set 35,99. Some evidence suggests that early fusion strategies can perform comparably 

to unimodal results using less training data 127, but in general, highly parameterized fusion 

models are likely to require more training data to fit the additional parameters.

Hence, in many settings, multimodal approaches cannot yet fully harness the performance 

benefits of DL. The most important response to this is to advance clinical data collection 

to assemble large datasets and better support methods development and benchmarking 

(see subsection below ‘Data availability’). Meanwhile, smaller datasets curated at single 

institutions require less complex models to avoid spurious results due to overfitting. Each 

unimodal model can thus be formulated using ML on engineered features, such as radiomic 

features from MRI and nuclear morphology features from H&E. One major drawback is 

the need for laborious annotation, such as segmentation on MRI and tissue type delineation 

on H&E, which can be reduced using WSL and active learning (see subsection above 

‘Promising methodological frontiers for multimodal integration’). For all model types, cross-

validation and external testing cohorts are critical to demonstrate generalizability. This is 

further complicated by the domain specificity of each unimodal component: a model trained 

on CT would not be expected to accurately interpret MRI, and vice versa. Repurposing 

unimodal components for integration into new combinations of modalities is likely to reduce 

the training burden. Furthermore, genomic features such as mutated driver genes or active 

mutational signatures can often be derived from multiple modalities, such as whole exome 

sequencing (WES) or whole genome sequencing (WGS), and these deterministic features 

are general enough to be used despite their modality of origin (provided that the inference of 

these features is accurate).

With respect to infrastructure, multimodal analytic workflows present hardware and software 

challenges. Centralised data lakes and workflow management tools minimize duplicated 

computation, such as image pre-processing, among multiple investigators’ workflows. 

Computational needs also differ during different parts of the workflow, with a much 

higher demand during model training than during cohort curation. This is especially true 

for multimodal models such as TFNs, which generate intermodal representations that 
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scale exponentially with the number of data modalities. Elastic cloud computing resources 

and the distributed data parallelism [G] of modern DL-based frameworks handle these 

computational bursts appropriately, but the use of off-premises cloud computing requires 

robust de-identification of patient data, data security certifications, and measures to control 

data ingestion and egress costs.

Reproducibility

Reproducibility and benchmarking are major challenges in AI, with many published 

biomedical AI studies failing to provide source code, test data, or both 128. Several recent 

seminal works do not provide source code, claiming that internal code dependencies prevent 

code sharing and that textual descriptions are sufficient to reproduce the results 97,129,130. 

However, a recent investigation of one of these studies130 found that significant information 

needed to actually reproduce the study was missing, greatly reducing the impact and ability 

of the field at large to scrutinize 131 and improve upon it. To foster transparency, scientific 

reproducibility, and measurable progress, investigators should be encouraged to deposit 

new multimodal architectures and preprocessing regimens in standardized repositories such 

as modelhub.ai (reported in a preprint)132. Furthermore, to promote benchmarking and 

multicenter validation, journals should require investigators to make available published 

deidentified datasets on public platforms (see subsection above ‘Data availability’). Beyond 

center-specific confounders, the clinical environment has unpredictable effects on model 

performance, often leading to substantial performance decrements 133.

Hence, prospective clinical validation is the most relevant measure of a model’s performance 
134. This is because directly comparing clinical outcomes with and without the AI system, 

where both arms are exposed to the inherent noise such as varying image quality and 

user error, provides an objective, quantitative assessment of a model’s value. SPIRIT-AI 

and CONSORT-AI are consensus guidelines for AI in clinical trial protocols and reports, 

respectively, that extend the SPIRIT and CONSORT guidelines for randomized clinical trials 
134-136. In broad terms, these guidelines improve reporting transparency and ensure that 

readers can evaluate practical factors that may impact AI system performance in clinical 

contexts, such as required training, error handling, and output data format.

Balancing the need for interpretability with empiric efficacy

The nature of DL architectures creates a limiting paradox. While often outperforming 

standard, interpretable models, users are left to explain improved results without the 

benefit of drawing from model assumptions encoded in more traditional approaches such 

as hierarchical Bayes. We argue that investigators should seek to understand learned 

models from biological and clinical perspectives in order to realise rational multi-modal 

implementation. Depending on the goals of a study, understanding a model is arguably 

as important as improving its predictive capacity and will lead to greater mechanistic 

insight and testable hypotheses. For example, post-hoc explanation methods, which seek 

to interpret model predictions in terms of input feature values, have been applied to probe 

medical algorithms 137. However, post-hoc explanations are prone to misinterpretation and 

cannot supplant true interpretability 138 to elucidate a mechanism or generate hypotheses 

for experimental biology. Yet when the main purpose of an algorithm is to improve 
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patient outcomes, understanding models mechanistically at the expense of denying patients 

empirically improved quality of life is unethical. Many empirically beneficial medical 

interventions, such as general anesthesia, have incompletely understood mechanisms 139. 

Hence, the most important threshold for using these models in the clinic is the same as 

for a drug: robust, prospective, multi-center empiric evidence of benefit for patients and 

an understanding of cases in which the model fails. Given our limited understanding of 

black-box models, pilot studies must demonstrate that the model is effective and equitable 

for all patient subpopulations it will encounter before deployment at scale 140.

Truly causal models are a frontier of AI research, and in the future such models will 

be highly valuable in this field 141. Less challenging than interpretability, explicability is 

also useful for black-box models. For example, class activation maps (CAM) 142 (Figure 

6) depict which parts of the image are most important for the model to arrive at its 

decision. The saliency, or dependence of the output on a specific region, is shown for 

prediction of response to chemotherapy in Figure 6c. This technique is limited by seeking 

explicability rather than interpretability 138, but it can be useful to rule out obviously 

spurious determinants of model output. For example, if the CAM in Figure 6c showed 

highest saliency in the area outside the breast, it would raise serious concern about the 

validity of the model. Lucid is another method for explicability which uses the learned 

model to generate example images for each class 143. For example, it has been applied to 

visualize what a CNN is looking for in breast H&E images to distinguish tumor from benign 

tissue 144. For DNNs with definable input variables, layer-wise relevance propagation [G] 
(LRP) is widely used and has been applied to clinical data 137. However, these methods 

were developed for unimodal ML, and interpreting multimodal ML is more challenging. 

Future work must quantify the relative contribution of each modality and their interactions. 

Uninformative feature counterfactuals also have been used to probe feature importance 

with guaranteed false discovery rates 145, and such a method for example, might similarly 

quantify the performance of a modality in a late fusion architecture. Yet feature importance 

is only an early step toward interpretability: probing a model with potentially informative 

data counterfactuals (for example, “How would the inferred genomic subtype change if the 

tumor texture were more coarsely heterogeneous on CT?”) would further our understanding 

of black-box multimodal models 141,145.

Data governance and stewardship

Progress will require appropriate data governance and stewardship. Patient consent lies at 

the core of appropriate use of data and dictates terms of use as stipulated by institutional 

review boards. Beyond patient consent, high quality, curated and annotated datasets 

require the expertise and domain knowledge of clinician scientists or clinical fellows. 

As such, terms of use for these valuable datasets are likely to be set by those who 

invested the expertise and time required for curation. Success will therefore depend heavily 

on collaborative models coupling expert clinical annotations with the expertise of data 

scientists for advanced analyses 146. Furthermore, cross-departmental coordination, access 

provisions, and governance structures will be required to achieve large scale multimodal 

data integration. We argue that open data models are the most productive approaches to 

fully leverage data for discovery and promote reproducibility. This has been demonstrated 
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in the cancer genomics community with TCGA, and community data standards promoting 

multi-institutional clinical data integration, such as AACR Project GENIE, are now gaining 

traction 147. Moreover, as the clinical journey for a patient with cancer plays out over time, 

technology systems and governance structures to capture relevant events and new data in 

real-time will enhance efforts for data integration and computational discovery. Effective 

stewardship plans, including accuracy of data, collaborative access provisions, imposition 

of data standards, and longitudinal data updates, are therefore critical to managing and 

deploying appropriate use of data for large scale multimodal data integration.

Perspectives

Multimodal cancer biomarker discovery occurs at the interface of clinical oncology, ML 

research, and data engineering, which typically operate separately. To advance the field, 

collaborative research programs must unify and promote clear communication among these 

stakeholders through platform design, model development, and the publication lifecycle 
148. These programs will enable clinical investigators to ask questions centering on patient 

stratification and ultimately produce predictive models by integrating multimodal data. A 

team science approach with appropriately shared attribution of credit and agreed-upon data 

stewardship provisions is essential for progress.

The main roadblock to progress in this field is the lack of usable data. Advances in 

multimodal ML methods have been impressive in other fields, such as sentiment analysis 

[G] 86,149-154 , with large benchmark datasets, but the largest multimodal oncological 

dataset, the TCGA, contains limited data modalities and only a few hundred patients per 

cancer type. This data scarcity largely prevents investigators from using advanced data-

hungry models and, critically, hampers benchmarking of new methods in the field, required 

for rational development of multi-model biomarkers.

Institutional datasets must be assembled and shared, but current data infrastructure typically 

necessitates months of laborious extraction and annotation before analysis begins. This is 

perhaps the most well-known issue of conducting ML research for healthcare applications, 

and a general solution is not imminent. To address this in specific cases, imposed 

structures on certain notes and full-time data curators have hastened chart review. Automatic 

annotation strategies relying on WSL and active learning conserve scarce expert annotations 

and have begun to reduce annotation burdens for large imaging cohorts. Until these 

fundamental challenges are addressed, multimodal ML models must often operate in the 

very small data regime. Simple ML models should be used in place of DL methods for small 

cohorts. DL models should be used judiciously for tasks with large statistical sample size 

and with strategies to combat overfitting, such as gradient blending, early stopping, data 

augmentation, and weight decay [G]. Investigators must be wary of spurious results due 

to institutional biases and small sample sizes, with cross-validation, retrospective external 

validation, prospective validation, and clinical trials serving as key measures to assess 

algorithm effectiveness.

Ultimately, as biomedical data infrastructures develop, the goal of this approach is to 

refine cancer prognosis and rational management by integrating multiple data modalities. 
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Genomic biomarkers have improved upon traditional staging and have begun to implement 

personalised cancer care, promoting targeted therapies. We predict new classes of 

multimodal biomarkers will further harness information content from various sources, 

thereby leading to improved predictive models for therapeutic response. Validated models 

will be deployed to the electronic medical record, providing near-real-time risk stratification 

and recommendations for individual patients for clinicians to integrate with other factors 

to inform management. While we focused on genomics, histology, radiomics and clinical 

outcomes in this Perspective, we expect additional measurements such as the microbiome, 

metabolic analytes, longitudinal cell free DNA analysis, and deep immune profiling will 

become integrated as informative determinants of clinical trajectories. In summary, we 

project that as data access challenges are overcome, multimodal computational techniques 

will play important roles in clinicians’ decisions around disease management. Developing 

multimodal ML methods, usefully logging and annotating patient data, and advancing 

data engineering infrastructures are outstanding hurdles that remain in the field. As these 

challenges are met, the field is poised for a reimagined class of rational, multimodal 

biomarkers and predictive tools to refine evidence-based cancer care and precision oncology.
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Glossary box

Artificial intelligence (AI)
A broad field of computer science concerned with developing computational tools to carry 

out tasks historically requiring human-level intelligence.

AUROC (area under the receiver operating characteristic curve)
Measures the ability of a binary classifier to separate the populations of interest. It describes 

the increase in true positive rate relative to the increase in false positive rate over the range 

of score thresholds chosen to separate the two classes. The highest value obtainable is 1, and 

random performance is associated with a value of 0.5.

Autoencoders
Unsupervised neural network architectures trained to represent data in a lower dimensional 

space. It is a form of lossy compression (reducing the size of data representations, but with 

some loss of information) that can be used to uncover latent structure in the data or reduce 

computational needs before further analysis.

Bayesian inference
A statistical method that refers to the application of Bayes’ Theorem in determining the 

updated probability of a hypothesis given new information. Bayesian inference allows the 
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posterior probability to be calculated given the prior probability of a hypothesis and a 

likelihood function.

Biomarkers
Measurements which indicate a biological state. Cancer biomarkers can be categorized into 

diagnostic (disease progression), predictive (treatment response), and prognostic (survival).

Concordance index (c-Index)
Generalizes the AUROC to measure the ability of a model to separate censored data. As with 

the AUROC, the baseline value for a model with arbitrary predictions is 0.5, and the ceiling 

value for a perfect prediction model is 1.0.

Convolutional neural networks (CNNs)
A form of deep neural network (DNNs) typically used to analyze images. CNNs are named 

for their use of convolutions, a mathematical operation involving the input data and a smaller 

matrix known as a kernel. This parameter sharing reduces the number of parameters to be 

learned and encourages the learning of features which are invariant to image shifts.

Counterfactual machine learning
A set of techniques for machine learning based on the paradigm of modeling situations that 

did not factually occur. These techniques are often deployed for interpretable models or to 

learn from biased logged data. For example, a counterfactual analysis could involve using 

a model developed to predict a disease outcome using a set of measurements to predict 

scenarios where the input measurements are perturbed to study their causal relationship. 

This paradigm has also been harnessed to learn unbiased recommenders from logged 

data, such as user purchases on online marketplaces, despite changes in how products are 

recommended over time and the lack of a controlled experimental setup.

Cox proportional hazards (CPH) model
A regression model used to associate censored temporal outcomes, such as time to survival, 

and potential predictor variables, such as age or cancer stage. It is the most common method 

to evaluate prognostic variables in survival analyses of patients with cancer.

Deep Learning
(DL) Comprises a class of machine learning methods based on artificial neural networks 

(ANNs), which use multiple non-linear layers to derive progressively higher-order features 

from data.

Data lakes
Store relational and non-relational data from a vast pool of raw data. The structure of the 

data or schema is not defined when data is captured. Different types of analytics on data 

like structured query language (SQL) queries, big data analytics, full text search, real-time 

analytics, and machine learning can be used to uncover insights.

Data parallelism
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The approach of performing a computing task in parallel utilizing multiple processors. 

It focuses on distributing data across various cores and enabling simultaneous sub-

computations.

Deep neural network (DNN)
A form of deep learning, namely artificial neural networks with more than one hidden layer 

between the input and output layers.

Federated learning
A training strategy wherein the model to be trained is passed around among institutions 

instead of centrally amalgamating data. Each institution then updates the model parameters 

based on the local dataset. This strategy enables multi-institutional model training without 

data sharing among institutions.

Kernel
A similarity function often used to transform input data implicitly into a form more suitable 

for machine learning tasks. For example, a two-dimensional pattern-based kernel could be 

used to identify the presence of specific shapes in an image, and a one-dimensional Gaussian 

kernel could be used to impute a smoothed trendline based on noisy data points.

Layer-wise relevance propagation (LRP)
One of the most prominent techniques in explainable machine learning. LRP decomposes 

the network's output score into the individual contributions of the input neurons using model 

parameters (i.e., weights) and neuron activations.

Machine learning (ML):
A type of artificial intelligence which aims to discover patterns in data which are not 

explicitly programmed. ML models typically use a dataset for pattern discovery, known as 

‘training’, to make predictions on unseen data, known as ‘inference’.

Recommender systems
Aim to predict relevant items to users by building a model from past behavior. In precision 

medicine, recommender systems can be used to predict the preferred treatment for a disease 

based on multiple patient measurements.

Recurrent neural networks (RNNs)
A form of deep neural network optimized for time series data. An RNN analyzes each 

element of the input sequence in succession and updates its representation of the data based 

on previous elements.

Sentiment analysis
A field seeking to characterize human emotional states from text, images, and sounds by the 

use of machine learning models.

Supervised learning
A machine learning paradigm, which aims to elucidate the relationship between input data 

variables and predefined classes (‘classification’) or continuous labels (‘regression’) of 
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interest. By contrast, unsupervised learning aims to identify patterns in a dataset without the 

use of such labels or classes.

Voxel
The volume element is defined by the x, y and z coordinates in 3D space used in medical 

imaging modalities. Its dimensions are given by the pixel, together with the thickness of the 

slice.

Weight decay
A regularization strategy to improve the generalizability of models whereby high estimated 

values of model parameters are penalized despite marginal increases in accuracy on the 

training set.
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Box 1

Deep learning architectures

Machine learning (ML) can be divided broadly into unsupervised learning and supervised 

learning. Unsupervised learning seeks to discover intrinsic patterns in data, sometimes 

without known labels for each data point, while supervised learning seeks to predict 

a label of interest from the input data. Deep learning is a subtype of ML that has 

the potential to learn more informative features than engineered features, but there is 

difficulty in model interpretability and performance is notoriously dependent on the 

amount of training data available 14. No ML algorithm is universally superior to another, 

but the data and targets to be related motivate the choice of model 158,159. With sufficient 

training data, deep neural networks (DNNs) have become a leading approach to capture 

salient patterns within data. DNNs are universal function approximators that learn a 

distributed representation of given data, with deep features often describing data better 

than competing human-defined features 160. Though these methods are limited by the 

need for large training datasets and the difficulty of interpreting their learned features, 

they are indispensable for discovering highly informative features in clinical datasets.

Specific variants of DNNs exist for different data modalities. For example, convolutional 

neural networks (CNNs) learn sliding window-like kernels to detect textural patterns 

within images, often achieving or exceeding human performance in image classification. 

Some of the most popular variants, available off the shelf in modern DL frameworks, 

are ResNet, Inception, DenseNet, and SqueezeNet 161-164. For sequential data such as 

time series of lab values, recurrent neural networks (RNNs) can be the architecture of 

choice. The RNN uses each data point to update its understanding of the data, building 

an amalgamated representation that is then used to predict the outcome of interest, such 

as risk of disease recurrence. The most successful variants are long short-term memory 

(LSTM) and gated recurrent unit (GRU) networks 165,166. More recently, transformer 

networks 167 have demonstrably outperformed RNNs in sequential learning. Although 

RNNs and transformers have not yet been widely applied in oncology, preliminary 

studies of RNNs and transformers for longitudinal medical event prediction have yielded 

promising results 76-78,168. For high-dimensional data such as transcriptomic profiles, 

the attention gating mechanisms (methods to identify which data elements are most 

relevant) inherent in deep highway networks 79 have helped identify salient features 

amidst potentially uninformative background 80.
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This Perspective proposes that data from multiple modalities including molecular 

diagnostics, radiological and histological imaging and codified clinical data should 

be integrated by multimodal machine learning models to advance the prognosis and 

treatment management of patients with cancer.
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Figure 1. Example data modalities for integration include radiology, histopathology, and 
genomic information.
Image feature extraction involves choosing deep learning or engineered features. CT, 

computed tomography; H&E, hematoxylin & eosin.
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Figure 2. Multimodal models integrate features across modalities.
Sub-models extract unimodal features from each data modality. Next, a multimodal 

integration step generates intermodal features—a Tensor Fusion Network (TFN) is indicated 

here 86. A final sub-model infers patient outcomes. GPU, graphics processing unit.

Boehm et al. Page 28

Nat Rev Cancer. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Design choices for multimodal models with genomic, radiological, and 
histopathological data.
Solid arrows indicate stages with learnable parameters (linear or otherwise), dashed arrows 

indicate stages with no learnable parameters, and dashed and dotted arrows indicate the 

option for learnable parameters, depending on model architecture. (a) In early fusion, 

features from disparate modalities are simply concatenated at the outset. (b) In late fusion, 

each set of unimodal features is separately and fully processed to generate a unimodal 

score before amalgamation by a classifier or simple arithmetic. (c) In intermediate fusion, 

unimodal features are initially processed separately prior to a fusion step, which may or 

may not have learnable parameters, and subsequent analysis of the fused representation. All 

schemata shown are for deep learning (DL) on engineered features: for convolutional neural 

networks (CNNs) directly on images, unimodal features and unimodal representations are 

synonymous. For linear machine learning (ML) on engineered features, no representations 

are learned between features and stratification. The magnetic resonance imaging (MRI) 

images were obtained from The Cancer Imaging Archive (TCIA). Histology images were 

obtained from the Stanford Tissue Microarray database, ref. 155.
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Figure 4. Active learning reduces the burden of annotation.
In active (‘human in the loop’) learning, a pathologist first annotates small training areas 

representing tissue areas (for example, tumor, stroma and lymphocytes). Next, a machine 

learning classifier is trained from these expert annotations. Finally, the resulting labeled 

sample can be examined for misclassified regions, and the pathologist adds targeted 

additional training areas. This process is repeated until the classification is accurate and 

can be applied to multiple samples.
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Figure 5. Recommender systems could learn from retrospective data to assist in clinical decision-
making.
Logged healthcare data comprises multimodal patient contexts x, interventions y based 

on the standard of care (π0), and feedback δ based on the outcome of the intervention. 

Learning from such data is challenging because of the lack of two-arm design and the biased 

data based on the changing standard of care. Counterfactual recommender systems learn 

theoretically guaranteed unbiased policies from these data. Then, the validated policy π can 

be applied prospectively to support physicians’ management decisions.
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Figure 6. Class activation maps highlight the image areas most important for the model to make 
a decision.
Magnetic resonance imaging (MRI) images of the breast (A) before neoadjuvant 

chemotherapy with region of interest circled by a radiologist, (B) after neoadjuvant 

chemotherapy with region of interest circled by a radiologist, and (C) before neoadjuvant 

chemotherapy with class activation mapping by a neural network trained to predict response 

to therapy. Warmer colors indicate higher saliency. The images were obtained from The 

Cancer Imaging Archive (TCIA)156,157.
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