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Abstract

Purpose: To improve the estimation of coil sensitivity functions from limited auto calibration 

signals (ACS) in SENSE-based reconstruction for brain imaging.

Methods: We propose to use deep learning to estimate coil sensitivity functions by leveraging 

information from previous scans obtained using the same RF receiver system. Specifically, deep 

convolutional neural networks (CNNs) were designed to learn an end-to-end mapping from the 

initial sensitivity to the high resolution counterpart; Sensitivity alignment was further proposed 

to reduce the geometric variation caused by different subject positions and imaging FOVs. Cross-

validation with a small set of datasets was performed to validate the learned neural network. 

Iterative SENSE reconstruction was adopted to evaluate the utility of the sensitivity functions from 

the proposed and conventional methods.

Results: The proposed method produced improved sensitivity estimates and SENSE 

reconstructions compared to the conventional methods in terms of aliasing and noise suppression 

with very limited ACS data. Cross-validation with a small set of data demonstrated the feasibility 

of learning coil sensitivity functions for brain imaging. The network learned on the spoiled GRE 

data can be applied to predicting sensitivity functions for spin-echo and MPRAGE datasets.

Conclusion: A deep learning based method has been proposed for improving the estimation of 

coil sensitivity functions. Experimental results have demonstrated the feasibility and potential of 

the proposed method for improving SENSE-based reconstructions especially when the ACS data 

are limited.
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1 | INTRODUCTION

Parallel imaging has been widely used to accelerate MRI data acquisition in many research 

and clinical applications [1]. It exploits the spatial encoding effect of the RF receiver coil’s 

sensitivity functions to enable undersampling of k-space [2, 3, 4]. In image reconstruction, 

knowledge of the coil sensitivity functions is essential.

A common approach to determining high-quality coil sensitivity functions is to acquire a 

high-resolution data from a reference scan and use the sum of squares (SoS) or adaptive 

combine [5] method. But the sensitivity obtained may not be exactly aligned with the 

imaging data collected separately due to subject motion. A more desirable approach is 

to acquire a set of auto-calibration signals (ACS) within the imaging scan. However, 

due to scan time constraint, only a small set of ACS can be acquired with limited 

k-space coverage in practical imaging experiments, resulting in inaccurate sensitivity for 

SENSE reconstruction. To address this issue, several approaches have been developed 

in the previous literature: polynomial functions [3] were exploited to represent the coil 

sensitivity with reduced degrees of freedom and thus improve sensitivity estimation; 

Iterative reconstruction was developed to jointly estimate the sensitivity and image function 

with sparsity and smoothness constraints [4, 6]; GRAPPA was used to interpolate a larger 

k-space for sensitivity estimation [7]; and the ESPIRiT method [8] was developed to directly 

extract the coil sensitivity from the calibration matrix composed by the ACS data using its 

subspace structure. All these methods take advantage of prior knowledge within the current 

scan.

An alternative approach is to exploit redundancy between multiple scans, which has not 

been fully developed. For example, correlation imaging [9] was introduced to exploit the 

correlation of coil sensitivities and anatomical structures between multi-scans using a linear 

prediction function. Inspired by the recent success of deep learning (DL) in MR image 

reconstruction[10, 11, 12, 13, 14, 15, 16], we propose to use deep neural networks to 

predict high-quality coil sensitivity functions from limited ACS data. The main assumption 

is that variations of coil sensitivity for a given receiver system under various experimental 

conditions reside on a low dimensional manifold. Based on this premise, a 3D deep 

convolutional neural network (CNN) with the U-net [17] architecture was designed and 

trained to learn the manifold representation and the nonlinear mapping between the low-

resolution and high-resolution sensitivities. Sensitivity alignment was further proposed to 

reduce the geometric variation induced by different subject positions and FOV settings. As 

a proof-of-concept study, we demonstrated the feasibility of the sensitivity learning idea 

for brain imaging at 3T. Experimental results have shown that the learning-based method 

can produce high-quality sensitivity maps with very limited ACS data, leading to improved 

SENSE reconstruction with less aliasing artifacts. A preliminary version of this work was 

previously reported in an abstract for the 2018 annual meeting of the International Society 
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for Magnetic Resonance in Medicine [18]; a detailed description of the method is given in 

this paper.

2 | METHODS

2.1 | Subspace structure of coil sensitivity

According to the reciprocity principle, the coil receiving sensitivity can be approximated 

as proportional to the magnetic field B1
−(r) that would be generated by the coil element. in 

general, the geometry of the coil elements, the tissue electric property (e.g., permeability) 

and coil loading will all affect the B1
− field. In this study, we hypothesize that the B1

−

field from in vivo brain scans should have variations that can be well captured by a low-

dimensional representation [19]. More specifically, when the RF wavelength is much larger 

than the imaging object, the geometry of the B1
− field is hardly affected by the presence 

of the imaging object and can be calculated by Biot-Savart integration [20, 21]. As is well 

known, RF wavelength on average for in vivo brain imaging is 27 cm at 3 Tesla [22], 

which is greater than the typical human head sizes (16-24cm). Therefore, given a specific 

receiver system, the sensitivity from in vivo brain scan at 3T can be well approximated by 

Biot-Savart integration and mainly varies on subject related permeability and loading. Given 

well-defined range of permeability of in vivo brain tissues and limited geometric variation 

within the coil, we presume that the variation introduced by different subjects should yield a 

low-dimensional representation. The additional wave effects due to varying but similar head 

sizes may lead to additional sensitivity variations and slightly increase the dimensionality, 

but it will not invalidate the low-dimensional assumption. As shown in Fig. 1a, the 3D 

coil sensitivity functions acquired in this study exhibit a low-rank structure in the linear 

subspace. Based on these observations, we believe that the coil sensitivity functions should 

reside on a low-dimensional manifold and can be learned using deep learning from previous 

scans obtained from the same receiver system.

2.2 | Sensitivity alignment

Due to variations in subject position and FOV settings, the sensitivity maps obtained 

from different scans will likely capture different 3D portions of the underlying sensitivity 

functions. In this study, we used a rigid-body motion TΘ (r) to align the sensitivity functions 

to reduce such variation. The inverse transformation is defined as TΘ
−1(r). Given a set of 3D 

sensitivity S (r), the deformed sensitivity is denoted as S′ (r′) = S (TΘ (r)). r and r′ indicate 

the spatial coordinates before and after the transformation, Θ contains the rotation and 

translation motion parameters. The mathematical description of the transformation TΘ (r) 

and sensitivity alignment can be found in supplementary material. With proper alignment, 

the aligned sensitivity maps exhibited a lower-dimensional representation (Fig. 1a). Note 

that the 3D transformation can work for both 3D imaging and multi-slice imaging, as long as 

volumetric images are available.

2.3 | Proposed workflow

The workflow of the proposed method is summarized in Fig. 1c. The ACS data was 

first zero-padded and Fourier transformed (ZP-FFT) to the image domain to generate 
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low-resolution coil sensitivity functions SL via dividing the individual coil images by the 

SoS coil combined image. Its high-resolution counterpart SH was generated using fully 

sampled data. Sensitivity alignment was then performed to generate another set of sensitivity 

pairs (i.e., SL′  and SH′ ). Two 3D CNNs with identical architecture were trained separately 

using the original and the aligned sensitivity pairs respectively. The prediction from CNN1 

using the aligned dataset was then inversely transformed to the original data space using 

SH″ = SH′ (TΘ
−1(r)). Note that a rigid-body transformation in 3D space may have signal moved 

out of the FOV (denoted by 1 − M (r) in Fig. 1d), which can not be recovered by the inverse 

transformation. Therefore, the predictions from the two CNNs were finally combined 

with corresponding spatial masks, yielding SH = SH″ · M + SH · (1 − M). An example was 

illustrated in Fig. 1d.

2.4 | Network architecture

The 3D U-net architecture [23] was adopted for the CNNs described in the proposed method 

(Fig. 1e) with a few modifications. Specifically, to maintain effective encoding along with 

down sampling by a factor of 2, 3D convolutions with a stride of 2 were implemented 

replacing the max pooling used in the original segmentation task. An additive short cut 

was made between the input and output of the network for residual learning [24]. Leaky 

ReLU with a slope of 0.1 was employed. To avoid overfitting, ’dropout’ was employed [25] 

to randomly turn off neurons during training at a rate of 10%. L2 regularization with a 

parameter of 0.1 was also exploited. The training was generally done by minimizing the L2 

loss function:

Loss = ρ ⋅ SH − f SL; ω 2
2

(1)

where SH and SL are the corresponding input and output 3D sensitivity pairs, f (·) denotes 

the nonlinear mapping defined by the CNN with learnable parameters ω. · performs 

element-wise multiplication for each coil. ρ is the fully-sampled coil combined image, 

compensating for the spatially varying noise variation. In the spirit of reproducible research, 

the network code is available at: (https://github.com/stevepeng1120/DeepSENSE/).

2.5 | Experimental set-up

In vivo brain experiments were conducted on a 3T MR scanner (SIEMENS Prisma) from 

15 subjects using the standard 20-channel receive-only head/neck coil with 16 head coil 

elements activated and the other 4 neck elements turned off. Written informed consents 

were obtained from all the subjects with approval by the institutional IRB. A 3D spoiled 

gradient-echo (GRE) sequence (matrix size 160×160×36, FOV 240mm×240mm×72mm, FA 

6°, TR 5.2ms, TE 2.3ms, Bandwidth 500Hz/pixel) was performed on each subject 2-3 times 

with axial slices along the anterior commissure (AC)-posterior commissure (PC) orientation. 

In between each scan, the subjects were asked to stand up and walk around before going 

back into the scanner, producing various head positions and FOV settings, in order to 

generate different permeability distributions within the coil, different sensitivity volumes, 

and probably different loading. To perform cross-validation, we randomly split our datasets 

into 5 groups. Each group contains data from 3 different subjects, yielding a set of 12 
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subjects (around 32 image volumes) and a set of 3 subjects (around 8 image volumes) for 

training and testing each time.

Conventional ZP-FFT with hamming filtering and the ESPIRiT [8] methods were also 

conducted. Sensitivity maps were compared given a various number of ACS lines (e.g., one 

central ,“ky = 0”, phase encoding line plus additional 24, 16, 8, 4 surrounding PE lines) 

and evaluated by performing a subsequent iterative SENSE reconstruction [26] with uniform 

undersampling in the outer k-space. The ESPIRiT reconstruction were performed using the 

“SPIRiT_v0.3” Matlab code provided by the authors with kernel size either 6 or 5 (6 is 

preferred whenever feasible). Root mean square errors (RMSEs) were computed for both 

the sensitivity maps and SENSE reconstructions for quantitative assessment. To demonstrate 

the generalizability of the proposed technique to other sequences, an MPRAGE scan (matrix 

size 160×160×36, FA 9°, TR 1900ms, TE 3.06ms, TI 900ms, Bandwidth 200Hz/pixel) was 

performed on all 15 subjects and a multi-slice spin-echo scan (matrix size 192×192×36, TR 

1500ms, TE 7.5ms, Bandwidth 250Hz/pixel) was carried out on five new subjects. All scans 

performed in this study had the same FOV.

2.6 | Implementation details

Our current implementation forces the network to learn the inter-coil phase differences, 

which excludes any off-resonance and RF related phase and thus are still slowly varying 

functions residing on a low-dimensional manifold. More specifically, for both the input and 

output maps of all the training and testing datasets, we subtracted the phase of the 1st coil 

from all the coil sensitivities. The subtracted phase from the 1st coil, including the coil 

independent RF and off-resonance induced phase, will be absorbed into the final SENSE 

image. The 3D input and output labels to the network were formed by concatenating the real 

and the imaginary part of the corresponding coil sensitivity maps. Batch normalization [27] 

was employed right after each convolution and deconvolution layer to improve stability and 

training speed. Polynomial fitting with a order of 5 was applied to the sensitivity maps when 

estimating the motion parameters to improve motion estimation accuracy. The two CNNs 

were trained separately, where CNN2 was trained first using the original dataset, and CNN1 

was trained afterwards using the aligned dataset with the learned weights from CNN2 as 

initialization. Predictions from different number of ACS lines were trained separately. The 

neural network was constructed in Tensorflow 1.5.0 and trained using stochastic gradient 

descent with an Adam optimizer [28] for 1000 epochs using the GeForce Titan XP graphics 

processing unit (GPU), taking approximately 20 hours. Before SENSE reconstruction, a 

rough background was estimated from the low-resolution image (using ACS data), and the 

predicted sensitivity values in such background were set to a very small constant number to 

further reduce image artifact.

3 | RESULTS

The estimated sensitivity maps and SENSE reconstructions using 8 and 4 ACS lines were 

compared in Fig. 2 and Fig. 3 respectively. ZP-FFT with hamming filtering generated 

SENSE reconstructions with significant aliasing artifacts. The ESPIRiT method yielded 

inferior sensitivity estimation due to insufficient number of calibration data, especially with 
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4 ACS lines where a smaller kernel size (e.g., 5) could only be used (manifested by the 

distorted coil phase information), resulting in evident aliasing in the SENSE reconstruction. 

Our method provided consistently superior sensitivity estimation in both cases with very 

limited ACS data, leading to improved reconstruction with suppressed noise and aliasing 

artifacts. The RMSEs of the sensitivity and SENSE reconstructions with varying number 

of ACS lines were reported in Fig. 4. With moderate amount of calibration data (e.g., 

results from 24 ACS lines can be found in Fig. S2), ESPIRiT and the learning-based 

method produced comparable results. As the amount of ACS lines decreases, conventional 

methods degraded dramatically, while the learning-based method is much more robust since 

it takes advantage of information from previous scans. To demonstrate the applicability of 

the proposed method in handling rapid phase transitions, results from a bottom brain slice 

with air-tissue interface was also provided in supplementary material (Fig. S3).

Results of the 5-fold cross-validation is shown in Fig. S4. Although we only employed a 

relatively small set of training data, the learned model was able to consistently improve the 

sensitivity to a similar level for all the validation groups, further validating our hypothesis 

that the coil sensitivity between scans reside on a low-dimensional manifold. Note that 

coil alignment may not be necessarily required in the case of small spatial misalignment 

(e.g., group 1-3), since the deep CNN should be able to handle certain extent of geometric 

variation due to its powerful representation capability. Lastly, the SENSE reconstructions 

of the spin-echo and MPRAGE datasets were carried out at various reduction factors 

(e.g., R=3, 4, 5) using sensitivity estimated from 8 ACS lines and compared in Fig. 5 

and Fig. S5. Although the model was trained on GRE dataset, the proposed method still 

produced improved sensitivity estimation and superior SENSE reconstruction compared to 

the ESPIRiT method in terms of aliasing and noise suppression across all undersampling 

cases.

4 | DISCUSSION

In this short proof of concept study, we focused on using a head coil to demonstrate the 

feasibility of coil sensitivity learning by taking advantage of previous scans produced from 

the same receiving coil. The key assumption is that coil sensitivities from the same RF 

receiver system should be highly correlated between scans and reside on a low dimensional 

manifold according to the underlying electromagnetic physics. The learning-based method 

has shown some robustness to data obtained in this study from a limited number of 

subjects and sequences. More comprehensive studies are still needed to evaluate the 

generalizability of the proposed method in different application scenarios, e.g., presence 

of large pathological features (such as gadolinium enhanced tumors) which may alter the 

sensitivity function.

Although our initial evaluation is limited to brain imaging, the idea of learning sensitivity 

variations and using deep neural network for accurate prediction can be applied to 

different types of coils and applications, provided the availability of quality training data. 

Furthermore, based on the sources of coil sensitivity variations, we think that it is actually 

beneficial to train separate network predictors for different coils, since the manifold structure 

of the sensitivities depends on the hardware. Adapting this idea for other body parts can be 
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pursued in future research, for instance, the body coils without a fixed geometry and with 

certainly larger wave effects would be more challenging. Given a specific receiving coil, the 

variation of sensitivity could also be different in various practical scenarios and it would 

be better to train the network separately. For example, in high-field imaging, the geometry 

of the sensitivity map will contain more significant wave effects; in applications where the 

imaging space within the coil varies, the orientation of ACS lines changes, or the subject 

loading differs (e.g., pediatric imaging).

The current neural network has inherited features from the U-net, but is by no means optimal 

yet. Free parameters such as kernel size, number of layers, feature maps, type of activation 

function and loss function can be further adjusted and selected on a case-by-case basis. 

More advanced neural networks like the Generative Adversarial Neural Networks (GAN) 

[29, 30] certainly can lead to better performance. Our method would also depend on the 

quality of the input sensitivity maps. For example, starting with the ESPIRiT maps could be 

helpful in rejecting noise and ringing artefacts. Furthermore, the proposed network holds the 

potential to be integrated with other advanced image reconstruction models, including the 

most recent deep-learning based methods [31, 32, 33, 34, 35, 36] where sensitivity functions 

are required. Finally, it would also be worthwhile to build electromagnetics constraints into 

the learning model and explore the complementary power of physics-based and data-driven 

priors.

5 | CONCLUSION

We proposed and evaluated a deep learning based method to improve the estimation 

of coil sensitivity functions from limited ACS data for brain imaging. A deep neural 

network is designed and trained to map low-resolution sensitivity maps to its high-resolution 

counterparts by exploiting the learnable coil geometry and subject-dependent sensitivity 

variations. Experimental results have demonstrated the ability of the proposed idea in 

producing high quality sensitivity functions with very limited ACS data. Future work may 

include network structure optimization and potential integration with deep learning based 

reconstruction methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Main assumption and idea of DeepSENSE. a) Singular values of the Casorati matrix formed 

by stacking all the 3D sensitivity maps as its columns, demonstrating the low-dimensionality 

of the 3D coil sensitivity from the head coil. The 3D sensitivity maps are derived from the 

GRE dataset obtained from 15 subjects in this study. b) Example 2D sensitivity maps (i.e., 

same coil and same slice index) of each 3D volumes from eight different subjects before (top 

row) and after (bottom row) sensitivity alignment w.r.t. the first scan. With proper alignment, 

intensity variation in the sensitivity maps towards those in the first scan can be observed, 

leading to a lower-dimensional representation in the linear subspace. c) Workflow of the 

proposed method for improved sensitivity estimation from limited ACS data using deep 

learning; d) Illustration of spatial masks M (r) and 1 − M (r) to combine the predictions 

from the two CNNs in the case of a clockwise rotation. The mask M (r), calculated using 

1 (TΘ
−1(r)), indicates signals remaining in the FOV (intersected area between solid and 

dashed rectangles) that can be selected from the prediction of CNN1 while 1 − M (r), 
the area around the corner, corresponds to signals transformed out of the FOV, which can 

only be predicted from CNN2. e) The structure of the convolutional neural network used 

in the proposed method. The first orange and last red layers represent the input and output 
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3D sensitivity functions respectively. The intermediate layers are color coded differently at 

different scales. The number of feature maps is listed on the top or at the bottom of the 

corresponding layer. Layers from the same scale have the same size of feature maps. Nx × 

Ny × Nz and Nc denote the spatial dimension in 3D and the number of head coil channels 

respectively.
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Figure 2. 
Comparison of the sensitivity maps (e.g., 6-th coil) estimated using 8 ACS lines and the 

subsequent iterative SENSE reconstructions at R=4 of a GRE testing dataset. RMSEs of the 

sensitivity maps and SENSE reconstructions are shown in the magnitude image. Error maps 

were scaled by 5 folds for better visualization.
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Figure 3. 
The coil sensitivity maps (e.g., 8-th coil) estimated using 4 ACS lines and the subsequent 

iterative SENSE reconstructions at R=4 of a GRE testing data from another subject. RMSEs 

of the sensitivity maps and SENSE reconstructions are shown in the magnitude image. Error 

maps were scaled by 5 folds for better visualization. The ESPIRiT method generated inferior 

coil sensitivity information due to insufficient calibration data and the smaller kernel size 

(e.g., 5) that could only be used.
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Figure 4. 
RMSEs of a) the estimated sensitivity maps and b) the subsequent SENSE reconstruction at 

R=4 with varying number of ACS lines from a testing GRE dataset. Conventional methods 

degraded dramatically as the number of ACS lines decreases, while the learning-based 

method is much more robust since it takes advantage of information from previous scans.
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Figure 5. 
Iterative SENSE reconstructions of the multi-slice spin-echo dataset with uniform 

undersampling in the outer k-space at various reduction factors (i.e., R = 3, 4, 5). The 

ESPIRiT and the proposed DeepSENSE methods were used for sensitivity estimation 

from 8 ACS lines. Although the proposed model was trained on the GRE dataset, it still 

enables improved sensitivity estimation manifested by the reduced aliasing in the SENSE 

reconstruction across all reduction factors.
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