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Abstract

Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation that is based on 

the principle of electromagnetic induction where small intracranial electric currents are generated 

by a powerful fluctuating magnetic field. Over the past three decades, TMS has shown promise 

in the diagnosis, monitoring, and treatment of neurological and psychiatric disorders in adults. 

Yet, the use of TMS in children has been more limited. We provide a brief introduction to 

the TMS technique, common TMS protocols including single-pulse TMS, paired-pulse TMS 

(ppTMS), paired associative stimulation (PAS), and repetitive TMS (rTMS), and relevant TMS-

derived neurophysiological measurements including resting and active motor threshold, cortical 

silent period, ppTMS measures of intracortical inhibition and facilitation, and plasticity metrics 

following rTMS. We then discuss the biomarker applications of TMS in a few representative 

neurodevelopmental disorders including autism spectrum disorder, fragile X syndrome, attention-

deficit hyperactivity disorder, Tourette syndrome, and developmental stuttering.
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1. Introduction

Transcranial magnetic stimulation (TMS) is a 30-year-old technique for focal, noninvasive, 

electrical cortical stimulation (see (1) for a comprehensive review). In contrast to many 

neurostimulation protocols, TMS has robust prospects in the diagnostic and biomarker 

space. Specifically, TMS-derived biomarkers have been obtained for a range of disease 

states that include epilepsy (2), migraine (3), and pain (4). Yet, most of these have 

been studies in adults. Reviews of TMS safety in children (5–11) indicate minimal risk 

associated with the technique. Accordingly, TMS may serve to further our understanding of 

the underlying pathophysiology of neurodevelopmental disorders such as autism spectrum 

disorder or fragile X syndrome, and help identify biomarkers to aid in early diagnosis, 

monitoring disease progression, and development of novel therapies.

2. Common TMS Protocols and TMS-EMG Measures of Cortical 

Excitability and Plasticity

TMS is based on Faraday’s principle of electromagnetic induction where a powerful 

fluctuating magnetic field induces a small intracranial electrical current in the brain (12). 

The induced current depolarizes the nearby neuronal assemblies located underneath the 

coil and can generate neurophysiological and/or behavioral effects (1). The true biophysical 

dynamics of TMS and the exact neural elements are activated by TMS remain unclear, and 

may vary across different brain regions and individuals (13–16). Models of TMS (17–20) 

raise many of the relevant issues, but need to be tested further on cellular and molecular 

levels (21,22).

Applying TMS to the primary motor cortex (M1) can selectively activate the contralateral 

muscles that are controlled by the targeted M1 (23). The extent of this activation 

can be quantified via motor evoked potential (MEP) amplitudes using skin-surface 

electromyography (EMG), enabling TMS-derived measures of the cortical excitation and 

inhibition (6), two opposing forces that influence many cortical functions in the mammalian 

cerebral cortex (24,25). The extent of inhibition generated in cortical networks is typically 

proportional to local and/or incoming excitation through the recruitment of interneurons 

via feedforward and/or feedback excitatory projections (25). Such excitation:inhibition 

(E:I) balance, in which increases in excitation are accompanied by increases in inhibition, 

has been observed in vitro in several sensory cortical regions (26–28) as well as during 

spontaneous cortical activity (29–31).

The stimulation intensity in TMS protocols is typically adjusted based on normalized 

measures such as motor threshold, the intensity that elicits an MEP of ≥ 50 μV on 50% 

of the pulses applied over the cortical hot spot of a target muscle either at rest (resting motor 
threshold; rMT) (32) or during isometric contraction (active motor threshold; aMT).

The pattern of stimulation and outcome measures of TMS modalities can vary based on 

the number and intensity of the TMS pulses, inter-pulse/inter-train intervals, stimulation 
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frequency, TMS pulse waveform, and the direction of the induced current in the brain 

(13,33,34). The three main types of TMS protocols are as follows (Table 1):

a. Single-pulse TMS

Single-pulse TMS (spTMS) typically consists of single pulses delivered at 5–8 s intervals, 

to avoid cumulative effects of individual pulses over time. A standard TMS pulse is usually 

150–300 μs in duration and can cause depolarization followed by a refractory period, after 

which neurons recover rapidly. spTMS is used to assess corticospinal integrity and maturity 

(35–39), for motor mapping (40), and to assess the aftereffects of repetitive TMS (rTMS) 

protocols (41,42).

The cortical silent period (cSP) is a period of EMG suppression following an MEP elicited 

by spTMS during the voluntary contraction of a given muscle that lasts between 100–300 

ms (43). The early part of the cSP (up to the first 50 ms) is related to activation of spinal 

inhibitory interneurons by the fibers descending from M1 (44), whereas the later portion 

is due to the cortical inhibition originating from M1 (45). cSP duration is a reflection of 

GABAB- and GABAA-mediated motor-cortex inhibition (46). For example, several studies 

have found shortened cSP duration in the epileptic hemisphere in patients with focal motor 

epilepsy (47–49), which may indicate a disruption in cortical inhibitory mechanisms that 

results in epileptic EEG activity. Another study found bilaterally lengthened cSP, but 

less prominently in the epileptic hemisphere, in patients with focal epilepsy (50). The 

significance of such cSP increase is not certain, but it may reflect a compensatory increase in 

interictal cortical inhibition to prevent epileptic activity (43). Increased cSP duration has also 

been observed in patients with idiopathic generalized epilepsy (51,52).

The ipsilateral silent period (iSP), a variant of the cSP, is used to assess the functional 

integrity of the transcallosal projections between motor cortices in which spTMS to M1 

causes a transient suppression of voluntary tonic muscle activity in the ipsilateral hand 

muscles.

Strength of corticospinal projections are reflected by the shape and slope of an input/output 

(I/O) curve, also known as the recruitment curve, which is obtained by measuring MEP 

amplitudes elicited by single TMS pulses delivered over a wide range of intensities (53). 

The I/O curve for the intrinsic hand muscles has a sigmoid shape (54), in which the 

main outcome measures are the slope of the curve and the intensity at which it reaches a 

plateau. The slope of the I/O curve is steeper for intrinsic hand muscles that have a lower 

activation threshold (i.e., a lower rMT) and becomes less steep following administration 

of sodium- and calcium-channel blockers (e.g., lamotrigine) and GABAA receptor agonists 

(e.g., lorazepam) (54). The finding that lorazepam has no effect on rMT but modulates 

the I/O curve, particularly at highest intensities (54), indicates that the I/O curve provides 

complementary information relative to rMT about the motor-system activity, including the 

GABAergic circuitry (13).

b. Paired-pulse TMS

In paired-pulse TMS (ppTMS), a conditioning stimulus (CS) is followed by a test stimulus 

(TS) after an interstimulus interval (ISI). PpTMS is used to assess intracortical inhibitory 
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or facilitatory mechanisms, most commonly local to M1. In most ppTMS protocols (except 

LICI, described below), CS and TS intensities are set at sub-rMT and supra-rMT intensities, 

respectively. In short-interval intracortical inhibition (SICI) (ISI = 1–6 ms), CS subliminally 

influences intracortical neurons, which will not resume their full responsiveness until they 

have had time to recover. Thus, a TS preceded by a CS can only activate a subset of neurons 

in the target region resulting in lower MEP amplitudes than the ones elicited by the TS 

alone. While the stimulation sequence utilized in the short-interval intracortical facilitation 

(SICF) protocol is similar to that in SICI, the two protocols differ in that CS and TS 

intensities in SICF are supra-rMT and sub-rMT, respectively (55), or both stimuli are close 

to rMT intensity (56). The TS in SICF is thought to excite directly the initial axon segments 

of the excitatory interneurons that were depolarized by excitatory post-synaptic potentials 

elicited by the CS but did not fire an action potential (57,58). In intracortical facilitation 

(ICF) (ISI = 8–30 ms), CS engages facilitatory intracortical neurons that enhance the output 

of response to TS, resulting in greater MEP amplitudes compared to those elicited by the TS 

alone (59). In long-interval intracortical inhibition (LICI) (ISI = 50–200+ ms), both CS and 

TS are suprathreshold, resulting in inhibition of the TS MEP (60,61). Epidural recordings 

of the descending corticospinal volley have found LICI likely engages intracortical neurons 

that inhibit the I-waves produced by indirect activation of layer-V pyramidal tract neurons 

(62). Table 1 details the stimulation parameters of common ppTMS protocols and their 

likely mechanisms.

Short-interval inhibitory effects are mainly mediated by gamma-aminobutyric acid (GABA) 

activity, whereas long-interval facilitatory effects are mainly mediated by glutamatergic 

activity (63–66). Specifically, SICI reflects GABAA-mediated regional cortical inhibition, 

while ICF reflects glutamate [N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptor types]-mediated excitation, and LICI 

represents GABAB-mediated inhibition and (likely) an aggregate inhibitory tone mediated 

by the GABAA receptor system (46,67). SICI represents fast inhibitory postsynaptic 

potentials (IPSPs) in corticospinal neurons mediated by GABAA receptors, whereas LICI 

additionally represents slow IPSPs that are mediated, at least in part, by GABAB receptors. 

Applying ppTMS to M1 can be used to assess abnormal states of low or high cortical 

excitability by measuring the cortical E:I ratio, e.g., by measuring the SICI/ICF ratio 

(68,69), which provides an estimate of the relative strength of local intracortical inhibitory 

and excitatory activities (38,70), whereas ppTMS, when applied to two cortical regions, can 

assess inter-regional connectivity and conduction time (71,72).

c. Repetitive TMS

rTMS typically consists of several pulses at 1–20 Hz frequency over long periods of 

stimulation (up to 30 minutes), at times including stimulation-free intervals (13). rTMS 

is commonly used to modulate regional cortical activity in neuropsychiatric disorders and, 

particularly when applied as long trains over consecutive daily visits, can induce long-lasting 

plastic aftereffects (73,74) by influencing the brain networks associated with the targeted 

region (1). Typically, low-frequency (≤ 1 Hz) rTMS with at least 300–900 pulses can 

induce sustained inhibition of cortical excitability, whereas high-frequency (≥ 5Hz) or 

discontinuous rTMS can induce long-lasting facilitation of cortical excitability (41,75). The 
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inhibitory and facilitatory aftereffects of low-frequency and high-frequency rTMS resemble 

use-dependent, long-term depression (LTD) and long-term potentiation (LTP) of excitatory 

(glutamatergic) synaptic strength – however, these aftereffects are in part also mediated by 

GABAergic mechanisms (76–78).

A form of patterned rTMS known as theta-burst stimulation (TBS) consists of 50 Hz bursts 

of three TMS pulses repeated every 200 ms (i.e., at 5 Hz), for a total of 600 pulses, in one 

of two protocols: (1) a 2-s on, 8-s off intermittent TBS (iTBS) for 190 s that can increase 

MEP amplitude by ~35% for up to 60 min, or (2) a continuous TBS (cTBS) for 40 s that 

can reduce MEP amplitude by ~25% for up to 50 min (79). Facilitation and suppression 

of MEPs by iTBS and cTBS are considered indices of LTP- and LTD-like mechanisms of 

synaptic plasticity, respectively (77,80). The time necessary for post-TBS MEPs to return to 

pre-TBS baseline and the pattern of post-TBS aftereffects are considered neurophysiologic 

indices of the mechanisms of cortical plasticity (79,81,82), albeit with considerable inter- 

and intra-individual variability in responses (83–86). Physiologic and pharmacologic TBS 

studies in humans indicate the involvement of glutamatergic and GABAergic mediators 

consistent with LTP and LTD, respectively, and the pattern and time course of their 

aftereffects (77,78,87,88).

d. Paired Associative Stimulation (PAS)

PAS is an electrophysiological technique that involves repeated pairing of two stimuli, e.g., 

a peripheral electrical pulse delivered to a nerve of the hand, usually the median nerve 

(median-nerve stimulation; MNS), that activates the primary sensory cortex (S1) and a TMS 

pulse over the corresponding hand representation in the contralateral M1 (89). Through 

this S1-M1 coupling, PAS is able to modulate corticospinal excitability as indicated by 

the change in MEP amplitudes (89,90). PAS-induced modulation of MEPs reflects the 

propensity of the nervous system to adapt, i.e., plasticity. This plasticity is presumed to 

rely on the principles of Hebbian synaptic plasticity (91) such that the modulation of MEP 

amplitude depends on the interstimulus interval (ISI) between the sensory stimulus and the 

TMS pulse applied to M1. Specifically, based on a temporally asymmetric Hebbian rule 

(92), a shorter interval (ISI = 10 ms) produces a decrease in the MEP amplitude, whereas 

a longer interval (ISI = 25 ms) induces an increase in the MEP amplitude (89,90,92,93). 

These interventions have been termed PAS10 and PAS25, respectively (93). PAS aftereffects 

develop rapidly (within 30 min), are long-lasting (at least 60 min), reversible, and cortically 

generated (89,90,94). PAS25 aftereffects depend on NMDA glutamatergic receptors, and 

are thought to be mediated by an LTP-like mechanism (89,92). In a variant referred to as 

PASN20+2, stimulation consists of 225 pairs (rate, 0.25 Hz) of MNS followed at an interval 

equal to the individual N20 latency of the median nerve somatosensory-evoked cortical 

potential plus 2 ms by applying spTMS to the hand area of the contralateral M1 (90,95).

3. TMS biomarkers in neurodevelopmental disorders

a. Autism Spectrum Disorder (ASD)

ASD is a lifelong developmental syndrome that affects ~1 of 59 children (96) and 

is characterized by difficulties with interpersonal relationships and communication, 
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and presence of restrictive and repetitive behaviors, interests, or activities (97). There 

are currently no FDA-approved treatments for core ASD symptoms. Development of 

novel therapeutics will require reliable biomarkers and improved understanding of ASD 

pathophysiology (98).

Among many mechanistic ASD models are those reliant on imbalance of cortical 

excitation and inhibition (99–101). However, most spTMS and ppTMS measures of cortical 

excitability such as rMT, MEP amplitude, LICI, or ICF show no clear difference between 

patients with ASD and neurotypical (NT) individuals (81,102–104). In the 2013 study by 

Enticott and colleagues (103), SICI in cognitively normal patients with ASD was shortened 

compared to their NT counterparts, and the GABAAergic activity, as indexed by SICI, 

was associated with the extent of developmental delay in language acquisition in patients 

with ASD. This suggests that some of the heterogeneity in ASD symptomatology may 

be associated with interindividual variability of GABAAergic activity. Two other studies, 

however, found SICI in ASD patients to be normal as compared to NT controls (105,106).

Pedapati and colleagues (107) recently reported findings from the largest sample of ASD 

youth to undergo ppTMS to date (n=59), and found normal SICI and cSP in ASD youth 

compared to typically developing children. However, enhanced SICI (greater inhibition) 

and prolonged cSP were highly correlated with clinical history and standardized measures 

reflecting academic struggles in reading, spelling, and/or math. Moreover, across all ASD 

youth, ICF was inversely correlated with worse inattention, and lack of ICF was associated 

with inattention and executive dysfunction (107).

In contrast to spTMS and ppTMS measures, Oberman et al. (81) identified a reliable 

distinction between the ASD and NT groups using TBS. The investigators used cTBS and 

iTBS paradigms to evaluate LTD- and LTP-like plasticity, respectively, in 20 cognitively 

normal adults with ASD and found greater and longer-lasting modulation of M1 reactivity 

following both TBS paradigms compared to age-, gender-, and IQ-matched NT controls. 

These results were confirmed in a separate cohort of 15 adults with ASD (81) as well 

as in a follow-up study by Oberman and colleagues on 10 adults with ASD (108). The 

longer-lasting iTBS aftereffects in the ASD group are consistent with the hypothesis that 

a lack of inhibitory tone would lead to a greater propensity for LTP. Similarly, the longer-

lasting cTBS aftereffects among subjects with ASD are consistent with the Bienenstock, 

Cooper, and Munro (BCM) model (109) that predicts an already-potentiated synapse will 

have a lower threshold for LTD, and, thus, will exhibit a stronger LTD-like response than 

a depressed or neutral synapse (110). The greater potential for both LTP and LTD, coupled 

with the finding that measures of baseline cortical excitability such as rMT and baseline 

MEP amplitude were comparable between the ASD and NT groups (81), indicated an 

unstable state of synaptic plasticity in ASD, which results in exaggerated, hyperplastic, 

response to TBS. In a subsequent study of children and adolescents with ASD, Oberman and 

colleagues (111) found a positive relationship between age and the extent of cTBS-induced 

modulation, suggesting a maturational trajectory for LTD-like plasticity during childhood 

and adolescence in ASD.
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Recently, we extended those findings by comparing M1 cTBS aftereffects between 11 

children and adolescents with ASD and 18 of their age-, gender-, and IQ-matched controls 

(112). We found cTBS aftereffects differentiated between the ASD and control groups 

due to more-facilitatory cTBS aftereffects in the ASD group relative to the control group. 

Notably, the difference in cTBS responses between ASD and control groups remained after 

participants with ADHD were excluded from the ASD group. We also found an age-related 

increase in the maximum cTBS-induced suppression of MEPs in the ASD group only, 

suggesting a dysmaturity in the LTD-like plasticity in ASD youth (112).

Based on the involvement of GABAergic synaptic transmission in cTBS aftereffects 

(78,113), the more-facilitatory responses to cTBS in the ASD group than in the TD group 

lends further support to the notion of GABAergic dysfunction in ASD (114–116). Thus, 

quantification of M1 cTBS aftereffects may serve as a physiologic biomarker for children 

and adolescents with ASD, which can improve the classification of clinical endophenotype 

and understanding of ASD pathophysiology, and be used to assess target engagement and 

monitor response to experimental pharmacologic or neuromodulatory therapies for ASD 

(98,117).

However, the findings of hyper-plasticity on ASD are not consistent with the results of 

one study that compared PAS plasticity measures between ASD and control groups; Jung 

and colleagues (105) found that, unlike healthy controls, patients with ASD did not show 

the expected PAS25-induced facilitation of MEPs. The authors found similar results with 

PASN20+2 in a small subgroup of ASD patients. The results suggested reduced LTP-like 

plasticity and deficits in sensorimotor integration in ASD (105).

Notably, as the majority of the participants in the aforementioned studies (summarized in 

Table 2) are children or adolescents with ASD who are cognitively and linguistically normal, 

it remains unclear whether these results extend to adults or children with ASD who have 

cognitive or language deficits.

b. Fragile X Syndrome (FXS)

FXS is the most common cause of inherited intellectual disability (118), with a prevalence 

estimated at 1.4 and 0.9 per 10,000 males and females, respectively (119), and the most 

common genetic cause of autism, with 30% of children with FXS diagnosed with autism 

and 2–5% of autistic children having FXS (120). FXS is caused by the expansion of the 

trinucleotide sequence CGG located in the 5’ untranslated region (UTR) of the X-linked 

FMR1 gene that results in hypermethylation and consequent silencing of the FMR1 gene. 

The silencing of the FMR1 gene prevents the encoding of the fragile X mental retardation 

protein (FMRP) and forms the basis for the FXS phenotype (121). FMRP is an inhibitory 

regulator of translation of metabotropic glutamate receptor 5 (mGluR5), which is involved 

in formation of new synaptic connections, stabilizing LTD, and inducing LTP. Absence of 

FRMP results in excess mGluR5 activity and subsequent abnormalities in synaptic plasticity, 

as observed in animal FXS models (122,123).

rTMS protocols in subjects with FXS have also demonstrated evidence for abnormal neural 

plasticity. In a study by Oberman and colleagues (124), FXS patients showed a lack of 
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response to cTBS, an enhanced response to iTBS, and a complete blocking of iTBS 

response on the subsequent day, suggesting abnormalities in plasticity and metaplasticity. 

Metaplasticity refers to a change in the state of the synapse that alters its ability to make 

subsequent plastic changes, involves many of the same mechanisms as conventional LTP 

and LTD, and likely serves as a homeostatic function to maintain plasticity within a normal 

working range (124).

In a follow-up study, Oberman and colleagues (108) found that six adults with FXS showed 

abnormal TBS-induced plasticity and metaplasticity; the duration of the cTBS response in 

the FXS group in the first visit was significantly shorter than that in the control group, 

and they showed paradoxical facilitation of MEPs following cTBS in their second visit. 

The results from both ASD and FXS subjects provide evidence for aberrant TMS-induced 

plasticity and metaplasticity at the level of cortical circuits, which are consistent with the 

theories proposed to explain these processes at the synaptic level, e.g., the BCM model that 

predicts a lower-than-normal LTD threshold, and thus, a stronger LTD-like response than a 

depressed or neutral synapse (109).

c. Attention-Deficit Hyperactivity Disorder (ADHD)

ADHD is one of the most common neurodevelopmental disorders affecting 2–7.5% of 

school-aged children, with core symptoms of inattention, hyperactivity, and impulsivity 

(125). The pathophysiology of ADHD remains unclear, and there is currently no widely 

accepted biomarker or diagnostic test for ADHD. Thus, an ADHD diagnosis is typically 

based on parent- and teacher-reported behavioral rating scales combined with a physician’s 

clinical impression. An influential theory of ADHD pathophysiology posits that executive 

dysfunction in ADHD is due to deficient inhibitory control (126,127), the neural substrate 

of which involves basal ganglia-thalamocortical circuits (128). Impulse-control deficit and 

hyperactivity in ADHD have been associated with dysfunction of frontostriatal circuits 

including underactivity of ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, 

and anterior cingulate cortex. The negative association between inhibitory control and 

hyperactivity in ADHD is paralleled by abnormally reduced SICI (129), an inverse 

correlation between SICI and symptom severity in most patients with ADHD (127,130), 

and, interestingly, paradoxical facilitation following SICI in a few cases (127). SICI is 

normalized following administration of methylphenidate (131) indicating that SICI may 

function as an index of therapeutic response to methylphenidate, and, therefore, may play 

a role in dosing of stimulants, and future drug development for treatment of children with 

ADHD. Future studies on the effect of other stimulants on SICI are needed to investigate its 

utility for drug selection in patients with ADHD.

Prolonged latency and duration of the ipsilateral silent period (iSP) found in ADHD suggests 

deficient transcallosal-mediated inhibition in ADHD (132). Interestingly, the iSP duration 

is correlated with the degree of hyperactivity and restlessness in ADHD, and is also 

normalized with a single dose of methylphenidate. This indicates the prominent role of 

abnormal cortical excitability, rather than structural abnormalities of the corpus callosum, in 

the pathophysiology of ADHD. This view is supported by the finding that iSP duration in 

ADHD is inversely correlated with the magnitude of SICI (133,134). In contrast to children 
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with ADHD, the iSP in adults with ADHD is abnormally shortened but has a normal 

onset-latency (135). The difference in iSP between children and adults with ADHD could be 

due to developmental differences in inhibitory intracortical circuits (125).

The findings that SICI is correlated to hyperactivity severity in ADHD, and methylphenidate 

normalizes SICI while reducing hyperactivity, indicate that SICI could function as an index 

of therapeutic response to methylphenidate, and, therefore, guide drug selection, dosing of 

stimulants, and future drug development for treatment of children with ADHD.

Pedapati and colleagues (107) found ICF was significantly reduced in ASD children 

with ADHD comorbidity (ASD+) compared to ASD children without ADHD comorbidity 

(ASD–) and typically developing children. This reduction in ICF, together with the reported 

functional abnormalities in the temporal lobe and amygdala in ASD− and ASD+ youth 

(136), suggests that ICF may represent the combined effects of several aberrant cortical and 

subcortical circuits specifically relevant to the presence of ADHD symptoms in the ASD 

population (107).

d. Tourette Syndrome (TS)

Tourette syndrome (TS) is a chronic, childhood-onset neuropsychiatric disorder 

characterized by more than 1 year of motor and vocal tics. Tics are repetitive, stereotypical 

but nonrhythmic, involuntary, or compulsive movements that occur at irregular intervals, 

usually between purposeful movements. TS affects 1–3% of Western school-aged children, 

with the age of onset ranging from 2 to 21 years (137). Chronic tic disorders, characterized 

by either motor or vocal tics, but not both, occur in 5% of school-aged children 

(137). Common comorbidities include ADHD, obsessive-compulsive disorder (OCD), 

learning disabilities, conduct disorders, self-injury, and sleep disturbances (138,139). The 

pathophysiology of tics in TS likely involves dysfunctional integration of information with 

motor output from many sources via basal ganglia-thalamocortical circuits that results in 

incomplete suppression of unwanted behaviors (140).

Adults with TS have normal rMT and aMT (141,142) but, according to Orth et al. (143), 

recruit significantly fewer corticospinal neurons at higher stimulation intensities as indexed 

by shallower I/O curve slopes compared to healthy controls. This pattern of results suggest 

that while the most excitable connections (i.e., those recruited at rMT) are in a comparable 

state in TS patients and healthy controls (141–144), the difference between the most and 

the least excitable corticospinal neurons is greater in TS than in healthy controls (143). In a 

subsequent study by Heise et al. (144), no such difference in the I/O curve slopes was found, 

perhaps due to the less-severe symptoms of TS patients compared to the cohort studied by 

Orth et al. (143).

Several ppTMS studies have found abnormally reduced SICI at rest in TS patients (141–

144). While TS patients have normal thresholds for SICI (the stimulation intensity needed to 

produce SICI), their recruitment of inhibition at suprathreshold intensities is abnormally 

reduced (142,143). The reduced SICI in TS patients correlates with greater motor tic 

severity, especially in patients who are not under treatment with dopamine antagonists and 

those patients who have comorbid ADHD (145,146). Interestingly, the ability to normalize 
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SICI during movement preparation is associated with fewer tics and lower tic severity (144), 

suggesting that control over tic movements depends on the ability to reduce the excitability 

of motor neurons in line with increased intracortical inhibition (140).

One study (147) identified greater ICF in patients with TS and comorbid ADHD compared 

to healthy controls, individuals with TS alone, or individuals with TS and comorbid OCD. 

This result suggested that comorbid conditions like ADHD may also independently affect 

TMS measures of cortical excitability or inhibition. Other studies, however, did not find such 

a difference in ICF between TS and control groups (141,146,148), a discrepancy that may be 

due to the well-established interindividual variability in ICF (149).

cSP duration in TS patients has been found to be abnormally shortened (141,142) or normal 

when cSP measurements are corrected for differences in MEP amplitude between TS and 

control groups (143). These results indicate that the relationship between corticospinal 

excitability and the intracortical inhibitory mechanism reflected in the cSP, possibly via 

corticospinal motor-neuron recurrent collaterals (150), is comparable in TS patients and 

controls (140).

There is a reduction in MEP amplitude elicited by suprathreshold spTMS in individuals with 

TS during the period immediately preceding volitional movements compared to the expected 

increase in MEP amplitude in control subjects during the same timeframe (151,152). 

Ganos and colleagues found that voluntary tic suppression in adults with TS also reduced 

corticospinal excitability, as indexed by reduced MEP amplitude following spTMS and a 

shallower I/O curve, the extent of which was associated with the ability to control tics 

(153). These findings suggest that cortical excitability is reduced in the period immediately 

preceding volitional movement or that individuals with TS have impaired ability to modulate 

motor cortical excitability prior to tics. However, unlike adults with TS (141,142), rMT was 

found to be higher in adolescents and young adults compared to age-matched controls, with 

the differences being more pronounced in the younger age groups (154). MEP variability 

is also larger in TS patients, although the degree of variability decreases with age both in 

individuals with and without TS. Similar to results seen in adults with TS, adolescents 

(<18 years old) with TS also exhibited reduced motor excitability during the period 

immediately prior to volitional movements. rMT depends upon recruitment of corticospinal 

neurons that project to a target muscle, and increases in motor excitability and decreases 

in MEP variability result from consistent firing patterns of a given group of motor cortical 

neurons recruited during movement preparation. Therefore, this age-related difference in 

rMT and MEP variability may be related to a delay in the formation of cortical-cortical and 

corticospinal motor networks in TS that leads to a reduced number of neurons recruited by a 

TMS pulse or inconsistent firing of recruited motor cortical neurons (154).

Plasticity induced by TBS protocols has also been studied in TS patients, specifically to test 

whether abnormal thalamo-cortical motor inputs in TS influence M1 plasticity by eliciting 

aberrant activity in cortical layers responsible for the measured TBS aftereffects (155–157). 

Wu and Gilbert (156) found TS patients showed greater iTBS-induced facilitation of MEPs 

at 1 and 10 minutes post-iTBS than healthy controls. In contrast, Suppa and colleagues 

(157) found that TS patients, with and without psychiatric comorbidity, showed reduced 
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responses to both iTBS and cTBS compared to healthy controls. The authors suggested 

that the lack of correlations between tics and neurophysiological measures could be due to 

the involvement of nonprimary motor cortices, basal ganglia and cerebellum, in addition to 

M1 and brainstem, in the generation of tics (157). It has been suggested that alterations of 

synaptic plasticity in TS may arise from metaplasticity effects occurring as a consequence of 

tics (155,156).

TMS studies have also investigated LTP-like plasticity response induced by the PAS 

protocol in TS patients. Brand and colleagues (158) found that while most healthy controls 

showed the expected LTP-like response following PASN20+2, TS patients were more 

likely to show a paradoxical, LTD-like response, the extent of which was correlated with 

less-severe urges and fewer tics. Their results also suggested that aberrant PAS-induced 

facilitation of MEPs in TS could be related to reduced long-term consolidation of motor 

skills in a rotary pursuit task (158).

e. Developmental Stuttering (DS)

DS is a disruption in the normal speech rhythm characterized by repetitions, prolongations, 

and tense pauses manifesting speech blocks (159). Secondary, associated symptoms of DS 

include movements/spasms, most commonly in facial muscles (160,161). The prevalence of 

DS, with various degrees of severity, is ~5% in children and ~1% in adults (162).

In the first TMS study in DS, Sommer and colleagues (163) investigated the abnormalities in 

intracortical inhibition and facilitation of hand-muscle MEPs at 1–30 ms ISIs. The rMT and 

aMT were both abnormally high in DS patients, indicating lower corticospinal excitability in 

DS. Consistent with this finding, Busan and colleagues (164) found lower MEP recruitment 

in DS patients, especially in DS males, at higher intensities (e.g., 150% of rMT), indicating 

abnormally low cortical excitability in DS. Interestingly, cSP durations were negatively 

correlated with stuttering severity in males, perhaps due to a compensatory mechanism by 

intracortical circuits (164). Another piece of evidence for lower corticospinal excitability 

was obtained by Alm and colleagues (165) who found higher rMT in the left hemisphere 

of DS patients, both relative to their right hemisphere and to the left hemisphere of fluent 

speakers, indicating lower excitability of corticospinal pathways in DS originating from 

the left M1. The authors interpreted this finding as reflecting difficulty in the initiation of 

movement in DS patients (165).

rTMS studies have also revealed abnormalities in motor-control networks in DS. Neef and 

colleagues (166) used subthreshold 1Hz rTMS to investigate the roles of right and left 

premotor cortices on motor output in DS. They found performance in a timed motor task 

was more influenced by applying rTMS to the right premotor cortex in DS patients but to 

the left premotor cortex in fluent speakers. This result suggested a possible compensatory 

mechanism by motor circuits related to the control of timed movements in the right 

hemisphere of DS patients due to dysfunction of the corresponding circuits in the left 

hemisphere (166).

TMS has also been used to investigate the motor representation of speech muscles in DS. 

In the first TMS study of corticobulbar pathways in DS, Neef and colleagues (167) found 
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a steeper I/O curve as well as reduced SICI (at 2ms ISI) and ICF among DS patients. 

These results suggested alterations in intracortical networks in DS, possibly mediated 

by altered GABAergic activity. More recently, Neef and colleagues (168) examined the 

change in MEP amplitudes elicited by spTMS over M1 during transition between a fixed 

labiodental articulatory configuration and immediately following articulatory configurations 

in adults with DS and healthy controls. Interestingly, adults with DS exhibited a lack of 

left-hemisphere facilitation during the transition phase, the extent of which was negatively 

correlated with objective measurements of stuttering severity (168). These results suggested 

a deficit in controlling speech motor plans in DS, likely in the left M1. Consistent with 

these results, Busan and colleagues (169) found an abnormally prolonged cSP in the left 

M1 representation of tongue, as well as significantly higher aMT in the left hemisphere of 

DS patients relative to their right hemisphere, the extent of which correlated with stuttering 

severity (169). Abnormalities of TMS measures in DS, especially in the left hemisphere, 

including reduced corticospinal and corticobulbar excitability, as well as reduced ICF and 

prolonged cSP can indicate a decreased tonic excitation of afferent inputs to M1 (170), 

possibly as a result of the white-matter abnormalities reported in DS, involving the left 

superior longitudinal fasciculus and the white-matter fibers between the left frontal and 

premotor cortices (171,172). Table 2 details the common TMS-based biomarkers in the 

disorders included in this review.

4. Adoption of TMS-based biomarkers in the clinic

Several TMS devices have received FDA approval for treatment of medication-resistant 

major depressive disorder (173–179). Additional devices have also been FDA-approved 

for acute and prophylactic treatment of migraine headache (180), presurgical motor and 

language mapping (181,182), and adjunct treatment of obsessive compulsive disorder (183). 

While TMS-derived biomarkers can be generated with these devices in the clinical setting, 

there remain a few barriers to wide adoption of their clinical use. We briefly summarize 

these below.

a. Education

Compared to other clinical protocols, TMS is relatively new, and thus, does not receive 

adequate coverage in medical educational curricula (184–186). Notably, while “rigorous 

training” for all physicians administering TMS for clinical purposes is advised by consensus 

statements (187), licensing and training requirements for clinicians to use TMS are largely 

absent. Intensive educational courses have been developed that partially address the need for 

organized TMS training programs (186), but the more-common incomplete training in TMS 

techniques among neurologists and psychiatrists remains one of the greatest barriers to the 

widespread adoption of TMS in the clinic.

b. Safety concerns

When application guidelines (32,188) are followed, TMS has an excellent safety profile in 

adults (188–190) and in children and adolescents (8–11). Still, concerns about an extremely 

rare, but potentially serious, side effect of rTMS, i.e., seizures, might dampen the motivation 

of physicians to use TMS in the clinic. However, while rare instances of rTMS-induced 
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seizure have been reported in adults (188), there has been no reported case of seizure 

induced by spTMS and ppTMS, among patients without epilepsy, which form the basis 

of the majority of TMS-based biomarkers. A measure of TMS safety in the pediatric 

population is provided in a recent study, in which no seizures or any other serious adverse 

events were reported after near 3 million rTMS stimulations in 119 children and adolescents, 

of whom 59 participants had perinatal stroke or mild traumatic brain injury and another 43 

participants had major depression or Tourette’s syndrome (10). These results underscore that 

TMS protocols, including rTMS, are safe and well-tolerated in children and adolescents, and 

can be considered minimal risk (8,10). Improving knowledge about the TMS safety profile 

among physicians can ease their potential safety concerns and set the stage for the more 

widespread use of TMS techniques in the clinic.

c. Proof-of-principle and confirmatory evidence

A fundamental obstacle to the more-common use of TMS-based biomarkers in the clinic is 

lack of adequate proof-of-principle studies that establish feasibility and provide preliminary 

evidence for TMS-derived biomarker utility in clinical pediatric populations. A lack of 

large confirmatory studies that can accommodate the variability of TMS responses observed 

in adult participants (83–86,191,192) similarly raises questions of feasibility and TMS-

derived biomarker utility. Such studies, ideally followed by FDA approval of the relevant 

applications, are needed before widespread and evidence-based use of TMS biomarkers for 

pediatric populations can take place in the clinic.

d. Individualized TMS measures

The vast majority of the TMS measures discussed in the present review represent differences 

at the group level. At the individual level, responses to TMS protocols show large inter- and 

intra-individual variability, even in healthy populations (83–86,191,192). Such variability 

indicates the need for multivariate modeling of TMS measures that yields optimally 

adjusted TMS “scores” that incorporate relevant demographic, genetic, neurophysiological, 

neuroimaging, and state-dependent factors. These composite scores can assist clinical 

decision-making by placing more precisely an individual patient’s baseline and post-

intervention neurophysiological responses within his/her clinical cohort. Depending on the 

TMS protocol, obtaining a reliable TMS measure for optimal clinical use may involve 

considering age (36,193,194), gender (195–197), genetic polymorphisms (198–202), the 

TMS device, pulse waveform, and induced current direction (33,34,194), stimulation 

intensity and baseline neurophysiological measures, e.g., rMT, aMT, and baseline MEP 

amplitude (83,85,194,203), the target muscle (194,204), the time of day (84,194,205), use of 

neuronavigation (206) and robotic arms (207), amount and quality of sleep the night before 

the TMS visit (208,209), blood glucose level and caffeine intake before and during the 

TMS visit (210–212), intensity and duration of physical activity before each visit (213,214), 

phase of the menstrual cycle (215,216), and the use of closed-loop systems that deliver TMS 

pulses timed to real-time, EEG indices of brain states (217,218).

The current state-of-the-art individualized methods for TMS target localization or prediction 

of response to rTMS treatment rely on measuring the baseline or induced changes in 

resting-state functional connectivity between relevant brain regions at the level of the Human 
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Connectome (219–221) or the individual patient (220,222–225), or the local/distributed 

changes in cortical excitability as measured by TMS-evoked EEG potentials (TEPs) (224). 

It is thus likely that the next generation of individualized TMS biomarkers for “precision 

medicine” will also need to leverage individual patient data obtained from neuroimaging 

modalities, whether structural (to determine cortical thickness, scalp-to-cortex distance, 

sulcal/gyral geometry, or diffusion weighted imaging), functional (task- or resting-state 

fMRI to identify target regions or networks, or to determine functional connectivity between 

relevant regions), or neurophysiological (e.g., TEPs).

5. Conclusion

Neurophysiological measures obtained with noninvasive stimulation of the motor cortex 

can provide practical and feasible biomarkers for neurodevelopmental disorders. Such TMS-

derived metrics of cortical excitability, E:I imbalance, and plasticity in the motor cortex can 

help elucidate the underlying pathophysiology of a range of neurodevelopmental disorders.

Several established single-pulse, paired-pulse, and repetitive TMS protocols are available 

that can be utilized to assess disease severity, measure and predict therapeutic response to 

existing therapeutic approaches in neurodevelopmental disorders, and enable novel measures 

of target engagement in the treatment of those disorders. Due to the substantial overlap 

in clinical presentations of disorders such as ASD, ADHD, and Tourette’s syndrome, it 

is important to consider the commonalities in TMS measures across such disorders in 

order to avoid potential confounding due to comorbidities. As more-comprehensive TMS 

evidence from larger populations of patients with such disorders becomes available, it 

becomes important to leverage the contrasting TMS findings in subgroups of these disorders, 

e.g., ASD with ADHD and ASD without ADHD, to enable more-refined classification 

and monitoring of patients in such subgroups based on the most-relevant TMS measure 

or combination of different TMS measures. Considering demographic, neurophysiological, 

genetic, and neuroimaging data may enable more-granular TMS biomarkers, approaching 

individualized measures.
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