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Although non-coding RNAs have long been considered as non-functional “junk” RNAs, accumulating evidence in the past decade
indicates that they play a critical role in pathogenesis of various cancers. In addition to their biological significance, the recognition
that their expression levels are frequently dysregulated in multiple cancers have fueled the interest for exploiting their clinical
potential as cancer biomarkers. In particular, microRNAs (miRNAs), a subclass of small non-coding RNAs that epigenetically
modulate gene-transcription, have become one of the most well-studied substrates for the development of liquid biopsy
biomarkers for cancer patients. The emergence of high-throughput sequencing technologies has enabled comprehensive
molecular characterisation of various non-coding RNA expression profiles in multiple cancers. Furthermore, technological advances
for quantifying lowly expressed RNAs in the circulation have facilitated robust identification of previously unrecognised and
undetectable biomarkers in cancer patients. Here we summarise the latest progress on the utilisation of non-coding RNAs as non-
invasive cancer biomarkers. We evaluated the suitability of multiple non-coding RNA types as blood-based cancer biomarkers and
examined the impact of recent technological breakthroughs on the development of non-invasive molecular biomarkers in cancer.
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INTRODUCTION
The term ‘liquid biopsy’ refers to sampling and analysis of non-
solid biological tissues such as blood, saliva, urine and other
bodily fluids for a multitude of clinical applications, including
disease diagnostics and post-treatment surveillance and monitor-
ing [1]. Unlike the conventional tissue biopsy (tissue), a liquid
biopsy is generally non-invasive (e.g. saliva, urine, stool) or
minimally invasive (e.g. blood), and can be used to assess disease
and/or health status of organs that are otherwise difficult to
access. Over the last two decades, circulating nucleic acids, cell-
free DNA (cfDNA) in particular, have been utilised clinically as a
liquid biopsy source in multiple diseases including cancers [2–6].
Although identification of genetic alterations residing within the
circulating tumour-derived DNA (ctDNA) shed by cancer cells can
be detected in circulation, the challenges lie in the scarcity of
well-established and recognisable mutations, as well as dearth of
mutational burden in early vs. later stages of cancer, that can be
easily identified in cfDNA [7]—thus, highlighting one of the
limitations for the use of ctDNA as a biomarker source for non-
invasive, and early detection of cancers. In contrast to analysis of
the mutational burden in ctDNA, other molecular alterations
including transcriptional profiles in cell-free RNA (cfRNA), as well
epigenetic changes such as DNA methylation, are dynamic events
that are known to occur at early stages in carcinogenesis.
In particular, non-coding RNAs (ncRNAs) such as microRNAs
(miRNAs) have been extensively investigated as a potential
source for the development of non-invasive cancer biomarkers.

Here we have summarised the latest progress on the major types
of ncRNAs as substrates for the development of non-invasive
cancer biomarker. Furthermore, we evaluated the suitability of
ncRNAs as a liquid biopsy platform vis-à-vis other conventional
approaches such as cfDNA. In addition, we summarised the
recent technological advances for the quantification of ncRNAs
and how these technological refinements will impact the
development of non-invasive non-coding RNA-based cancer
biomarkers in the near future.

POTENTIAL CLINICAL APPLICATIONS OF NON-CODING RNA-
BASED LIQUID BIOPSY BIOMARKERS IN CANCER
Currently, majority of ncRNA-based liquid biopsy biomarker
candidates are investigated for diagnostic and screening purposes
[4, 8]. Since many of ncRNAs are frequently overexpressed in
cancers, they are plausibly suitable for monitoring of cancer
progression and recurrence as well. Accordingly, several studies
have demonstrated the utility of circulating ncRNAs, including
miRNAs and lncRNAs, for cancer monitoring [9, 10]. Furthermore,
considering that tissue-based profiling of various ncRNA types in
multiple cancers have clarified the functional roles of these novel
ncRNAs in cancers [11–13], there is an increasing research interest
to understand the molecular profiles of these novel ncRNAs in
the circulation for potential blood-based cancer biomarker
discovery. In addition, there are multiple ncRNA-based therapeu-
tics, primarily those targeting miRNAs, which are currently being
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tested in preclinical and early-stage clinical trials [14]. Therefore, it
is possible that circulating ncRNAs could be used as companion
diagnostic biomarkers for upcoming ncRNA-based therapeutic
trials. Although further studies are necessary to evaluate the
suitability of ncRNAs in these clinical applications, there is an
increasing optimism for the utilisation of ncRNAs in the
development of cancer biomarkers.

NON-CODING RNA BIOMARKER TYPES
To date, the majority of non-coding RNA (ncRNA) types have
been identified in the cell-free component of the blood and many
of these RNA types have already been assessed as potential
biomarker species in multiple cancers. In general, ncRNAs are
divided into two major categories based on their size: small
ncRNAs (<200 nucleotides) and long ncRNAs (lncRNA) (>200
nucleotides). In particular, small ncRNAs can be further divided
into multiple sub-categories including: microRNAs (miRNAs),
transfer RNAs (tRNAs), piwi-interacting RNAs (piRNAs), transcrip-
tion initiating RNAs (tiRNAs), and enodogenous small interfering
RNAs (endo-siRNAs) [15, 16]. In contrast, despite the recognition
of pivotal functional role of lncRNAs, these typically fall under a
single category, and have not been optimal biomarker substrates
due to their stability and degradation concerns. Although many
groups have tried to subcategorise lncRNAs based on their
genomic location (intergenic, intragenic, bidirectional and
enhancers) and the sense in which they are expressed (sense
and antisense), these subcategories remain ambiguous and
require further evaluations. Although ncRNAs were initially
considered as “junk”, accumulating evidence over the past two
decades have highlighted their functional importance in various
diseases, including cancer. As we improve our understanding for
the functional significance of ncRNAs in various biological
processes, there is an increasing desire to simultaneously exploit
their potential clinical utility for the development of the next-
generation of non-invasive cancer biomarkers. Although mole-
cular functionality of different types of ncRNAs may differ
significantly, the process by which these biomarkers can be used
in the clinic will be quite uniform (Fig. 1). In this section, we will
review the potential of various types of ncRNAs as sources for the
development of liquid biopsy-based cancer biomarker.

MicroRNAs
microRNAs (miRNAs) are endogenous single-stranded nucleotides,
18–25 in length, that bind to 3′-untranslated regions of a target
gene(s), which in turn might regulate multiple cellular processes
through modulation of RNA translation. To date, miRNAs are by far
the most studied ncRNAs in cancer and are certainly the most
well-studied RNA source as liquid biopsies. Due to their high
abundance and inherent stability in a variety of bodily fluids (e.g.
blood, urine, stool and saliva), miRNAs have been regarded as one
of the most promising non-invasive biomarker sources [8, 17, 18].
In view of the fact that the biomarker suitability of miRNAs as non-
invasive cancer biomarkers and specific circulating cancer-
associated miRNA candidates have been extensively covered
previously [4, 8, 14, 19, 20], in this article, we will focus primarily on
the overall feasibility of miRNAs as a potential liquid biopsy cancer
biomarkers. To date, the most well-recognised cancer-associated
circulating miRNAs have been miR-21 and miR-155. Both miRNAs
have been shown to act as oncogenes or “onco-miRs” in multiple
cancers and are frequently overexpressed in a multitude of
cancers [21, 22]. Therefore, not surprisingly, miR-21 and miR-155
are reported to be consistently upregulated in the circulation of
cancer patients in multiple cancers types [23–27]. However, the
disease specificity of these oncogenic miRNAs remain question-
able as both miR-21 and miR-155 have been linked to inflamma-
tion and have also been shown to be elevated in a variety of
inflammatory diseases [28]. Therefore, one of the key questions for

miRNAs as a potential non-invasive biomarker source is whether
they possess sufficient disease and tissue-specificity. In addition,
with the majority of miRNAs being expressed in most tissues,
those that are transcriptionally suppressed in cancer tissues are
generally not suitable as blood-based cancer diagnostic biomar-
kers. While there are several key challenges for miRNAs as a liquid
biopsy source, their abundance and tissue stability remain
attractive characteristics as a potential resource for the develop-
ment of non-invasive biomarkers for cancer patients.

Long non-coding RNAs
Long non-coding RNAs (lncRNAs) belong to the groups of ncRNAs
that are longer than 200 nucleotides and are recognised to play
major roles in multiple biological processes [29]. Furthermore,
several lncRNAs appear to have functional roles in the pathogen-
esis of various cancers, primarily through their ability to regulate
key cancer-associated transcriptional activators [30]. In particular,
lncRNAs such as HOTAIR, MALAT1 and PVT1 have been shown to
be consistently dysregulated in multiple cancers and their
oncogenic properties have been validated in subsequent studies
[31–33]. While there are more than 60,000 lncRNAs identified from
human tumours and cancer cell lines, a large majority of them
have yet to be annotated and their functional roles remain unclear
[34]. Nevertheless, emerging evidence indicates that lncRNAs are
detectable in circulation as cell-free RNAs and appear to be a
promising source for non-invasive cancer biomarkers [35]. More-
over, several well-established cancer-associated lncRNAs such as
UCA1, MALAT1 and H19 have been shown to be overexpressed in
serum and plasma of cancer patients [36–39]. Although further
studies are required to determine whether these lncRNAs are truly
derived from cancers and can be used as robust cancer
biomarkers, identification of key oncogenic circulating RNAs in
cancer patients is encouraging. Interestingly, multiple studies have
identified the presence of lncRNAs in extracellular vesicles (EVs) in
human serum/plasma samples [40–42], suggesting that it is
possible for a subset of lncRNAs to be secreted into the circulation
inside tumour derived EVs. Collectively, lncRNAs appear to be a
promising cancer liquid biopsy source and we need to pay close
attention to upcoming studies to fully evaluate their potential.

Circular RNAs
Circular RNAs (circRNA) are a novel class of endogenous ncRNAs
that were discovered in RNA viruses in the 1970s, but have
recently gained recognition as another class of ncRNAs that are
functionally involved in oncogenesis. CircRNAs are RNAs with a
loop like structure and possess covalently closed loops with
neither 5′ or 3′ polarities nor polyadenylated tails [43, 44]. The
unique structure and properties of circRNAs prevent exonuclease
digestion and increase their stability in the circulation. Despite
that, at present time, not all the biological functions of circRNAs
have been elucidated and they are primarily known to act as
miRNA sponges in mediating their gene regulatory potential
[45, 46]. CircRNAs can be generated from both protein-coding
and non-coding genes and some of these can also be derived
from putative oncogenes that are typically overexpressed in
cancers [47, 48]. To date, several circRNAs have been identified as
potential non-invasive cancer biomarker candidates in multiple
cancer types [49–52]. In addition, circRNAs have been identified
in EVs, such as exosomes [53]. Interestingly, RNA sequencing
of exosomal circRNAs revealed that the majority of the
ones contained within the exosomes appear to be derived from
protein-coding exons [53].
One of the major challenges of adopting circRNAs as a source

for liquid biopsy in cancer patients is the difficulty associated with
profiling circRNAs using conventional RNA-sequencing technolo-
gies. While the classic short-read paired-end RNA sequencing can
identify back-spliced junctions of circRNAs, it requires an effective
methodology that can profile non-polyadenylated (non-polyA)
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transcripts [46, 54]. Nevertheless, several groups have optimised
sequencing library steps to further improve the quantification of
circRNAs; such approaches include utilisation of RNase to digest
linear mRNAs [54], use of Ribo-Zero to enrich for circRNAs while
depleting rRNAs [55], and utilisation of exome capture probes [56].
These RNA-sequencing modifications have significantly improved
the quantification of circRNAs in cancers. Considering that
circulating circRNAs have the properties that are highly suitable
for liquid biopsy research, there is a great degree of enthusiasm

for exploring their potential as non-invasive cancer biomarker
candidates.

Piwi-interacting RNAs
Piwi-interacting RNAs (piRNAs) are another class of small ncRNAs
that are 26–31 nucleotides in length, and quite comparable in size
to miRNAs. However, piRNAs are distinctly different from miRNA
counterparts because they lack the sequence conservation
present in miRNAs. Furthermore, unlike miRNAs and siRNAs,
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Fig. 1 An overview of blood-based noncoding RNA cancer biomarker development. (Top) Biospecimen collection and serum/plasma
processing. Various types of noncoding RNAs can be found in cell free component of peripheral blood. (Middle) Sample processing and data
analysis. cDNA and sequencing libraries are prepared from serum/plasma samples. Targets can be quantified by qPCR or next generation
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including: Cancer screening and identifying patients that are most likely to respond to a therapeutic agent.

S. Toden and A. Goel

353

British Journal of Cancer (2022) 126:351 – 360



which are converted from double-stranded RNA precursors into
small RNAs by RNase enzymes, piRNAs are derived from an
alternative biosynthesis process [57]. Functionally, piRNAs interact
with piwi proteins to form RNA-protein complexes that induce
epigenetic transcriptional and post-transcriptional gene silencing.
In multiple cancers, a large number of dysregulated piRNAs in
cancer tissues have already been reported [58, 59]. Accordingly,
previous studies have shown that there is a subset of piRNAs
which act as either tumour suppressors or oncogenes [60–62]. As a
source for cancer liquid biopsy, piRNAs are highly regarded
considering that they have similar properties to miRNAs. piRNAs
are highly stabile in the circulation and resistant to ribonuclease-
mediated degradation. Already several studies have shown that
dysregulation of piRNAs in the circulation correlates with cancer
diagnosis [63–65]. Overall, piRNAs are a fascinating resource for
development as liquid biomarkers in cancer and other diseases,
and it will be important to understand how these ncRNAs are
released into the circulation by cancers and how this process
differs from that for miRNAs.

Transfer RNAs
Transfer RNAs (tRNA) are RNA-derived adaptive molecules that act
as a physical link between RNA and the amino acid sequence of
proteins. Functionally, tRNAs are known to transport amino acids
to ribosomes, a protein synthetic machinery during protein
translation. In the circulation tRNAs are typically found as small
fragmented forms called “transfer RNA-derived small RNAs
(tsRNAs)”, which are further divided into two categories: tRNA
fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs).
While tRFs are derived from mature or primary tRNAs that are
typically 14–30 nt in length, tiRNAs are generated by specific
cleavage at the mature tRNA anticodon loop of over 31 nt in
length following stress or starvation [66]. tRFs are present in most
organisms and are one of the most abundant family of short
ncRNAs. tRNAs have been speculated to have higher turnover
rates in cancers than normal tissues and their expression levels
have been shown to be elevated in cancers under stress [67, 68].
Accordingly, several studies have identified elevation of several
tRNAs in serum and plasma as well as urine of cancer patients
[69, 70]. Moreover, a study that examined the serum RNA-
sequencing profiles of small RNAs showed that the expression of
serum tRFs intimately associated with clinicopathologic character-
istics in patients with breast cancer [71]. In addition, a recent study
identified several exosomal tRFs that are highly enriched in the
circulation of liver cancer patients compared to that of healthy
controls [72]. Despite the role of tRNAs in cancer needs further
clarification, these accumulating evidences suggest that tRNAs
could potentially serve as novel cancer diagnostic biomarkers.

OTHER TYPES OF NON-CODING RNAS-BASED LIQUID BIOPSIES
A liquid biopsy is defined as a simple and non-invasive alternative
to classical surgical (tissue) biopsies. Considering that blood is the
most frequently studied liquid biopsy type, we have focused
primarily on blood-based cancer biomarkers in this review.
However, the potential of cell-free ncRNAs have been examined
in other liquid biopsy substrates including saliva, urine and stool;
and these alternative liquid biopsy types may have substantial
advantages over blood-based biomarkers depending on the
cancer types. As expected, the expression levels of various
miRNAs have been extensively evaluated in saliva, urine and
stool in multiple cancers [73–75]. While disease specificity of
oncogenic miRNAs remains a major hurdle for establishing
clinically relevant miRNA-based cancer biomarkers in these liquid
biopsy types, the stability and abundance of miRNAs in these
sources make them highly attractive cancer biomarker candidates.
Currently, the second most evaluated ncRNA source for cancer
liquid biopsies are lncRNAs, with several oncogenic lncRNAs

that have been detected in saliva [76], urine [77] and stool [78] of
cancer patients. Moreover, molecular profiling of piRNAs and
circRNAs have been conducted in human saliva [79], demonstrat-
ing the feasibility of quantifying these ncRNA types in saliva.
Although, the evaluation of ncRNA types as potential non-invasive
cancer biomarkers in these liquid biopsy types, excluding miRNA
and lncRNA, remain limited, there is an anticipation of increasing
utilisation of these novel ncRNAs in multiple liquid biopsy types in
the near future.

COMPARISON OF NON-CODING RNAS TO OTHER NON-
INVASIVE BIOMARKER SOURCES
While there are various types of molecular liquid biopsy sources,
their suitability as cancer biomarkers is highly dependent on the
specific biomarker types. Based on the current knowledge, we have
summarised various molecular sources for liquid biopsy in cancer
patients and have highlighted their advantages and disadvantages
compared to other types of ncRNAs. The most relevant molecular
biomarkers are shown in Fig. 2 and key characteristics of each
biomarker sources are also summarised in Table 1.

Circulating tumour DNA
Circulating tumour DNA (CtDNA) is a tumour-derived fragment of
DNA that can be found in the circulation. In most cases, the main
analyte of ctDNA is gene mutations that are associated with
cancers. ctDNA is highly specific to tumours and studies have
shown that it is highly suitable for monitoring of cancer
recurrence once the specific mutations have been identified from
the tumours [80, 81]. Furthermore, several studies have demon-
strated the robustness of ctDNA for identifying late stage cancers
[7]. However, the overall clinical application for the use of ctDNA
as an early cancer diagnostic biomarker has been limited, primarily
because of the fact that the burden of sporadic mutations is
invariably quite low in pre-cancerous lesions and even early stage
cancers—rendering the sensitivity of any ctDNA based assay a
suspect [82]. Therefore, even if the diagnostic resolution of ctDNA
quantification improves in the future, this fundamental biological
issue will likely be a limiting factor for ctDNA as a cancer
diagnostic biomarker source. In comparison, RNA-based liquid
biopsy sources are highly dynamic and known to be dysregulated
in early stage cancers; hence, implicating their better suitability as
early diagnostic cancer biomarkers. Collectively, it is important to
understand the molecular characteristics of each biomarker source
and evaluate their suitability when developing any specific type of
clinical biomarker.

Circulating RNAs
Among RNA-based liquid biopsy sources, both ncRNAs and
messenger RNAs (mRNAs) have been investigated extensively in
the past. However, even though gene-expression profiling is
highly popular in cancer tissue samples, circulating miRNAs are by
far the most well-studied liquid biopsy sources in non-invasive
cancer biomarkers [4]. This is primarily due to the higher
abundance of miRNAs in the circulation compared to mRNAs. In
blood, RNase and RNA degrading enzymes are highly abundant,
which led to the initial misconception that perhaps cell free RNAs
(cfRNAs) are not present in serum and plasma. One of the key
mechanisms by which cfRNAs evaded RNase digestion was
discovered in 1970s, where a proportion of circulating cfRNAs
were shown to be protected from RNase-mediated degradation
via their encapsulation within EVs [83]. Subsequent studies have
shown that EVs are highly stable from freeze-thaw process and
moderate temperature heating [84, 85], thus providing highly
protective environment for RNAs inside these tumour-derived
vesicles. While EVs are one of the main sources of cfRNAs, certain
types of RNAs can be found outside of EVs. miRNAs have been
shown to form a stable complex with argonaute (Ago) protein and
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Fig. 2 Molecular biomarker types in cancer. A list of molecular biomarker types. (Right) Circulating DNA: DNA biomarkers can range from
mutation, amplification, deletion and DNA methylation. (Centre-bottom) Circulating RNA: Circulating RNA is primarily divided into coding RNA
(messenger RNA) and non-coding RNA (such as miRNAs and lncRNAs). RNAs can also exist as circular RNAs (both variants of coding and non-
coding RNAs exist). In addition, RNAs are present in extracellular vesicles such as exosomes. (Centre-left) Circulating tumour cells: Circulating
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high-through put protein profiling may rejuvenate blood-based cancer protein biomarkers.

Table 1. Suitability of various molecular sources for developing liquid biopsy biomarkers in cancer.

Type Abundance Stability Tissue
specificity

Functional
info
availability

Comprehensive
profiling
feasibility

Present in EV Published studies*

RNA

Non-coding RNA

miRNA High High Intermediate intermediate High High High (1420)

lncRNA Low Low Unclear Low Low Intermediate Low (135)

Circular RNA Low High Unclear Low Low Low Low (29)

piRNA High High Unclear Low High High Low (8)

tRNA High High Unclear Low High High Low (3)

Messenger RNA Low Low High High Intermediate Intermediate Low (113)

DNA

Mutation Low Intermediate Low intermediate Intermediate Low High (979)

Methylation Intermediate Intermediate Intermediate intermediate Intermediate Low Intermediate (387)

Circulating
tumour cell

Very low High High Intermediate Intermediate No High (1582)

Protein High High High High Low High High (15,020)

*Note: Total number of cancer biomarker articles that are published in Pubmed as of 9/13/2021. Pubmed Search Strategy: (serum[ti] OR plasma[ti] OR “non-
invasive”[ti] OR “noninvasive”[ti] OR “circulating”[ti] OR “cell free”[ti] OR “liquid biops*“[ti]) AND “Neoplasms”[Mesh] AND “Biomarkers”[Mesh] AND
“MicroRNAs”[Mesh]. For other ncRNAs, “MicroRNAs”[Mesh] was replaced by “RNA, Long Noncoding”[Mesh], “RNA, Circular”[Mesh], “RNA, Transfer”[Mesh], “RNA,
Messenger”[Mesh], “Mutation”[Mesh], “DNA Methylation”[Mesh], “Neoplastic Cells, Circulating”[Mesh], “Proteins”[Mesh] and (piRNA OR piwi interacting RNA).
Reviews, meta-analysis and unrelated publications were excluded from the final count.
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exist outside of EVs [86, 87]. This was confirmed in a recent study
that a high level of miRNAs can be detected outside of EVs, but
very few mRNAs were expressed outside of the EVs [88].
Collectively, to date the abundance of miRNAs in the circulation
have made them the most well-characterised cfRNA source and
subsequently availability for plethora of preexisting datasets are
helpful for various stages of cancer biomarker development from
target discovery to biomarker validation [89].

Proteins
Circulating protein-based biomarkers are perhaps the most well
investigated non-invasive cancer biomarker source and several
protein markers are already being utilised clinically as indirect
indicators of cancer diagnosis [90]. Since proteins are translated
from mRNAs, they are generally regarded to have a similar
expression profile to that of the counterpart mRNAs. With recent
advances in DNA and RNA sequencing technology platforms, the
feasibility of evaluating whole genome and whole transcriptome
have improved dramatically. However, one of the major chal-
lenges for quantifying proteins in the circulation is the difficulty
associated with accurate quantification of the whole proteome.
Considering that unbiased transcriptomic and genomic profiling
approaches for identifying biomarker candidates have become
more pedestrian, it is important to develop approaches that could
provide an equivalent quantification platform for a comprehen-
sive proteome profiling. While there are new technologies that
allow multiplexing of up to 5000 proteins simultaneously, protein
profiling remains limited relative to genomic and transcriptomic
approaches.

DNA methylation
DNA methylation is a biological process by which methyl groups are
added to the DNA residues. It is one of the most common and well-
characterised epigenetic processes where gene-expression is
regulated without a permanent alteration in the DNA sequence
itself [16, 91, 92]. Circulating methylated DNA has been evaluated as
a potential cancer biomarker source for close to two decades and
have been recognised as a promising cancer biomarker source
[92, 93]. In this regard, a plethora of data exist for specific DNA
methylation sites that are associated with cancers. In particular,
SEPT9 is a gene that is frequently methylated in colorectal cancer
and circulating methylated SEPT9 has been identified as a potential
diagnostic biomarker candidate in multiple cancers [94–96].
Furthermore, recently differentially methylated genes from color-
ectal cancer tissue samples were quantified in systemic circulation
using targeted bisulfite sequencing [97]. This study utilised a large
set of circulating methylated genes derived from bisulfite sequen-
cing to develop methylated-gene diagnostic classifiers using
machine learning approaches for colorectal cancer.
Intriguingly, emerging evidence indicate that the origin for

cfDNA and cfRNA are distinctively different. A recent study
showed that only a small fraction of exosomes contain genomic
DNA [98]. Considering that the most circulating RNAs exist
predominantly within EVs [88], the differences in the origin of
circulating DNA and RNA should contribute to the abundance of
cancer derived nucleic acids in the circulation. Several studies
have postulated that the primary source of cfDNA to be apoptotic
cells and bodies [99, 100]. Therefore, understanding the under-
lying mechanisms by which cancer cells release DNAs and RNAs
into circulation will be crucial for the development of non-invasive
cancer biomarkers in the future.

RECENT ADVANCES IN CIRCULATING NCRNA QUANTIFICATION
TECHNIQUES
Molecular profiling approaches
One of the most significant recent advancements within the
field of diagnostic cancer biomarkers is the emergence of high-

throughput technological platforms such as next-generation
sequencing (NGS) which allows comprehensive quantification of
whole genome or transcriptome. There are two key factors that
contributed to a large number of groups adapting this techno-
logical platform for non-invasive cancer biomarker development.
First, wide availability of tissue-based sequencing databases has
provided researchers insights into the molecular characteristics of
each type of cancer. For most cancer types, there are multiple
publicly available large-scale datasets such as TCGA [101–104] and
these datasets permit an accurate assessment for the identifica-
tion of genes that are consistently dysregulated in a specific
cancer. Furthermore, based on the cancer tissue expression levels,
it is possible to estimate whether the targeted genes can be
detected in the circulation. Second, the application of NGS
technology for liquid biopsy biomarker development has evolved
significantly in the recent years. Over the past decade, the cost of
NGS has reduced significantly, allowing sequencing of a larger
number of clinical biospecimens, as well as the ability to generate
datasets with higher depth of coverage. The latter is particularly
important for the development of molecular non-invasive cancer
biomarkers, as most of the molecular signals from cancers are
typically low in the systemic circulation. Therefore, the opportunity
to generate higher resolution data for low expressing transcripts
improves the ability to detect rare cancer-derived transcripts in
circulation. Furthermore, the emergence of single-cell sequencing
technologies has markedly improved the resolution of low-input
sequencing. The improvements in low-input sequencing allows
accurate quantification of transcriptome for the samples with
limited starting nucleic acid template, such as plasma and serum.
Collectively, these technological advancements will allow more
researchers to conduct comprehensive assessment of molecular
profiles in the circulation.
Systematic studies which have utilised molecular profiling of

ncRNAs for cancer biomarker development remain limited. There
are several publications that have utilised tissue profiling data to
identify potential ncRNA biomarker targets and subsequently
validated these cancer-associated ncRNA signatures in blood (e.g.
plasma and serum) cohorts. A recent study utilised multiple tissue
sequencing datasets to identify highly overexpressed miRNAs in
gastric cancer tissues and evaluated the robustness of a gastric
cancer associated miRNA signature in multiple cohorts [105]. A
similar approach was utilised in ovarian cancer, where multiple
ovarian cancer tissue and serum datasets were used to establish a
miRNA-based diagnostic signature for ovarian cancer and subse-
quently validated in a prospective collected serum samples [106].
In addition, multiple tissue datasets were used to identify miRNAs
that are associated with pancreatic cancer patients with poor
prognosis and the prognostic miRNA signature was validated in a
serum cohort [107]. Collectively, these studies highlight the
effectiveness of utilising tissue datasets for identification of
candidates for blood-based cancer biomarkers.

Bioinformatics approaches
One of the major challenges in developing any cancer biomarker
is overcoming the inherent heterogeneity associated with cancers.
Molecular profiling of various types of cancer tissues indicate that
there is no consensus single gene biomarker that can accurately
distinguish cancer from healthy tissues. In order to overcome
limited sensitivity and specificity of individual genes, multiple
biomarkers have been combined to develop robust gene
signatures for cancer identification. Nevertheless, analysing a
large set of sequencing data is complex and challenging. One of
the leading strategies to overcome disease heterogeneity is
utilisation of innovative bioinformatic algorithms. Machine learn-
ing encompasses a set of computational techniques that are
widely utilised to simplify large numbers of measurements into
lower-dimensional outputs that are more interpretable [108].
Utilisation of such artificial intelligence-based machine learning
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approach provides significant advantage over conventional single
biomarker or small panel approach for developing cancer
biomarkers. Not surprisingly, machine learning algorithms have
been increasingly utilised in liquid biopsy biomarker development
in a wide range of diseases including cancer [108]. While the
utilisation of machine learning approaches will undoubtfully
become a more commonplace in the future, there are several
fundamental hurdles that need to overcome in order to unleash
the full potential of this approach. In particular, the quality of
datasets dictates the performance of how well machine learning
approaches can be utilised to develop biomarkers. Considering
that cancer-derived molecular signals in the circulation are low, it
is crucial to improve the overall resolution of the circulating
molecular signals in the future.

Functional roles of extracellular vesicle encapsulated
noncoding RNAs
Although EVs have been initially considered as a cellular waste
disposal mechanism with little biological importance, currently
they are being recognised as one of the key cell-cell communica-
tion mechanisms that transfer proteins, mRNAs and ncRNAs to
target cells [109]. Delivery of genetic material via EVs can be
achieved through multiple mechanisms including receptor-ligand
interactions, direct fusion of membranes and endocytic inter-
nalisation [110]. Once EVs are internalised, the horizontal genetic
transfer takes place, sending their content to the cytoplasm of
target cells via endosomal fusion. Interestingly, a recent char-
acterisation of extracellular RNA in both healthy individuals and
cancer patients revealed that RNA content of EVs were primarily
miRNAs and piRNAs (40% respectively), while mRNAs occupied
only 2% of total EV content [111]. Therefore, based on the high
content of non-coding RNAs in the EVs, they are likely to play an
important functional role in EVs.
Currently, one of the most provocative, but well supported,

biological hypotheses to date involving EV genetic transfer is
promotion of distant cancer metastasis through the formation
of a premetastatic niche [112]. Using a rodent model of
metastasis, a previous study showed that a subgroup of cancer
cell-derived exosomes was taken up by specific organs, altering
the molecular profile of the host cells. Subsequently these
cancer-derived exosomes redirected metastasis of tumour cells
that normally lack the capacity to metastasise to a specific
organ. While further validations are needed to confirm these
findings, this study brought EV-facilitated genetic material
transfer to the forefront of cancer research. Furthermore, the
functional role of EV-facilitated RNA transfer was demonstrated
in a rodent model of breast cancer [113]. Collectively, these
studies highlight the importance of EVs in cancer. Considering
that these particles can be found in the circulation and they
contain high portion of non-coding RNAs, EVs appear to have an
enormous potential to be implemented into cancer biomarker
development.

FUTURE CHALLENGES
Cancer specificity of ncRNAs
When developing a circulating non-invasive biomarker, specifi-
city for a particular disease and/or organ provides an additional
assurance and indicated robustness of that marker for that
disease. The biomarkers that are highly specific to a specific type
of cancer will reduce the false positive rates, thus making them
more informative for clinical diagnosis. In contrast, there are a
group of genes that are expressed highly specifically to distinct
organs. If these organ-specific genes are dysregulated in cancer,
it is possible to identify the location of cancer. Many of cancer
mutations, such as KRAS mutations, are rarely found in healthy
individuals, thus making them highly cancer-specific. However,
since these mutations can occur in multiple cancer types,

identification of these mutations in the circulation is insufficient
to pinpoint the location of cancer. To date, most of the well-
recognisable putative miRNA biomarkers have limited specificity
to cancer. However, isoforms of miRNAs (isomiRs) have been
postulated to be produced constitutively in human tissues and
their expression are dependent on tissue and disease types
[114, 115]. The analysis of isomiRs in multiple TCGA datasets
showed a subset of such ncRNAs exhibit high tissue specificity
[116]. Although the quantification of isomiRs by qPCR is difficult
due to their sequence similarity with the (parent) reference
sequence, these can be accurately quantified using RNA-
sequencing. Considering that RNA sequencing is becoming
highly utilised in the biomarker research, we will soon find out
the effectiveness of isomiRs as a non-invasive cancer biomarker
source.
In addition, accumulating studies indicate that some EVs that

are released from specific organs maintain molecular features
that are tissue-specific. Previous studies have identified a subset
of exosomes with surface proteins that are tissue-specific
[117, 118]. Furthermore, several exosomal surface markers that
are specific to cancers have also been identified [119, 120].
Therefore, it is possible to measure ncRNA content of tissue-
specific or cancer-specific exosomes to further improve cancer
specificity as biomarkers. While, a subset of exosomes will be
scarce in the circulation, combining the molecular features of
exosomes and ncRNA expression inside the exosomes has an
enormous potential.

Quantification issues
One of the key issues for the quantification of circulating ncRNAs
is the limitations that are associated with normalisation of qPCR-
based quantification. This issue has been well documented for
circulating miRNAs and remains to be an important issue [8].
Currently, two major protocols have been utilised for the
normalisation of miRNAs. First is the use of synthetic spiked-in
controls such as cel-miR-39 or ath-miR-159a to normalise the
expression of miRNAs in the circulation. This methodology works
particularly well, if the exogenous controls are added in a
standardised manner. However, the method is limited for older
retrospectively collected samples as RNAs will undergo progres-
sive degradation even if they are stored in a −80 °C freezer. In
contrast, the use of endogenous controls to normalise the
expression levels of miRNAs is also limited since there are no
consensus endogenous normalisation controls. While endogenous
controls such as miR-16, miR-451 and U6 are used commonly as
the endogenous controls to calculate the expression levels of
target miRNAs in the circulation, these markers have been shown
to be dysregulated in some cancers, thus making them less ideal
normalisation controls [121].
One of the potential methodologies to overcome these

normalisation issues is to utilise NGS platform to quantify ncRNAs.
Typically, RNA-sequencing data is normalised using a different
strategy compared to that of qPCR. The most RNA-sequencing
data is normalised by counts or reads per million (CPM or RPM).
This means that the expression levels of genes are calculated as a
relative abundance of all genes that are detected. Furthermore,
due to the differences in the length of genes contribute to the
expression of genes (i.e. longer genes are more likely to generate
more RNA fragments), the expression levels can be expressed as
transcripts per million (TPM). TPM is a normalisation method
similar to that of CPM and RPM, but normalises the output
according to the length of each genes. Collectively, these
normalisation methodologies for RNA-sequencing are less likely
to be influenced by the fluctuations associated with conventional
normalisation methods. Nevertheless, there are issues associated
with sequencing-based normalisation methodologies such as
not accounting for patients who have higher overall levels
of circulating RNAs. Therefore, further assessment is needed to

S. Toden and A. Goel

357

British Journal of Cancer (2022) 126:351 – 360



evaluate the best normalisation methodologies for the quantifica-
tion of circulating transcripts.

CONCLUSIONS
In this review, we summarised the current developments in the
ncRNAs as a source for the development of non-invasive
biomarkers for cancer patients. Although not a long time ago,
miRNAs were the only ncRNAs that were viewed as a potential
blood-based cancer biomarker source, currently other types of
ncRNAs are fast emerging as potential blood-based cancer
biomarker sources. Even though hypothesis driven methods have
identified several potential cancer diagnostic biomarkers, utilisa-
tion of comprehensive molecular profiling allows for a hypothesis-
independent biomarker discovery process and such an unbiased
approach should result in the identification of novel cancer
biomarkers. Although it is still early days for implementing high-
throughput profiling methods into non-invasive biomarker devel-
opment, the evaluation of circulating ncRNA profiles in cancers
will provide exciting information for the research community and
hopefully will contribute to the development of clinically game-
changing non-invasive cancer biomarkers as we embark on
enhanced precision oncology efforts.
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