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Survival for glioma patients has shown minimal improvement over the past 20 years. The ability to detect and monitor gliomas
relies primarily upon imaging technologies that lack sensitivity and specificity, especially during the post-surgical treatment phase.
Treatment-response monitoring with an effective liquid-biopsy paradigm may also provide the most facile clinical scenario for
liquid-biopsy integration into brain-tumour care. Conceptually, liquid biopsy is advantageous when compared with both tissue
sampling (less invasive) and imaging (more sensitive and specific), but is hampered by technical and biological problems. These
problems predominantly relate to low concentrations of tumour-derived DNA in the bloodstream of glioma patients. In this review,
we highlight methods by which the neuro-oncological scientific and clinical communities have attempted to circumvent this
limitation. The use of novel biological, technological and computational approaches will be explored. The utility of alternate bio-
fluids, tumour-guided sequencing, epigenomic and fragmentomic methods may eventually be leveraged to provide the biological
and technological means to unlock a wide range of clinical applications for liquid biopsy in glioma.
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INTRODUCTION
Gliomas are rare and deadly brain pathologies that possess an
age-corrected incidence range of 4.67–5.73 per 100,000 persons
[1] with glioblastoma being the most common malignant primary
brain tumour [2]. The current treatment paradigm involves
maximal surgical resection (where possible) followed by radio-
therapy and chemotherapy (temozolomide). Complete resection
of contrast-enhancing tumour as demonstrated on magnetic
resonance imaging (MRI) improves average survival, which, with
the addition of chemotherapy and radiotherapy, is just over 1 year
[3]. The location of this cancer within the brain results in certain
patients being unsuitable for ‘complete’ resection. For these cases,
biopsy is performed to confirm the diagnosis if further treatment
(chemotherapy and radiotherapy) is indicated, but this carries
significant risk of neurological morbidity and mortality. Despite
treatment, only 30% of patients survive their first year after
diagnosis and only 13% survive for 5 years as patients often
present late and with extensive disease.
Liquid biopsy may have utility across all phases of brain-tumour

investigation and management. Although screening for rare
pathologies is difficult, a non-invasive, low-cost and reliable
cancer- diagnostic assay could potentially benefit cancer patients
and the public healthcare system. If glioma were to be included,
then this may provide some benefit for certain glioma patients.
Diagnosis of glioma, especially in patients for whom debulking
surgery is not indicated, would benefit from minimally invasive
diagnostic options such as liquid biopsy. Moreover, the ability to

characterise the heterogeneous genomic landscape may be of
further benefit for precision therapeutics. The expectation for
disease recurrence following first-line treatment for glioma
mandates the use of regular clinical follow-up associated with
interval contrast-enhanced MRI. This paradigm has limitations with
several radiological scenarios, such as pseudoprogression, an
abnormal contrast enhancement associated with improved
prognosis that affects up to one-third of patients, highlighting
the need for improved detection and monitoring protocols. The
frequency with which patients are currently monitored is dictated
by pragmatism related to logistics and cost [4]. MR imaging
mandates specialist equipment, trained individuals, comes at high
cost per patient and possesses uncertainties with regard to the
frequent use of gadolinium contrast. Existing radiological and
clinical strategies lack sensitivity and specificity, leading to
uncertainty as to when to stop therapies that lack efficacy, and
when to persevere. Monitoring of tumour burden and treatment
response with an effective liquid-biopsy approach may help to
address these challenges [5, 6].
Multiple analytes can be detected in the bio-fluids of patients

with cancer and used as liquid biopsy for a range of clinical
applications: cell-free DNA (cfDNA), cell-free RNA, mitochondrial
DNA, extracellular vesicles, tumour-educated platelets, proteins
and metabolites among others [7–9]. cfDNA analysis, in particular,
has emerged over the past years as potential game changer for
detection, monitoring and treatment guidance in oncology
[10, 11]. Despite the importance of investments from academic
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institutions and commercial entities, clinical validation has delayed
widespread implementation [12]. Whilst initial data indicating that
cfDNA may be challenging to detect using blood samples in
glioma [13], several biological (e.g. impact of the blood–brain
barrier) and technical reasons for this apparent difficultly exist. We
aim to summarise recent progress in the application of liquid
biopsy for brain-tumour characterisation and to identify future
research directions.

THE CONCENTRATION IN PLASMA CFDNA CAN BE INCREASED
FOR GLIOMAS
Due to the technical limitations of the time, initial studies that
recovered cfDNA focused on global DNA quantification in control
and diverse malignant plasma samples [14]. The overall load of
cfDNA molecules in plasma (or other bio-fluids) from patients with
brain tumours can be recovered quickly and at minimal cost (via
spectrofluorometer methods or PCR quantification) and has
recently regained interest [15]. Multiple studies have explored
the difference in concentration of cfDNA between various types of
gliomas and healthy controls, alone or in combination with other
methods [16–18]. In a prospective study, glioma patients had
higher plasma cfDNA concentration than age-matched healthy
controls prior to initial surgery (mean 13.4 vs. 6.7 ng/mL,
respectively) and this correlated with tumour burden on pre-
irradiation MRI [16]. Another study identified in patients with
progressive disease, a significant increase in cfDNA concentration
from pretreatment to time of progression (9.7 vs. 13.1 ng/mL, p=
0.037), while no difference was observed for non-progressive
patients [18]. Despite global DNA-modification evaluation, using
cfDNA concentration is likely to be hampered by a lack of
specificity (as cfDNA can be released by various physiological
mechanisms), which may limit clinical applicability [19].

DETECTING MUTANT CFDNA IS CHALLENGING FOR GLIOMAS
cfDNA is commonly detected in bio-fluids by analysing tumour-
derived genomic signals, such as single- nucleotide variants (SNVs).
SNVs due to their binary and potentially actionable nature, were
logically the first molecular targets for cfDNA liquid-biopsy assays in
the brain context. Early pan-cancer studies that evaluated cfDNA
tumour fraction from various technologies have revealed that
gliomas are the most challenging malignancy for liquid-biopsy
applications [13, 20]. Using BEAming, a PCR-based technology,
Bettegowda et al. detected mutant cfDNA in <10% of the plasma
from 27 patients with gliomas [13]. Both the detection rate and
concentration in mutant cfDNA were lower than those of the 14
other cancer types included in this study. Table 1 summarises the
results reported from previous studies using SNVs to detect cfDNA in
gliomas. Claims of higher rates of detection, and higher tumour
fractions, have been made by entities using proprietary-sequencing
assays [20–22]. The high frequency of alterations resulting from
clonal haematopoiesis alongside biological or technical noise may,
however, have confounded these results [23]. Locus-based assays
(digital PCR, targeted sequencing or CRISPR-based) exhibit some
potential to detect well-defined mutations at a low tumour fraction
in the circulation [24–26]. In a recent study, TERT promoter
mutations were evaluated in plasma using a custom digital- droplet
PCR assay. An overall sensitivity of 62.5% (95% CI, 52–73%) and a
specificity of 90% (95% CI, 80–96%) when compared with matched
tumour-tissue-based detection was identified [27]. Nevertheless,
these studies highlight that more sensitive methods, or alternative
approaches, for plasma cfDNA detection, are required in gliomas.

Sampling the cerebrospinal fluid as a liquid biopsy
The blood–brain barrier protects the central nervous system and
has been proposed as the main reason for low cfDNA in glioma
patients. Thus, a potential strategy for improving cfDNA yield mayTa
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be through collecting samples ‘closer’ to the tumour. The most
direct method by which to achieve this may be via cerebrospinal
fluid (CSF) sampling [28–30]. Compared with blood plasma, CSF in
glioma has shown higher relative tumour fraction although this is
due, in part, to the low levels of normal DNA present within this
immune-privileged anatomic location [31–33]. Studies examining
brain-tumour patients (using whole-exome sequencing or PCR-
based methods) have identified higher cfDNA tumour fraction in
CSF when compared with plasma, and a higher detection rate
[28, 29, 34]. The analysis of tumour-derived cfDNA in CSF from a
cohort of diffuse gliomas indicated that they could be subtyped
through mutational analysis with IDH1 and IDH2, ATRX, TP53, TERT,
and H3F3A being suggested as having classification and
prognostication potential [35]. The representation of intra-
tumoural heterogeneity is biased in CSF with shared clones being
overrepresented, and private clones unrepresented, mimicking
plasma observations in other cancer types [34]. Nevertheless, the
high tumour fractions observed in CSF permit a higher detection
range with multiple technologies ranging from PCR [29], to
targeted sequencing [30, 35], low-coverage whole-genome
sequencing (WGS) [36] and other genome-wide approaches
[28, 33, 34]. For example, by using deep sequencing of cfDNA
on CSF from 57 brain-tumour patients, at least one tumour-
specific mutation was detected in over 82.5% of CSF ctDNA
samples (47/57) [37]. In 8 selected cases with mutation detected in
CSF, mutations were detected in 3/8 (37.5%) matched plasma
samples [37]. This relatively high tumour fraction in CSF has
allowed preliminary clinical application and molecular character-
isation of gliomas [35, 37, 38]. Unfortunately use of CSF has
significant clinical limitations as CSF is obtained via lumbar
puncture, an invasive and morbid procedure relatively contra-
indicated in brain-tumour patients [39, 40]. CSF use in monitoring
for recurrence is likely to be limited as a consequence. Moreover,
despite the use of advanced sequencing and bioinformatic
techniques, the tumour-derived cfDNA-detection rate in CSF
remains relatively low, ranging from 39% to 98% (the highest
detection rate being reported in brain metastasis from other
primary sites) [33, 34]. Potential factors affecting this include the
position of the tumour within the brain, whether the tumour is in
direct contact with the CSF or not [29], and by the high level of
intra-tumour heterogeneity in gliomas [41]. The acceptance and
clinical integration of liquid biopsy for the management of
gliomas will always be compared with the current imaging
paradigm. Therefore, truly minimally invasive sampling, like blood
plasma or urine, alongside better sensitivity and specificity, will be
mandatory. Several emerging concepts and technologies have the
potential to unlock such applications for brain cancer.

Guiding plasma analysis using tumour-tissue DNA mutations
A practical approach to improve tumour-signal detection in cfDNA is
to track multiple mutations simultaneously. Standardised panels are
conceptually limited by the fraction of the genome covered, the
depth of sequencing and the number of starting cfDNA molecules in
the sample. By using tumour-informed (or personalised) sequencing,
mutations and alterations initially identified in the tumour can be
sought. This approach boosts coverage across defined loci and thus
increases the chances of low tumour-fraction variants being
detected at modest cost. A larger number of variants, compared
with standardised panels, can also be followed, therefore increasing
the sensitivity of sequencing without compromising specificity. Such
an approach has been validated for multiple cancer types and
clinical scenarios using PCR systems [42], targeted sequencing [43],
capture sequencing or genome-wide sequencing [44–46]. Using
tumour-guided sequencing and an algorithm called INVAR, a recent
study reports that mutations were detected in 7/8 CSF, 10/12 plasma
and 10/16 urine glioma samples [47]. Although tumour-guided
sequencing is not suitable for diagnostic and screening purposes
[44, 48], its potential to detect relapse and pseudoprogression in

glioma remains unexplored. Tumour-guided sequencing could be
further combined with mutational enrichment methods (via size
selection or thermodynamic-based strategies), which even if they
have not been tested in the glioma context, could have a strong
potential for improving the monitoring of relapse in these patients
[49, 50].

LEVERAGING THE EPIGENOME FOR THE ANALYSIS OF
GLIOMA-DERIVED CFDNA
Mutation analysis utilises few, highly specific, mutated regions
within the genome of cancer patients for signal detection and
analysis. This strategy relies heavily upon the presence of loci that
are present in few DNA fragments and so, inevitably, suffers from
a reduction in sensitivity, especially for cancers where relatively
few copies of DNA exist within a liquid-biopsy sample (e.g. brain
tumours). Sequencing the cfDNA epigenome, for example,
methylated (mC) DNA, is advantageous because signatures exist
across multiple, less specific, regions of difference [51, 52]. By
deriving a positive signal from several characteristic differentially
methylated regions, the specificity required to identify a sample as
having features suggestive of a positive result is putatively
generated. Importantly, the presence of multiple different DNA
fragments (with no specific fragment being essential) improves
sensitivity. This is also of particular relevance when dealing with
scenarios whereby the number of DNA molecules is limiting (e.g.
brain tumours or screening/early detection/minimal residual
disease detection). Recently interest has also been directed
towards alternate stable epigenomic marks such as hydroxy-
methylation (hmC) [53, 54] and histone modifications [55] as
potential circulating epigenomic biomarkers. Moreover, the
combination of multiple modified DNA and histone sites across
the genome may prove additive for further boosting-test
sensitivity and specificity. Currently, however, separate techniques
are required for these analyses, and so, DNA quantity and total
number of molecules of interest become limiting.
Rather than purely detecting the presence of cancer DNA,

epigenomic marks associated with the cell of origin could be also
leveraged to improve detection and classification of pathologies
[32, 56]. A recent study examining CpG sites identified up to 2% of
brain-derived cfDNA in the circulation of healthy individuals [57].
CpG-site analysis can also be applied to other bio-fluids (e.g. CSF)
[58]. Successful strategies might therefore need to exploit cancer-
and organ-specific epigenomic changes, perhaps even with
identification of epigenomic marks related to treatment response
and treatment failure adding benefit.

cfDNA epigenome analysis using bisulfite conversion
Epigenomic modification of DNA can be detected through either
direct or indirect means, sometimes requiring only small
quantities of DNA [51]. The most common indirect technique
utilises bisulfite ions to deaminate unmethylated cytosines to
uracil, which are then read as thymine in the resultant amplified
DNA. PCR, array and sequencing approaches can be utilised for
subsequent processing. If sequencing the converted samples,
computation of uracil/cytosine signal at each loci of interest
provides a continuous variable of mC at that base. Bisulfite
conversion provides a cheap, fast and reproducible method for
mC analysis in glioma cfDNA. Lavon et al demonstrated excellent
specificity (100%) although modest sensitivity (59% astrocytoma,
47% oligodendroglioma) when using methylation at the MGMT
promoter as a serum marker for primary brain tumours [59].
Following bisulfite conversion of cfDNA, mC- specific PCR was
performed at the MGMT locus using different primers for
methylated/unmethylated fragments [59]. Estival et al. used a
similar technique in matched tumour and blood samples with
variable results, depending upon the assay used and the presence
or absence of MGMT methylation in the primary sample [60].
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Gong et al. showed benefit by analysing Alu hypomethylation
(AUC 0.904) in conjunction with MGMT hypermethylation (AUC
0.962) across a cohort of 124 glioma patients [61]. Recently,
Sabedot et al. used bisufite conversion of plasma-derived cfDNA
followed by Epic array processing across a cohort of 149 glioma
patients to discriminate with machine-learning classifier between
tumour and normal samples with a sensitivity of 100% and
specificity of 97.78% [62]. The same study suggested a potential
utility of this methylation-based approach for tracking clinico-
pathological changes (e.g. progression, pseudoprogression or
response to standard or experimental treatment). A recent novel
approach used MR-guided focused ultrasound to ‘open’ the
blood–brain barrier [63]. Meng et al. noted an increase in the
amount of cfDNA and used bisulfite conversion to identify neural-
lineage cells via gene-set enrichment of hypomethylated probes.
In 1/9 cases (with IDH mutation), they identified the mutation
through targeted dPCR [63].
However, bisulfite conversion presents limitations for cfDNA

analysis. First, it necessitates harsh conditions of pH and
temperature that can degrade the DNA, which when dealing with
low-input quantities of cfDNA, can be limiting [64]. Moreover, the
conversion can be incomplete, or there can be over-conversion,
resulting in subsequent interpretation difficulties. Finally, the
inability to distinguish mC from hmC, both being resistant to
bisulfite-induced deamination, can further confound analysis.
Despite these limitations, protocols exist that mandate only small
amounts of DNA and seem to provide reliable data for use in
liquid biopsy. Whole-genome bisulfite sequencing (WGBS)
requires high-depth sequencing and whole-genome coverage,
thus rendering it expensive. This has been partially circumvented
by applying the adapter tags post bisulfite conversion (PBAT) with
a resultant reduction in sequencing burden [65]. PBAT generates a
PCR-free approach that can determine methylation status from as
little as 125 pg of DNA and provides utility for single-cell bisulfite
sequencing [66].
In order to circumvent the large quantities of DNA lost through

bisulfite conversion, techniques have been developed or adopted
that reduce the need for large quantities of input DNA (e.g. as
required for WGBS). Reduced-representation bisulfite sequencing
(RRBS) enriches for CpG islands that are putatively most
representative of cell methylation status. This approach reduces
sequencing costs but at the cost of omitting non-CpG methylation
(e.g. intergenic and enhancer regions) [67]. It also requires high-
quality DNA due to the restriction-enzyme sequence utilised to
identify target regions, thus potentially limiting its efficacy in
fragmented cfDNA. Whilst bisulfite conversion enables distinction
between mC and C, it is unable to discriminate between mC and
hmC. Given our improved understanding of the often-opposing
action of hmC (when compared with mC) across the genome, it
has become important to discriminate between the two
modifications. Alternate techniques are involving additional
base-conversion steps alongside bisulfite-conversion OxBS seq
[68], TAB-seq [69] or the use of enzymatic methods of deamina-
tion [70, 71]. Moreover, recent appropriation of pyridine borane-
reductive decarboxylation and deamination chemistry has pro-
vided a direct means of reading mC and hmC [72].

cfDNA epigenome analysis using bisulfite-free methods
Bisulfite-free methods are also used and these can loosely be
divided between affinity-enrichment and restriction-enzyme-
mediated technologies. Affinity-enrichment methods have been
developed for both methylation (MeDIP) [73, 74] and hydro-
xymethylation analysis [75]. MeDIP involves the use of antibody-
based mC-sensitive pulldown of fragmented genomic DNA for the
analysis of mC by fragmented region via PCR or sequencing [76].
Recently, this was adapted for use with cfDNA present in brain
tumours and AUC was >0.71 when defining a broad range of brain
tumours [77]. These plasma cfDNA methylomes combined with

machine-learning analysis can discriminate common intracranial
tumours with similar cells of origin, for example, by classifying
IDH-mutant glioma (mean AUC= 0.82), or low-grade glioma
(mean AUC= 0.93) from a group of 161 cases [77]. A similar
method for hmC uses click chemistry to biotinylate glucosylated
hmC residues with similar PCR or sequencing outputs [75]. These
techniques are well adapted for cfDNA applications as they
require low-starting input of cfDNA molecules (~5 ng). However,
these techniques only determine that a modified base exists at
some point along the fragment. Methylation-restriction enzymes
are able to cleave unmethylated but not methylated regions.
Subsequent PCR or sequencing can be performed; however, the
fragmented nature of cfDNA with limited CpG-containing
recognition sites can hamper methylome coverage [78].
Direct analysis of DNA without the need for conversion or

amplification is a ‘holy grail’ of methylation sequencing. Long-read
sequencing may also enable the phasing of data providing
contextual information that may further boost sensitivity whilst
reducing epigenomic noise. Recent improvements in nanopore-
sequencing analysis pipelines provide an interesting counterpoint
to the short-read narrative and may deliver value for analysis
where DNA molecules are limited, such as those in cfDNA for brain
tumours [79]. In addition, nanopore sequencing could enable the
integration of genomic with epigenomic data in a fast turn-around
time, which could be well adapted to liquid-biopsy application
pending an increase in sensitivity [80].

Epigenetics beyond methylation: integrating fragmentomics
for liquid-biopsy applications
cfDNA is fragmented in plasma around 167 bp and multiple
thereof, a size corresponding to the wrapping of DNA helix around
the nucleosome. Plasma cfDNA from a variety of cancer cells tends
to be shorter than the bulk of cfDNA derived from hematopoietic
cells by 20–30 bp [81–83]. The sources and mechanisms of release
of cfDNA in the bloodstream are multiple, including apoptosis,
necrosis, senescence and other forms of cell death and active
secretion [84, 85]. Beyond the size of the cfDNA fragments, more
information can also be retrieved from where they are located in
the genome [52], and how these fragments end [86]. For example,
cfDNA fragments tend to be depleted in the promoter/TSS regions
of highly expressed genes because the nucleosomes protecting
them from degradation have to be moved away to enable
transcription [87, 88]. As the size and position of cfDNA are not
random but biologically regulated and/or altered in cancer, this is
opening the development of applications focused on analysing
such patterns or fragmentomics.
The methods focusing on fragmentomics, based on genome-

wide paired-end sequencing, could improve existing sequencing
methods, as well as mutation analysis. First, by leveraging the
20–30-bp size differences between tumour and non-tumour DNA,
it is possible to either enrich for cancer signal, or filter out the
false-positive signal (e.g. mutant DNA from clonal haematopoi-
esis). Indeed, clonal haematopoiesis-derived mutations should on
average appear on longer fragments than mutations from tumour-
derived cfDNA. Incorporating such information could reinforce the
confidence in mutation calling when tumour fraction in plasma is
extremely low (e.g. in gliomas). The potential of such a strategy
has been demonstrated in a small cohort of glioma samples using
INVAR [44, 48], as well as in other cancer types [89]. It is also
possible to use fragment-size information to directly enrich for
true positives. In vitro and in silico size selection of specific size
ranges has highlighted potential enrichment in multiple cancer
types and with different sequencing technologies [83, 90].
However, although size selection increases the sensitivity of
detection, there is a reciprocal loss of cfDNA for analysis.
Moreover, the relative median genome-wide enrichment is ~2-
fold, and therefore direct application to glioma, with their low
tumour fraction, might be challenging. In addition to plasma, the
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cfDNA fragmentation is also altered in the CSF from patients with
high tumour fraction, revealing a potential for other bio-fluids [36].
Leveraging other biological properties of cfDNA-fragmentation

profiles could enhance the detection of tumour-derived cfDNA. By
combining copy number alterations with specific fragment-size
patterns using random forest classifier, cancer can be classified
with a high accuracy (AUC= 0.91 for glioma cases) [83]. Recently,
Mouliere et al. demonstrated that the cfDNA-fragmentation profile
from urine samples could also be leveraged using machine
learning to improve the classification of gliomas from controls and
other brain pathologies [47]. Beyond specific fragment-size
ranges, more patterns could be inferred from cfDNA fragmenta-
tion. Various approaches using regional information [91], nucleo-
somal densities [87], chromatin compaction [92] and the
composition in bases of fragment ends [93] have revealed
potential to extract more tumour signal from genome-wide
sequencing in other cancer types. Despite prior studies high-
lighting the prevalence of short cfDNA in plasma, longer
circulating DNA also exists, some of which may represent
extrachromosomal (circular) DNA (ecDNA) [94]. Despite the
relative importance of ecDNA in glioma oncogenesis [95], ecDNA
remains underexplored in liquid biopsy and may benefit from the
use of long-read technologies.

DISCUSSION
The cfDNA field has benefited from a fast-growing portfolio of
technologies and from a dynamic entrepreneurial ecosystem
with a desire to improve non-invasive cancer analysis. Each
cfDNA technology could be well adapted to one of the clinical
applications of interest for CNS cancers: screening, diagnosis/
classification, treatment guidance, monitoring progression and
detecting relapse earlier (Table 2). However, technical advances
do not always translate into the clinic for applications related

to gliomas and other CNS pathologies. Despite clear progress to
improve the sensitivity and specificity of cfDNA sequencing,
significant improvements are required at a conceptual, techni-
cal and analytical level before clinical implementation of liquid
biopsy in the CNS can be realised. In recent years, new
technologies and concepts, such as epigenetic or fragmentomic
characterisation alongside tumour-guided sequencing,
have strong clinical potential [52]. In addition, methods
leveraging the epigenome, due to their non-cancer-specific
nature, have the potential to be applied to CNS pathologies
beyond cancer [57]. Evidence of neuron-derived cfDNA and
cerebellum cfDNA within acute neurotrauma and chronic
neurodegeneration has also been generated [96]. The potential
of disruptive cfDNA technologies and concepts for analysing
neurodegenerative disease beyond cancer has barely started to
be explored.
Beyond cfDNA, multiple other tumour components (or compo-

nents influenced by cancer cells) circulate within a cancer patient.
Exosomes [97, 98], mitochondria [31], tumour-educated platelets
[99, 100] and circulating tumour cells [7] have all been identified in
the bio-fluids from patients with brain tumours. Combining with
machine learning, these multiple analytes and signals could
unlock some of the most challenging applications for liquid biopsy
in the CNS context [9, 52]. Integrating multiple analytes with
machine-learning classifier has led to an increase in detection and
classification performance in other cancer types, but the potential
of such approach remains underexplored in brain cancer
[101, 102]. Bayesian integration of multi-omics and imaging data
exhibits a potential to improve the predictive performance on
longitudinal data, as demonstrated in other cancer types
[103, 104]. The impact of new cfDNA technologies for the
management of brain cancer using liquid biopsy can be boosted
by the rise of disruptive computational and machine-learning
strategies.

Table 2. Decisional matrix technologies vs applications for plasma analysis. ‘X’ indicates a lack of clinical utility; ‘+’ indicates the level of potential for
the specific application; ‘?’ indicates unknown potential.

Screening Diagnosis/classification Prognostication Treatment
selection

Monitoring (to define
absence of disease)

Relapse detection (to
define presence of
disease)

Clinical requirements Cheap High specificity Genomic
information

High sensitivity High sensitivity+

Easily implementable Complement pathology High specificity+ High specificity

Low false positive Determine cell type
of origin

High sensitivity

PCR ? ++ (IDH status) + + + +

Bettegowda et al. [13] Fontanilles et al. [18] Fontanilles et al. [18]

Muralidharan et al. [27] Bagley et al. [16] Muralidharan et al. [27]

gene panel ? ++ + ++ + +

Schwaederle et al. [21]

Zill et al. [20]

Piccioni et al. [22]

Pan et al. [37]

WES-WGS ? + ? +++ + +

Tumour-guided X X X X +++ +++

Wan et al. [44] Mouliere et al. [47]

Mouliere et al. [31]

Mouliere et al. [47]

Methylome ? ++ ? ++ (MGMT) ++ ++

Nassiri et al. [77] Sabedot et al. [62]

Sabedot et al. [62]

Fragmentome ? ++ ? ? ? ?

Mouliere et al., [83]

Mouliere et al. [47]

TEP ? ++ ? X ++ ++

Best et al. [99] Sol et al. [100] Sol et al. [100]

Sol et al. [100]
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CONCLUSION
The utility of liquid biopsy in glioma remains relatively under-
explored at the view of its clinical potential. At every stage of the
analysis paradigm, novel approaches to cfDNA have incrementally
improved sensitivity and specificity. The advent of improved
biobanking approaches has further improved substrate accessi-
bility and reliability. We, therefore, hope that the past difficulties
associated with translating cfDNA analysis in brain-tumour
populations will not discourage further investigation amongst
the liquid-biopsy community.
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