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Abstract
The pandemic of novel Coronavirus Disease 2019 (COVID-19) is widespread all over the world causing serious health 
problems as well as serious impact on the global economy. Reliable and fast testing of the COVID-19 has been a challenge 
for researchers and healthcare practitioners. In this work, we present a novel machine learning (ML) integrated X-ray device 
in Healthcare Cyber-Physical System (H-CPS) or smart healthcare framework (called “CoviLearn”) to allow healthcare 
practitioners to perform automatic initial screening of COVID-19 patients. We propose convolutional neural network (CNN) 
models of X-ray images integrated into an X-ray device for automatic COVID-19 detection. The proposed CoviLearn device 
will be useful in detecting if a person is COVID-19 positive or negative by considering the chest X-ray image of individuals. 
CoviLearn will be useful tool doctors to detect potential COVID-19 infections instantaneously without taking more intrusive 
healthcare data samples, such as saliva and blood. COVID-19 attacks the endothelium tissues that support respiratory tract, 
and X-rays images can be used to analyze the health of a patient’s lungs. As all healthcare centers have X-ray machines, it 
could be possible to use proposed CoviLearn X-rays to test for COVID-19 without the especial test kits. Our proposed auto-
mated analysis system CoviLearn which has 98.98% accuracy will be able to save valuable time of medical professionals as 
the X-ray machines come with a drawback as it needed a radiology expert.

Keywords  Smart healthcare · Healthcare-Cyber-Physical System (H-CPS) · Machine learning · Deep neural network 
(DNN) · COVID-19 · X-ray

Introduction

Coronavirus disease (COVID-19) is a respiratory tract 
infectious disease that has spread across the world [1]. It 
belongs to a family of viruses whose infection can cause 

complications that vary from typical cold to shortness of 
breath [2]. Patients also develop pneumonia termed, Novel 
Coronavirus Pneumonia (NCP), that results in acute respira-
tory failure with a very poor prognosis and high mortality 
[3, 4]. Subsequently, the pandemic nature of the coronavirus 
and the absence of reliable vaccines make COVID-19 diag-
nosis an urgent medical crisis.

At present, the standard testing method for COVID-19 
diagnosis is the real-time Reverse Transcription Polymer-
ase Chain Reaction (rRT-PCR) test. In this test, nasal swab 
is collected from the patient and kept in a special medium 
called the “virus transport medium”, to protect the RNA. 
Upon reaching the lab, the swab is further processed to 
determine whether or not the patient is positive for the coro-
navirus [5]. The entire process takes several hours and the 
results generally arrive after a day or two depending on the 
time taken from the swab to reach the lab.

The spread of the COVID-19 virus at this point advocates 
the requirement of its quick diagnosis and treatment. Studies 
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such as [6, 7] have proved that the COVID-19 virus infects 
the lungs and creates smooth and thick mucus in the patient’s 
affected lungs that is visible when chest X-rays and CT scans 
are performed. However, the analysis of X-ray images is a 
tedious task and require expert radiologists. In this endeavor, 
several computer algorithms and diagnosis tools such as [8, 
9] have been proposed to get detailed insights from the X-ray 
images. Although these studies have performed efficiently, 
they lack in terms of higher accuracy, generalization, com-
putational time, and error rate. To mitigate the shortcomings, 
recent studies such as [10–13] have incorporated machine 
learning (ML) and deep learning (DL) tools to investigate 
the chest X-ray images. The selection of proper DL-based 
automated analyzer and predictor for coronavirus patients 
will be very beneficial and helpful for the medical depart-
ment and society. Additionally, ML-DL approaches can pro-
vide test results faster and more economically as compared 
to the laboratory-based tests.

Furthermore, as COVID-19 is spreading rapidly through 
person-to-person contact, hospitals and healthcare profes-
sionals are becoming increasing overburdened, sometimes 
to the point of complete breakdown. Clearly, an alterna-
tive, remote-based, online diagnostic and testing solution is 
required to fill this urgent and unmet need. The Internet of 
Medical Things (IoMT) could be extended to achieve this 
healthcare-specific solution. With this motivation, the pre-
sent work proposes an AI-based Healthcare Cyber-Physical 
System (H-CPS) that incorporates convolutional neural net-
works (CNNs) (see Fig. 1). The model allows healthcare 
practitioners to promptly and automatically screen positive 
and negative COVID-19 patients by considering their chest 
X-ray images.

The organization of the paper is as follows: “Related prior 
research works” discusses the working of existing COVID-
19 detection models, their shortcomings, and our contribu-
tions in the H-CPS framework. “Proposed CoviLearn model 
for automatic initial screening of COVID-19” explains the 
proposed solution and its functioning, followed by “Perfor-
mance evaluation” that validates the model using real-life 

data. Finally, “Conclusions and future scope” gives a com-
pact conclusion and mentions the area of future study.

Related Prior Research Works

How Existing Research Models Function

Over the course of 2 years, many techniques have been pro-
posed for effective COVID-19 detection [14]. However, from 
the exhaustive list of works, we have selected some of the 
state-of-the-art methods focusing only on the deep learning 
based COVID-19 detection. A CNN called COVIDNet was 
trained in [15] using more than 15000 chest radiography 
images of COVID-19 positive and negative cases. The deep 
neural network (DNN) reported accuracy of 92.4% and sensi-
tivity of 80% . A three-dimensional convolutional ResNet-50 
network, termed COVNet, was proposed in [16] that uti-
lized volumetric chest CT images consisting of community 
acquired pneumonia (CAP) and other non-pneumonia cases. 
The reported AUC metric by the model was 0.96. A simi-
lar ResNet-50 model proposed by [17] reported an AUC of 
0.996 although tested to a much lesser dataset. In [18], a 
location-attention network using ResNet-18 was proposed 
using disparate CT samples from COVID-19 patients, influ-
enza-A infected, and healthy individuals to classify COVID-
19 cases, that reported an accuracy of 86.7% . Samples from 
4 classes: healthy, bacterial pneumonia, non-COVID-19 
pneumonia, and COVID-19 were used in [19] to train drop-
weight-based Bayesian CNNs that reported an accuracy of 
89.92%.

In [20], a modified inception transfer-learning model that 
reported an accuracy of 79.3% , specificity of 0.83, and sensi-
tivity of 0.67 was proposed. In [21], a multilayer perceptron 
combined with an LSTM neural network was implemented, 
that was trained using clinical data collected from 133 
patients out of which 54 belonged to the critical care domain. 
The authors in [22] implemented a two-dimensional deep 
CNN architecture, while the authors in [23] combined three-
dimensional UNet and ResNet-50 architectures. Both were 
trained using volumetric CT scanned data of patients cat-
egorized as COVID-19 positive and negative. The method in 
[24] used a pre-trained ResNet-50 network using chest X-ray 
images from 50 COVID-19 positive and 50 COVID-19 neg-
ative patients and reported an accuracy of 98% . In [25] four 
state-of-the-art DNNs: AlexNet, Resnet-18, DenseNet-201, 
and SqueezeNet were ensembled. The model also used chest 
X-ray images of normal, viral pneumonia, and COVID-19 
cases. A novel CNN augmented with a pre-trained AlexNet 
using transfer learning was proposed in [26]. The model was 
tested on both X-ray and CT scanned images with reported 
accuracies of 98% and 94.1% , respectively.
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Fig. 1   Process flow of proposed COVID-19 classification
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Shortcomings in the Existing Research Works

Although the domain is very new and many studies pertain-
ing to the deep learning-based methodology have been pro-
posed, most of them suffer from shortcomings such as lower 
accuracy, model generalization, computational cost, and 
error rate. Even when certain research works achieve higher 
accuracy, they either suffer from lower sensitivity, specific-
ity or have a small test dataset. Moreover, the prospect of 
augmenting IoMT frameworks with COVID-19 diagnosis 
is new and its incorporation can further assist the existing 
healthcare system to cope in this difficult times. Also, the 
training dataset for certain methods is limited because of 
class imbalance, that is, less number of coronavirus images 
as compared to normal lung images. This problem of dataset 
imbalance results in lesser model accuracy and less efficient. 
Table 1 provides a comprehensive comparison of the exist-
ing research works.

Our Vision of CoviLearn in the H‑CPS Framework

We propose an AI-based H-CPS framework termed “Cov-
iLearn” to provide healthcare professionals the leverage to 
perform automatic screening of COVID-19 patients using 
their chest X-ray images. With a deep neural network (DNN) 
in its core, the CoviLearn model is implemented on the 
server for ubiquitous deployment. The hyperparameters of 
the DNN have been adjusted to make its functioning reliable, 
accurate, and specific. By just uploading the X-ray images, 
the model automatically identifies the symptoms and reports 
unbiased results. CoviLearn augmented with H-CPS brings 
patients, doctors, and test lab in a single smart healthcare 
platform, as illustrated in Fig. 2. The reported results can 
be uploaded to the IoMT platform from where it may be 
transferred to nearby COVID-care hospitals, the Center for 
Disease Control (CDC), and state and local health bureaus. 
Hospitals could subsequently offer online health consul-
tations based on the patient’s condition and monitor vital 
equipments and quarantine requirements. Therefore, the pro-
posed H-CPS provides people the leverage to dynamically 
monitor their disease status, receive proper medical needs, 
and eventually curb the spread of the virus.

Novel Contributions of CoviLearn

The major contributions of the work are:

–	 An architecture of H-CPS framework augmented with a 
next generation smart X-ray machine architecture at the 
interface is proposed to combat the spread of COVID-19.

–	 An efficient heuristic search technique is incorporated 
which automatically finds an optimal feature subset pre-
sent in the input chest X-ray images.

–	 An end-to-end automatic functioning DNN model that 
extracts the features from X-ray images is incorporated.

–	 The CNN blocks are reliable, accurate, and very specific 
that makes the overall model very effective. Furthermore, 
the model can be easily integrated into embedded and 
mobile devices, thereby assisting health practitioners to 
effectively diagnose COVID-19.

Proposed CoviLearn Model for Automatic 
Initial Screening of COVID‑19

The CoviLearn Device for Next‑Generation X‑ray 
Screening

As discussed in the earlier sections, COVID-19 and other 
related pneumonia diseases can be screened and diagnosed 
by analyzing chest X-ray images. However, the existing 
X-ray diagnosis suffers from limited access and lack of 
experienced personnel. To address this issue, we propose a 
next-generation X-ray system in the H-CPS perspective. The 
H-CPS and IoMT together bring all the necessary agents 
of smart healthcare in a universal communication and con-
nectivity platform. This linking of technologies extends the 
efficiency services such as telemedicine, teleconsultation, 
and endorse smart-medical care.

Figure 3 shows the system-level block diagram of the 
next-generation X-ray machine integrated with CoviLearn 
for automatic screening of infectious diseases. It identifies 
most of its components, such as X-ray apparatus (tube), flat 
panel detector, onboard memory, DICOM protocol con-
verter, Image processing, CoviLearn diagnosis, wired/wire-
less data communication, display, or user interface, along 
with system controller. In the proposed X-ray machine, 
X-ray image is captured by an array of sensor in the digi-
tal and radiography flat panel detector. The flat panel also 
includes the devices of communication to next stages. The 
image is then saved and converted to DICOM X-ray image. 
Subsequently, the image is processed and based on the 
quality and requirement the exposure of the X-ray tube is 
adjusted. The captured image is stored temporarily in the 
local memory, after which it is displayed on monitor screen 
with the help of the controller. After acquiring the quality 
assured image, it is then transferred to the CoviLearn model 
which automatically classifies the image either as normal or 
COVID-19 affected. The image classification is performed 
either locally in the presence of sufficient resources or on 
cloud by transmitting the images over network. The test 
results automatically synchronize with the H-CPS platform 
for necessary medical and administrative actions. The con-
troller unit is responsible for controlling the entire sequence 
of events.
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Dataset Used for Validating the Proposed CoviLearn 
System

To overcome the problem of class imbalance, we have manu-
ally collected chest X-ray of patients having coronavirus. 
These images are from various resources such as pyim-
agesearch, radiopedia, sirm, and eurorad. For the normal 
chest X-ray, we have used the chest X-ray dataset from the 
National Institute of Health (NIH), USA [27]. The count of 
images from both the sources was 250. Subsequently, the 
dataset has been divided into two classes: patient’s diag-
nosed as COVID-19 positive and negative. For training 80% 
of the dataset ( ∼ 200 images) is used from which 30% is 
used for validation ( ∼ 60 images). The testing of the model 
is performed on 20% ( ∼ 50 images) of the dataset. Based on 
this validation dataset, the loss and validation graphs have 
been plotted. All the images are processed and mixed to pre-
vent undue biasing as discussed in the following subsections.

Data Pre‑processing

All the captured images have different sizes, and therefore, 
data pre-processing was essential before doing further analy-
sis. The pre-processing is performed in three stages: first, 
the individual data are normalized by subtracting the mean 
RGB values; second, all the pixels in the input image data 
are scaled within the range of 0 to 1. Finally, the tensor is 
reshaped appropriately, so that it fits the model (in this case, 
the tensor is reshaped into 224 × 224 pixels).

Data Augmentation

Deep learning models are ravenous for data and since our 
model only has around 250 images for each class; hence, 
the volume of our data needs to be increased and this can 
be achieved through data augmentation. Therefore, similar 
to the process mentioned in [28], the input images are aug-
mented by random crop, adjust contrast, flip, rotation, adjust 
brightness, horizontal–vertical shift, aspect ratio, random 
shear, zoom, and pixel jitter. As a result of this augmenta-
tion, the proposed CoviLearn system became more efficient.

The Proposed Transfer Learning for Deep Neural 
Network in CoviLearn

CoviLearn uses transfer learning to predict the classifica-
tion results. Transfer learning substitutes for the requirement 
of large dataset and has been used in different applications, 
such as healthcare, manufacturing, etc. It uses the knowl-
edge learned in training a large dataset and transfers that 
same knowledge in some different and smaller dataset. In the 
present work, four different DNNs: ResNet-50, ResNet-101, 
DenseNet-121, and DenseNet-169, along with different blocks 

to train the individual networks. The hyperparameters have 
been adjusted to report the highest accuracy. Detailed struc-
tural organizational of network layers is as illustrated in Fig. 4 
where each network is divided into phases, starting from get-
ting an image input, followed by training the model by sequen-
tially passing the set of images into convolutional networks, 
to finally predicting the results using a classification layer. 
Following subsection discusses the base classifiers and the 
difference between them.

Deep Neural Base Classifiers

The CoviLearn model uses four deep neural networks as the 
base classifiers. Two of these belong to the ResNet family [29] 
(ResNet-50 and ResNet-101) and remaining two belong to the 
DenseNet family [30] (DenseNet-121 and DenseNet-169). As 
the convolutional neural networks become deeper, the back 
propagated error from any layer is required to traverse the 
entire depth where repeated weight multiplications occur. As 
a result of these multiplications, the original error significantly 
diminishes and the neural network’s performance is satisfacto-
rily affected. To combat this, researchers have proposed many 
architectures, out of which the current state-of-the-art includes 
the DenseNet and the ResNet models.

DenseNet or Dense Convolutional Network solves the 
problem using shorter connections between the layers. In 
other words, inside the DenseNet network, the each layer is 
connected to all its higher layers. Equation (1) represents the 
learning equation for a traditional CNN

where P 
l
 represents the lth layer of the network, and T 

l
 

denotes the feature learned in the previous layer. For a 
DenseNet, the equation changes to (2)

(1)P
l
= T

l
(P

l−1),
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Fig. 4   Organization of the DNN with classification layers
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This arrangement allows feature reusing without having to 
travel the entire depth or entire depth of the network. In 
comparison to a traditional CNN, DenseNet requires fewer 
parameters, because features learned in one layer are sent to 
the higher layers, thereby eliminating redundancy. A typical 
DenseNet architecture involves a convolution layer, followed 
by a pooling layer. These are followed by 4 dense blocks 
and 3 transition blocks placed one after the other. Inside the 
dense block, there are two convolutional layers with filters of 
different sizes, while the transition layer involves an average 
pooling layer. The dissimilarity between the DenseNet-121 
and DenseNet-169 networks is with respect to the number 
of hidden layers. For the former, the total number of convo-
lution layers in the four Dense Blocks is 121, while for the 
latter that is 169. Increasing the layers does not necessar-
ily improve the accuracy and depends upon the particular 
situation.

Residual Networks or ResNet solves the problem of 
vanishing gradient decent by utilizing a skip connection 
between the original input and the final convolution lay-
ers. By overlooking the in between layers and attaching the 
given input directly to the output allows the presence of an 
additional path for the back propagated error to flow and 
therefore solving the problem of vanishing gradient descent. 
For a DenseNet, the equation changes to (3)

A typical ResNet architecture involves four stages. The first 
stage is responsible for performing zero-padding operation 
on the input data. The second stage is made up of convolu-
tional blocks that performs convolution along with batch-
normalization and max-pooling. The penultimate layer con-
sists of identity blocks augmented with filters, followed by 
the final stage that comprises a GAP layer, a fully connected 
dense layer, and classifier function. All convolution layers 
use ReLU as the activation function. Similar to DenseNet, 
the two types of ResNets that is ResNet-50 and ResNet-101 
differ in the depth of the network. It has been observed that 
certain variations of ResNet have redundant layers that 
barely contribute. The presence of them results in ResNet 
handling larger parameters and weights. On the other hand, 
DenseNet are relatively narrow (fewer number of filters) 

(2)P
l
= T

l
[P0,P1,P2,… ,P

l−1].

(3)P
l
= T

l
(P

l−1) + P
l−1.

and simply add the new feature maps. Another difference 
between the DenseNet and ResNet models is that the for-
mer does not sum the output feature maps of the preceding 
layers but rather concatenates them, unlike the latter where 
summation happens. This is evident from Eqs. (2) and (3).

Training and Testing of the Proposed Model

The CoviLearn model takes the input image, swaps the color 
channels, and resizes it to 224 × 224 pixels. Afterwards, the 
data and label list are converted into an array, while the pixel 
intensities are normalized between 0 and 1, by dividing the 
entire input image by 255. Subsequently, one-hot encoding 
is performed on the labels, following which various models 
are loaded one at a time by freezing few upper layers and a 
base layer is created with dropout. Finally, the input tensor 
of size 224 × 224 is loaded onto the model and compiled 
using Adam optimizer and binary cross entropy loss.

Performance Evaluation

Experimental Setup

To compare the performance of different models, three 
evaluation parameters: accuracy, sensitivity, and specific-
ity have been considered. As the test images are converted 
into 224 × 224 tensor, the model predicts the above-men-
tioned three metrics. Table 2 illustrates the comparison of 
results between the four models: DNN I (ResNet-50), DNN 
II (ResNet-101), DNN III (DenseNet-121), and DNN IV 
(DenseNet-169). A confusion matrix (see Fig. 5 compares 
the True Positive, True Negative, False Positive, and False 
Negative values. Moreover, loss-accuracy versus epoch 
graph is also provided to project how the training loss, vali-
dation loss, training accuracy, and validation accuracy vary 
with each epoch.

Result Analysis

In context of coronavirus detection, True Positive (TP) is 
when the patient has coronavirus and the model detects coro-
navirus, True Negative is when the patient does not have 
coronavirus and the model also predicts the same. False 
Positive (FP) is when the the patient is not infected with 

Table 2   Performance metrics 
for different deep learning 
techniques

Models explored Accuracy Sensitivity Specificity Total parameter AUC area

DNN I 0.9592 0.9583 0.9600 23,696,066 0.959
DNN II 0.9694 0.9792 0.9600 42,757,826 0.970
DNN III 0.9898 1.0000 0.9800 7,103,234 0.990
DNN IV 0.9796 1.0000 0.9600 12,749,570 0.980
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the coronavirus, but the model predicts the opposite, while 
False Negative (FN) is when the patient has coronavirus, 
but the model says otherwise. Accuracy specifies the correct 
number of predictions made by the CoviLearn model with 
respect to the total number of patients and is represented 
by Equation (4). Additional metrics such as sensitivity—
the ability to identify coronavirus patients correctly—and 
selectivity—the ability to identify non-coronavirus patients 
correctly—are as defined by Eqs. (5) and (6), respectively

Table 2 summarizes the performance matrix for different 
deep learning model tested for the different classification 
schemes. DNN III, which has DenseNet-121 architecture, 
performs best over other models in classification yielding 
an accuracy of 98.98% , sensitivity of 100% , and specificity 
value of 98% . Whereas, DNN I has the lowest performance 
value with an accuracy of 95.92% , sensitivity of 95.83% , and 
specificity value of 96%.

Figure 5 shows the confusion matrices of COVID-19 and 
normal test results of the different pre-trained models. The 

(4)Accuracy =
TP + TN

TN + TP + FP + FN

(5)Sensitivity =
TP

TP + FN

(6)Specificity =
TN

TN + FP
.

graphs show a well-defined pattern of the training–validation 
accuracy that increases, and the training–validation loss that 
decreases, with increasing epochs. Because of the limited 
computational resources, the comparison between different 
parameters is done for 25 epochs only. Besides the confu-
sion matrix, receiver-operating characteristic (ROC) curve 
plots and areas for each model are given in Fig. 6. DNNs 
which are trained with DenseNet pre-trained blocks appear 
to be very higher than DNN trained with ResNet blocks, 
with DNN III having the highest AUC of 99% . One of the 
interesting findings is the DNN which when used with the 
ability of the DenseNet model achieves higher sensitivity 
and specificity. This ensures the reduction of false positives 
for both the COVID-19 and the healthy classes. As is evident 
from the relationship between accuracy and epoch, DNN-III 
shows the highest accuracy followed by DNN-IV, DNN-II, 
and DNN-I. The accuracy increases with each subsequent 
epoch except at few as illustrated in Fig. 7. A similar trend 
is shown in loss graphs where the loss decreases with each 
subsequent epochs and a similar trend is followed, that is, 
DNN-III shows the lowest loss followed by DNN-IV, DNN-
II, and DNN-I (see Fig. 8). The results as reported by the 
proposed CoviLearn model are compared with the existing 
research works and tabulated in Table 3. In [18], detects 
COVID-19 using classification of CT samples by CNN 
models with an accuracy of 86.7% , sensitivity of 98.2% , 
and specificity of 92.2% . CovidNet in [15] reported an 
accuracy of 93.3% . The CNN-based DarkCovidNet model 
[31] to detect COVID-19 from chest X-ray also has an accu-
racy of 98.08% . In comparison, the proposed model has an 
accuracy of 98.98% , sensitivity of 0.984, and specificity of 
0965. CoviLearn has significantly outperformed existing 
deep learning-based COVID-19 detection techniques such 
as [15, 18–20, 23]. Also, the sensitivity of the proposed 
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model has outperformed existing models such as [15, 20, 
23] both in terms of sensitivity and specificity. [17, 21, 24] 
achieved similar accuracy; however, their test dataset size is 
relatively smaller than the one used in the current work. The 
deep neural architectures proposed in [25, 26] involved many 
hyperparameters, estimation of which increased the overall 
computation cost and resulted in ubiquitous deployment. On 
the other hand, CoviLearn because of its transfer-learning 
ability and selected deep neural networks has the advantage 

of rejecting redundant parameters and thereby reducing the 
overall computational cost. Finally, all these models lacked 
a smart healthcare framework, which has been proposed and 
implemented in CoviLearn in the form of H-CPS. The com-
parison of existing research works is compactly summarized 
in Tables 3 and 4 .

Effectiveness of the Transfer‑Learning Concept

The initial neural network when trained reported accuracy, 
sensitivity, and specificity values of 0.5981, 0.6041, and 
0.5923, respectively. To improve these substantially, we used 
the concept of transfer learning. It is done by freezing the 
layers of the existing models and replacing with the penulti-
mate layer (the layer responsible for performing classifica-
tion) of state-of-the-art neural networks trained on larger 
datasets to perform final classification. This step improved 
the accuracy, sensitivity, and specificity metrics to 0.9225, 
0.9319, and 0.9135, respectively. Following this step, fine-
tuning is performed on the model’s hyperparameters to fur-
ther improve the model’s performance by ∼ 5% . Therefore, 
despite a small training dataset of 250 images, embedding 
the transfer learning helped improve the model’s classifica-
tion performance significantly. Table 5 compares the metrics 
obtained in each of the stages.

Conclusions and Future Scope

The study presents CoviLearn, a DNN-based transfer-
learning approach in Healthcare Cyber-Physical System 
framework to perform automatic initial screening of 
COVID-19 patients using their chest X-ray image data. 
An architecture of next-generation smart X-ray machine 
for automatic screening of COVID-19 is proposed at the 
interface of H-CPS. Four different DNNs: ResNet-50, 
ResNet-101, DenseNet-121, and DenseNet-169 are 
trained and tested for classification of the X-ray images 
from healthy and corona disease-infected patients. 
DenseNet-121 showed the highest accuracy close to 
98.98% followed by DenseNet-169 , ResNet-50, and 
ResNet-101. Similarly, the sensitivity of DenseNet-121 
and DenseNet-169 are 100% , while that of ResNet-50 and 

                                                                                                 

Fig. 7   Classification accuracy in the deep learning system validation

Fig. 8   Binary cross entropy loss in the deep learning system valida-
tion

Table 3   Comparison of results 
with existing recent similar 
works

Methods Technique Accuracy (in %)

Xu at al. [18] Deep-CNN model 3D-DL model 86.7
Wang et al. [15] CovidNet, VGG-19 and ResNet-50 model 93.3
Ozturk et al. [31] DarkNet and YOLO 98.08
Khatri et al. [32] EMD approach 83.30
Togacar et al. [33] Deep-CNN model 96.84
CoviLearn Deep-CNN-based DenseNet 98.98
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ResNet-101 are close to 97% . The highest specificity of 
DNN III is 98%. Therefore, all these results clearly indi-
cate the ability to classify the deadly coronavirus correctly.

The present CoviLearn platform will be very useful tool 
doctors to diagnosis the coronavirus disease at a lower 
cost despite being economical and automatic. However, 
additional study and medical trial are required to full proof 
the extracted features extracted by machine learning as 
reliable bio-markers for COVID-19. Furthermore, these 
machine learning models can be extended to diagnose 
other chest-related diseases including tuberculosis and 
pneumonia. A limitation of the study is the use of a lim-
ited number of COVID-19 X-ray images. Therefore, in the 
future, a larger dataset and a cloud based system can be 
ventured to make the model ubiquitous and more robust. 
In fact, the results can be used to detect the highly prone 
corona positive patients in a timely application of quaran-
tine measure, until the rRT-PCR test examinations results 
are obtained. The proposed CoviLearn can be added to 
our healthcare CPS framework CoviChain for reliable 

information sharing right from the source to destination 
end while accommodating various stake holders [34].
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