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Abstract

A proteomics tool capable of identifying single proteins would be important for cell biology 

research and applications. Here, we demonstrate a nanopore-based single-molecule peptide reader 

sensitive to single-amino-acid substitutions within individual peptides. A DNA-peptide conjugate 

was pulled through the biological nanopore MspA by the DNA helicase Hel308. Reading the ion 

current signal through the nanopore enabled discrimination of single-amino-acid substitutions in 

single reads. Molecular dynamics simulations showed these signals to result from size exclusion 

and pore binding. We also demonstrate the capability to ‘rewind’ peptide reads, obtaining 

numerous independent reads of the same molecule, yielding an error rate <10−6 in single amino 

acid variant identification. These proof-of-concept experiments constitute a promising basis for the 

development of a single-molecule protein fingerprinting and analysis technology.

One-sentence summary:

This paper presents proof-of-concept experiments and simulations of a nanopore-based approach 

for linearly reading individual peptides with sensitivity to single amino acid substitutions.

Genetic sequences are a key source of information about protein primary sequence. 

However, because they do not directly encode information about protein abundance or 
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about post-translational modification and splicing of proteins, neither the DNA genome 

nor the RNA transcriptome fully describe the protein phenotype. A robust method for 

directly identifying proteins and detecting post translational modifications at the single-

molecule level would greatly benefit proteomics research(2), enabling quantification of 

low-abundance proteins as well as distributions and correlations of post-translational 

modifications (PTMs), all at a single-cell level. Here, we provide proof-of-concept data 

for a nanopore-based approach that can discriminate single peptides at single-amino-acid 

sensitivity with high fidelity and potential for high throughput. Although it is not presently 

capable of de novo protein sequencing, this nanopore peptide reader provides site-specific 

information about the peptide’s primary sequence that may find applications in single-

molecule protein fingerprinting and variant identification.

Recently, biological nanopores have been used as the basis of a single-molecule DNA 

sequencing technology(3) that is capable of long reads and detection of epigenetic markers 

in a portable platform with minimal cost(4). In such experiments, single-stranded DNA 

is slowly moved step-by-step through a protein nanopore embedded in a thin membrane, 

partially blocking an electrical current carried by ions through the nanopore. The DNA 

stepping is accomplished using a DNA-translocating motor enzyme which moves DNA 

through the pore in discrete steps, yielding a series of steps in the ion current. Each ion 

current level characterizes the bases residing in the pore at that step, and the sequence of 

levels can be decoded into the DNA base sequence.

It has been hypothesized that nanopores can also be used for protein fingerprinting or 

sequencing(5, 6). Methods in which small peptide fragments freely translocate through a 

pore have shown sensitivity to single amino acids(7–9), but lack a method for determining 

the order of amino acids and reconstructing the sequence of single proteins. Using a ClpX 

protein unfoldase to pull a peptide through a nanopore yielded signals that effectively 

distinguished between different peptides(10), but these reads were difficult to interpret, in 

part due to the irregular stepping behavior of ClpX(11). Here, we instead applied the precise 

stepwise control of a DNA-translocating motor(12–14) to pull a peptide through a nanopore, 

similarly to simultaneous work by Yan et al(15) but presenting several key advances: the 

use of a helicase that pulls the polymer through MspA in smaller, half-nucleotide steps, the 

ability to identify single-amino-acid substitutions, and the capability to obtain high-fidelity 

signals by re-reading the same single molecule multiple times.

We developed a system in which a DNA-peptide conjugate is pulled through a biological 

nanopore by a helicase that is walking on the DNA section (Fig. 1). The conjugate strand 

consisted of an 80-nucleotide DNA strand that was covalently linked to a 26-amino-acid 

synthetic peptide by a DBCO click linker on the 5’ end of the DNA connecting to an azide 

modification at the C-terminus of the peptide (Supplemental Text §1, Fig. S1). A negatively 

charged peptide sequence of mostly aspartic acid (D) and glutamic acid (E) residues was 

chosen so that the electrophoretic force assisted in pulling the peptide into the pore. We 

used the mutant nanopore M2 MspA(16) with a cup-like shape that separates the helicase 

by ~10 nm from the constriction of the pore where the blockage of ion current occurs (17). 

For the DNA-translocating motor enzyme, we used Hel308 DNA helicase (i) because it 

pulls single-stranded DNA through MspA in half-nucleotide ~0.33 nm observable steps(14), 
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which are close to single-amino acid steps, (ii) because it is a stable and processive helicase 

that tolerates high salt concentrations(17), and (iii) its >50 pN pulling force(17) is likely to 

denature any secondary structure in target peptides.

We found that, similarly to nanopore reads of DNA, ratcheting a peptide through the 

nanopore generated a distinct step-like pattern in the ion current (Fig. 1C). Durations 

of ion current steps varied from read to read, but the sequence of levels was highly 

reproducible (Fig. S2). The progression of ion current steps was accurately identified using 

custom software (Supplemental Text §2, Fig. S3) and further analysis was performed on the 

sequence of the median values of ion current for each step (Fig. 1D).

This sequence of ion current levels first closely tracked the sequence expected for the 

template strand of DNA, which can be predicted using a DNA-sequence-to-ion-current 

map developed previously(18, 19) (Supplemental Text §3). After the end of the DNA 

crossed to the cis side of MspA’s constriction, we continued to observe stepping over the 

linker (a length of ~2 nm, or six Hel308 steps), and subsequently over the peptide. The 

stepping of the peptide through the MspA constriction produced distinguishable ion current 

steps, much like those from DNA, but with a higher average ion current. While individual 

reads may contain a varying number of steps due to helicase backstepping and errors in 

step segmentation, we identified these features by cross-comparison of several independent 

reads, producing a “consensus” ion current sequence free of helicase mis-steps or step-

segmentation errors (Supplemental Text §4). By counting the steps in these consensus 

sequence traces, we determined the parts of the traces that corresponded to the linker (the 

first six steps after the DNA) and the peptide (all steps thereafter) in the MspA constriction. 

We confirmed this analysis by altering the peptide sequence at a selected site and observing 

the location of the resulting change in the ion current stepping sequence, as discussed 

below. We restricted further analysis to reads containing both DNA and peptide sections 

(Supplemental Text §5, Fig. S4).

Our approach allowed us to discriminate peptide variants that differed by only a single 

amino acid. We obtained reads (N=211) of three different DNA-peptides in nineteen 

different pores, where the peptide sequences consisted of a mixture of negatively D and 

E residues, with a single variation, i.e., D, glycine (G), or tryptophan (W), placed four amino 

acids away from the C-terminus that connects to the linker (Table S1 for full sequences). 

The three variants showed a reproducible difference at the site of the substituted amino acid, 

which could be seen by comparing the consensus sequences of ion current levels (Figs. 2A 

and B). As is typical of nanopore experiments, a single-site variation was found to affect 

several ion current steps, because an “8-mer” of amino acids around the pore constriction 

of MspA affect the ion current blockage level (12, 18) due to the finite constriction height 

and stochastic displacements of the strand up and down through the nanopore(20). The 

center of the differing region in the ion current sequence was at the expected site: about 

10 helicase steps away from the end of the DNA section (6 half-nucleotide steps for the 

linker and 4 more along the peptide to the variant site). The signals varied by several 

standard deviations over multiple sequential levels, demonstrating that variations as small 

as a single-amino-acid substitution could be resolved. The differences of the ion currents 

for the W- and G-substituted variants from the D-substituted variant (Fig. 2B) showed an 
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interesting behavior: when G, which has merely a hydrogen atom as a side chain, occupied 

the nanopore constriction, we saw higher ion current levels, as expected from a smaller 

amino acid volume. But when the bulky W variant moved through the constriction, the ion 

current first decreased and then, counterintuitively, increased relative to the medium-sized D 

variant.

To understand the origin of these patterns, we performed all-atom molecular dynamics 

simulations measuring the ion current with peptide variants at varying positions within 

the MspA constriction. In a typical simulation, a polypeptide chain was threaded through 

a reduced-length model of MspA nanopore that was embedded in a lipid bilayer and 

surrounded by 0.4M KCl electrolyte (Fig. 2C). Peptides with either one W or G substitution 

in a mixed D/E sequence were examined under a +200 mV bias at various locations relative 

to the MspA constriction (see Supplemental Text §6 and Figs. S5–S8 for details). Patterns 

of ionic current blockades resulted in Fig. 2E (top panel), matching the counterintuitive 

blockade current patterns that were experimentally measured for G and W substitutions (cf. 

Fig. 2A,B). Furthermore, the ion current correlated with the nanopore constriction volume 

that was available for ion transport near the pore mouth, Fig. 2E (bottom panel), with the 

latter quantity being more accurately characterized by the all-atom MD method (20). In the 

case of a G residue, its upward motion was accompanied by an increase of the nanopore 

volume (Fig. 2E, bottom), that subsided as the residue left the nanopore constriction (Fig. 

2F), in sync with the blockade current (Fig. 2E, top). A W residue, however, reduced the 

nanopore constriction volume when it was located below the constriction (Fig. 2E, top), 

but increased the volume at and above the constriction. The latter counterintuitive effect 

could be traced back to a binding of the W side chain to the nanopore surface above the 

constriction (Fig. 2G). Thus, a glycine substitution merely increases the nanopore volume 

as the residue passes through the constriction, whereas the tryptophan residue decreases the 

volume when its side chain enters the constriction, and subsequently increases the volume 

when its side chain binds to the inner nanopore surface (Fig. S9).

To quantitatively assess the distinguishability of peptide variants, we computed a so-called 

confusion matrix (Fig. 2D). Using a hidden Markov model, we quantified the relative 

likelihoods of the alignments to the three consensus sequences for 119 reads withheld 

from the consensus sequence generation, finding that we could identify the correct variant 

with an average of 87% accuracy (Supplemental Text §7). This high rate of correct single 

substitution identification compares favorably to early nanopore experiments, that identified 

single-nucleotide variants with significantly lower accuracy(18). Still, the limited single-read 

accuracy is an ongoing challenge in developing nanopore sequence analysis approaches, 

requiring the implementation of strategies to increase sequencing fidelity to acceptable 

levels (19, 21). The largest error modes in nanopore reads are due to random effects as 

enzymes step stochastically both forwards and backwards, and sometimes step too quickly 

to be clearly resolved, resulting in incorrect step identifications. In DNA sequencers, this 

random error is typically addressed by obtaining 20x coverage or more, averaging many 

independent reads of different molecules. However, for a truly single-molecule technology, 

single-read accuracy is essential.

Brinkerhoff et al. Page 4

Science. Author manuscript; available in PMC 2022 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The identification fidelity of our nanopore protein reader can be greatly increased by 

obtaining many independent re-readings of the same individual molecule with a succession 

of controlling helicases, eliminating the random errors that lead to inaccuracies in nanopore 

reads. At a very high concentration of helicase, on the order of 1 μM, the DNA in the pore 

nearly always had a second helicase queued up behind the one controlling its motion (Fig. 

3A)(22). When the first helicase reached the linker at the end of the DNA section, it could 

no longer process the molecule and subsequently fell off. The DNA-peptide conjugate was 

then immediately pulled back into the nanopore such that the queued helicase, which was 

still bound to the DNA, took control as the new DNA-pulling enzyme. This ‘rewound’ 

the system and initiated a new and independent read of the peptide. The numbers of 

re-reads on the same single peptide can be very large: Fig. 3A shows an example of a 

raw data trace with 117 re-reads on a single peptide containing the G-substitution. This 

event was purposefully ended by the reversal of voltage to eject the DNA-peptide conjugate 

from the pore. We observed a typical rewinding distance of approximately 17 helicase 

steps, commensurate with a rewinding by a distance of ~17 amino acids, a number that is 

consistent with the ~9 DNA bases that are bound within the controlling helicase(17). Of the 

117 re-reads in Fig. 3B, 45 re-reads stepped back far enough to provide a re-read of the 

variant site.

We observed significant improvement of the read accuracy with an increasing number of 

re-reads (Fig. 3C). To quantify the increase in the accuracy of the readings as a function 

of the number of re-readings, we randomly chose subsets of the 45 measured re-reads and 

computed the identification accuracy using N re-reads as the fraction of subsets containing 

N re-reads that yielded the correct consensus identification (Supplemental Text §8). Even 

when single reads were limited to as low as ~50% identification accuracy due to only partial 

coverage of the variant site, the re-reading method allowed single molecules to be identified 

at high levels of confidence. As the inset to Fig.3C shows, the error rate decreased with the 

number of re-reads, yielding an undetectably low error rate (< 1 in 106) when using more 

than ~30 re-reads of an individual peptide. Analysis on re-read traces from other variants 

yielded similar results (Fig. S10).

The method described here provides an approach for reading single proteins with sensitivity 

to single-amino-acid changes, which is particularly powerful because of the re-reading 

mode of operation that reduces the stochastic error. Transforming this into a technology 

capable of de novo protein sequencing remains a substantial challenge. With any of 20 

amino acids at each position along the protein sequence and a read-head width(18) of 

~8 amino acids, the number of measurements required to build an ion-current-to-amino-

acid map is impractically large. However, many proteomics applications do not require 

de novo sequencing, but instead concern other forms of sequence analysis that rely on 

a priori knowledge of candidate sequences before decoding. These include identifying 

or “fingerprinting” proteins even in heterogeneous mixtures, mapping post-translational 

modifications, and measurements of small samples, which all involve comparing single-

molecule measurements to reference signals of known proteins and interesting variants.

Our methodology has several limitations, but these may be addressed experimentally. While 

the pore is capable of translocating heterogeneously charged peptides with neutral polar, 
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nonpolar, negative, and positive amino acids (Supplemental Text §9; sample reads shown in 

Fig. S11), highly positively charged peptides may not efficiently be translocated through 

the pore. Fortunately, analysis of the human proteome reveals that negatively charged 

stretches of protein sequence are more common than positively charged stretches(23), 

particularly in alkaline pH conditions like those used in our experiments. If needed, the 

MspA pore can be engineered to provide stronger electro-osmotic forces, which can exceed 

electrophoretic forces and translocate analytes regardless of charge(8, 24). The read length 

intrinsic to the technique, approximately 25 amino acids depending on the length of the 

DNA-peptide linker, does allow application of this method to many biologically relevant 

short peptides, such as 8–12 amino acid MHC-binding peptides(25). Additionally, this finite 

read length still represents an improvement over the <10 amino acid long peptide fragments 

used in mass spectrometry(26), and protein fragmentation and shotgun sequencing methods 

similar to those used in traditional protein sequencing can naturally be applied to this new 

technique. Technical modifications such as using a variable-voltage control scheme(19) have 

been shown to improve the accuracy of DNA sequencing, and the physical principle of this 

is equally applicable to peptide sequencing (Supplemental Text §10 and Fig. S12).

Reads of DNA-peptide conjugates like those presented here could be measured in high 

throughput with any existing commercially available nanopore sequencing hardware capable 

of accommodating MspA (e.g. the commercial MinION system) without requiring any 

re-engineering of the device, changing only the sample preparation and data analysis. 

Furthermore, our methodology retains the features that enabled the success of nanopore 

DNA sequencing: low overhead cost, physical rather than chemical sensitivity to small 

changes in single molecules, and the flexibility to be re-engineered to target specific 

applications. Overall, our findings comprise a promising first step towards a low-cost 

method capable of single-cell proteomics at the ultimate limit of sensitivity to concentration, 

with a wide range of applications in both fundamental biology and the clinic.
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Fig. 1: Reading peptides with a nanopore.
(A) The DNA-peptide conjugate consists of a peptide (pink) attached via a click linker 

(green) to an ssDNA strand (black). This DNA-peptide conjugate is extended with a typical 

nanopore adaptor comprised of an extender that acts as a site for helicase loading (blue) 

and a complementary oligo with a 3’ cholesterol modification (gold). (B) The cholesterol 

associates with the bilayer as shown in (a), increasing the concentration of analyte near 

the pore. The complementary oligo blocks the helicase, until it is pulled into the pore (b), 

causing the complementary strand to be sheared off (c), whereupon the helicase starts to 

step along DNA. (C) As the helicase walks along the DNA, it pulls it up through the 

pore, resulting in (a) a read of the DNA portion followed by (b) a read of the attached 

peptide. (D) Typical nanopore read of a DNA-peptide conjugate (black), displaying step-like 

ion currents (identified in red). The asterisks * indicate a spurious level not observed in 

most reads and therefore omitted from further analysis. The dagger † indicates a helicase 

backstep. (E) Consensus sequence of ion current steps (red), which for the DNA section is 

closely matched by the predicted DNA sequence (blue). The linker and peptide sections are 

identified by counting half-nucleotide steps over the known structural length of the linker. 

Error bars in the measured ion current levels are errors in the mean value, often too small 
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to see. Error bars in the prediction are standard deviations of the ion current levels that were 

used to build the predictive map in previous work(19).
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Fig. 2: Detection of single amino acid substitutions in single peptides.
(A) Consensus ion current sequences for each of the three measured variants (D, gold; 

W, red; G, blue), which differ significantly at the site of the amino acid substitution. (B) 

Difference in ion current between the W (red) and G (blue) variants and the D variant. 

Error bars are standard deviations. (C) Confusion matrix showing error modes of a blind 

classifier in identifying variants of reads, demonstrating an 87% single-read accuracy. (D) 

All-atom model where a reduced-length MspA pore (grey) confines a polypeptide chain 

(Glu: green, Asp: light blue; Cys: beige). The top end of the peptide is anchored using a 

harmonic spring potential, representing the action of the helicase at the rim of a full-length 

MspA. Water and ions are shown as semitransparent surface and spheres, respectively. (E) 

Top: Ionic current in MspA constriction versus z coordinate of the mutated residue backbone 

from MD simulations. Bottom: Fraction of nanopore construction volume available for ion 

transport. Vertical and horizontal error bars denote standard errors and standard deviations, 

respectively. (G,H) Representative molecular configurations observed in MD simulations 

of peptide variants. Glycine and tryptophane residues are shown in dark blue and red, 

respectively. Significant peptide/pore surface interactions are observed.
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Fig. 3: Re-reading of a single peptide.
(A) Highly repetitive ion current signal corresponding to numerous re-reads of the same 

section of an individual peptide (in this case, the G-substituted variant). The expanded plot 

below shows a region that contains four rewinding events (red dashed lines), where the 

trace jumps back to level 52 ± 2 of the consensus displayed in Fig. 2A. (B) Re-reading 

is facilitated by helicase queueing, where (a) a second helicase binds behind the primary 

helicase that controls the DNA-peptide conjugate, re-reading starts when (b) the primary 

helicase dissociates, and (c) the secondary one becomes the primary helicase that drives a 

new round of reading. (C) By using information from multiple re-reads of the same peptide, 

the identification accuracy can be raised to very high levels of fidelity. These results indicate 

that with sufficient numbers of re-reads, random error can be eliminated and single-molecule 

error rate can be pushed lower than 1 in 106 even with poor single-pass accuracy. Inset is a 

logarithmic plot of the error rate = 1 - accuracy.
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