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Discovery of Lead-Free Perovskites for High-Performance
Solar Cells via Machine Learning: Ultrabroadband
Absorption, Low Radiative Combination, and Enhanced
Thermal Conductivities

Xia Cai, Yiming Zhang, Zejiao Shi, Ying Chen, Yujie Xia, Anran Yu, Yuanfeng Xu,
Fengxian Xie, Hezhu Shao, Heyuan Zhu, Desheng Fu, Yiqiang Zhan,* and Hao Zhang*

Exploring lead-free candidates and improving efficiency and stability remain
the obstacle of hybrid organic-inorganic perovskite-based devices
commercialization. Traditional trial-and-error methods seriously restrict the
discovery especially for large search space, complex crystal structure and
multi-objective properties. Here, the authors propose a multi-step and
multi-stage screening scheme to accelerate the discovery of hybrid
organic-inorganic perovskites A2BB′X6 from a large number of candidates
through combining machine learning with high-throughput calculations for
pursuing excellent efficiency and thermal stability in solar cells. Followed by a
series of screenings, the structure-property relationships mapping A2BB′X6

properties are built and the predictions are close to reported experimental
results. Successfully, four experimental-feasibly candidates with good stability,
high Debye temperature and suitable band gap are screened out and further
verified by density-functional theory calculations, in which the predicted
efficiency for three lead-free candidates ((CH3NH3)2AgGaBr6,
(CH3NH3)2AgInBr6 and (C2NH6)2AgInBr6) achieves 20.6%, 19.9% and 27.6%
due to ultrabroadband absorption region ranging from UVC to IRC with
excitonic radiative combination rates as low as 10 ps, large or intermediate
polarons form with properties similar to CH3NH3PbI3 and the calculated
thermal conductivities are 5.04, 4.39 and 5.16 Wm−1K−1, respectively, with
Debye temperatures larger than 500 K, beneficial for suppression of both
nonradiative combination and heat-induced degradation.
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1. Introduction

Hybrid organic–inorganic perovskites
(HOIPs) represented by CH3NH3PbX3 as
promising next-generation photovoltaic
materials have attracted great attention
in recent years and have revolutionized
solar cells since in 2009 Kojima et al.
first successfully reported with a power
conversion efficiency (PCE) of 3.8%.[1]

The PCE of HOIPs-based photovoltaic
system has increased to 25.5% in only 10
years.[2] In addition to further improving
PCE of HOIPs, many efforts have been
done, such as 2D/3D mixed dimensional
perovskite,[3–5] charge transport layer
modification,[6–8] interlayer insertion,[9,10]

and post encapsulation[11] to restrain
HOIPs decomposing into Pb2 + compos-
ites. However, due to the limited impacts of
these works on material intrinsic stability,
Pb2 + eventually poisons the earth after a
long period time scale.[12–14] Pb substitution
is a widely accepted concept to wipe out the
toxic issue from HOIPs. Another concern
is the intrinsic instability of perovskite. In-
dustry market standard requires solar cells
to work steady over 25 years in ambient.[15]
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Light- and heat-induced degradation have been integrally studied
and proved to be two major issues in HOIPs.[16–18] For example,
CH3NH3PbI3 can be easily degraded due to the light-induced re-

action, that is, CH3NH3PbI3

hv
⇄ PbI2 + CH3NH2 ↑ + HI↑,[19] and

heat-induced degradation due to the thermal conductivity as low
as 0.5 Wm−1K−1 at room temperature,[20] respectively. After bak-
ing at over 150 oC, HOIPs easily go through an endothermic re-
action and decompose into its components like PbI2 and HI.[21,22]

The general solutions to thermal issue in device are to dissipate
accumulated heat efficiently by adding heat-dissipation layers,
while the complexity of device fabrication process increases.[23,24]

Generally, in materials, Debye temperature 𝜃D ∝ n( 𝜌
M

)1∕3vm, in
which n, 𝜌, M, and vm are the number of atoms per formula unit,
the crystal structure’s density, molar mass, and average sound
velocity, respectively, plays a key role in proxy for structure rigid-
ity and directly relates to the thermal conductivity. If perovskite
material possesses a high Debye temperature, generally leading
to high thermal conductivity, which is beneficial to rapidly dissi-
pate heat and conducive to the thermal stability of devices.[25,26]

High Debye temperature may decrease the non-radiative recom-
bination in solar cells as well, due to the high phonon ener-
gies. Therefore, HOIPs with the merits of lead free and high De-
bye temperature should be explored to pursuit the goal of excel-
lent efficiency and thermal stability in perovskite solar cells. The
double-perovskite A2BB′X6 named HOIDP with A the molecu-
lar cation, B/B′ the metal cation, and X the anionic bridging lig-
and, has emerged as a new class promising lead-free HOIPs, due
to diverse electronic structures and multiple material selections.
However, currently, most of the works on lead-free A2BB′X6 focus
on inorganic materials, for example, Cs2AgBiBr6, which mainly
suffers from the following problems: 1) its absorption is usu-
ally below 650 nm[27] which prevents the charge generation; 2)
low thermal conductivity of A2BB′X6 leads to high working tem-
perature of devices; 3) complex structures make it difficult to
maintain the lattice stability; 4) the formation of small polarons
or self-trapped excitons limits mobilities, thus suppressing dif-
fusion/drift lengths; 5) multiple material options lead trial-and-
error method work labor-intensive and time-consuming. There-
fore, the search for new A2BB′X6 HOIDPs with excellent perfor-
mance and good stability has become an urgent task.

Compared with the traditional trial-and-error approach to dis-
cover new materials based on scientists’ physical and chemical
intuition, the emergence of advanced techniques, such as high-
throughput computation based on density-functional theory
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(DFT) method, has greatly accelerated the search process.[28–32]

However, the inherent complexity of materials severely hinders
its efficiency due to the large-scale real-world chemical space.
Fortunately, the rapid advances in Materials Genome Project[33]

and artificial intelligence technologies offer exciting hope for
this dilemma.[34–49] Unlike first-principles approaches, machine
learning (ML) technique can be used smoothly to rapidly pre-
dict one or more target properties without relying on numer-
ically solving complex systems of quantum mechanical equa-
tions, once suitable material database is established and effi-
cient model is selected, which requires several orders of mag-
nitude fewer computational resources than traditional method.
Recently, ML technique has made significant progress in the de-
sign of rational materials, such as photovoltaic materials,[34–39]

catalysts,[40–42] lithium batteries,[43] and so on. Notably, many ma-
terials predicted by ML technique have been synthesized experi-
mentally and have shown excellent properties. These successful
attempts[44–49] have demonstrated that intelligent ML technique
bypassing intense DFT calculations or experimental trials can en-
able low-cost, fast, and highly accurate prediction of target mate-
rial properties, greatly accelerating material discovery.

In this work, we develop a multi-step material screening
scheme to accelerate the discovery of new lead-free HOIDPs
with enhanced thermal stability for high-performance solar cells,
by combining high-throughput DFT calculations with ML tech-
nique. The perovskite stability, band gap, and Debye tempera-
ture are selected as three target properties to step-wise screen the
chemical space. As the fundamental step for global search of pos-
sible HOIDPs candidates, a database containing 180 038 electri-
cally neutral compounds is firstly screened from a full chemical
space of elemental combinations in the periodic table based on
32 organic cations, and then the condition of structure stability is
used to screen out candidates with unstable structure. Third, dif-
ferent ML models are built for multi-goal and multi-stage screen
with high accuracy and the importance of relevant features on
learning goal is analyzed. Based on ML-predicted results some
orthorhombic-like HOIDPs candidates for light-harvesting appli-
cations stand out, and Br-based and environment-friendly candi-
dates are selected for further DFT validation. Finally, four lead-
free HOIDPs with enhanced thermal stability are picked out as
promising solar cell materials with appropriate band gap and
high Debye temperature.

2. Results

2.1. Material Screening Framework

In this work, we propose to use the multi-step material screen-
ing approach to discover novel hybrid organic–inorganic dou-
ble perovskites for photovoltaic application with good stability,
high Debye temperature, and suitable band gap. The workflow
of screening processes is schematically illustrated in Figure 1a.
In the first screening process of our material-search scheme, the
HOIDP compounds must satisfy the charge neutrality criterion,
and then tolerance factor and octahedral factor are used to evalu-
ate the structural stability of perovskite candidates. A large chem-
ical space for HOIDP candidates is generated subsequently.

The procedure of machine-learning screening for the gener-
ated large chemical space includes three parts: first, a regression

Adv. Sci. 2022, 9, 2103648 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2103648 (2 of 15)



www.advancedsciencenews.com www.advancedscience.com

Figure 1. The left chart for the process of discovering novel HOIDPs according to the combination of ML and DFT calculation for photovoltaic application
and the right chart for the composition and structure of perovskites in prediction set. Here, the combinations of 32 monovalent organic molecular
cations for A site, 9 monovalent, 49 divalent, and 35 trivalent B/B′-site cations, and 4 X-site anions cross the periodic table produce the set of unexplored
HOIDPs candidates. In the condition of charge neutrality, 180038 initial candidates are obtained. Then through the stability condition and ML method,
597 HOIDPs suitable for solar cells are chosen. Finally, electronic and other properties of these chosen candidates are further verified by DFT calculations,
and four ideal HOIDPs with good quality are finally selected.

model is built to obtain the average formation energy per atom
of HOIDPs, in order to judge the chemical stability of each com-
pound. Second, three regression models are built to predict the
band gap of HOIDPs to ensure the accuracy of the screening,
which can help identify candidates with the appropriate band gap.
In the parallel step, another regression model is built to pick the
candidates with high Debye temperature to select candidates with
large thermal conductivity and good thermal stability. A much
smaller set of HOIDP candidates is generated after the machine-
learning screening based on the formation-energy, band-gap and
Debye-temperature models. Finally, the accuracy of the predicted
small set is further verified by DFT calculation, including com-
puting the electronic property, formation energy, Debye temper-
ature and other properties for screening candidates.

2.2. Dataset and Modeling: High-Throughout Calculation of
Debye Temperature

Generally, in order to train a good ML model, a high-quality
training dataset is required. Data diversity is important for the
prediction accuracy of ML models. In addition to inert gas and
radioactive elements, the elements utilized in our training and
test sets cover almost the entire periodic table, which should be
reliable enough to realize accurate ML model. The input dataset
of this work composed of 4456 HOIDPs is obtained from high-
throughput DFT calculations.[31,32] All the selected compounds
possess the double perovskite structures with the chemical

formula of A2BB′X6. As shown in Figure 1b, the halogen atoms
X (X=F, Cl, Br, I) occupy the vertices of the corner-sharing BX6
or B′X6 octahedron. The elements of B and B′ can be same or
different, and the number of different B-site and B′-site cations
in our dataset is 20. 16 kinds of monovalent A+-site cations
are filled in the cavity formed by the adjacent octahedrons. In
order to define the feature vector of each A2BB′X6 compound,
95 features based on the main characteristics of elements listed
in Table S1, Supporting Information, are utilized to represent,
which can be obtained directly from the periodic table to facilitate
ML prediction.

The calculated formation energies of 4456 HOIDPs used as
the dataset for building formation-energy ML model are shown
in Figure S1a, Supporting Information, which plots the relation
between Goldschmidt tolerance factor (Tf) and formation energy.

The Tf is defined by RA+RX√
2(RB̄+RX )

, with RA and RX representing the

ionic radius of A cation and X anion, respectively, and RB̄ repre-
senting the average ionic radius of the B and B′ cations. Effective
radii[50] and Shannon’s ionic radii[51] are adopted for molecular
ions and atomic ions, respectively. As shown in Figure S1a, Sup-
porting Information, most of the chemically stable HOIDPs in
the dataset with the formation energies less than 0 eV atom-1 pos-
sess the Tf values ranging from 0.80 to 1.25, which is consistent
with the chemical tuition for perovskites that the appropriate tol-
erance factor Tf should be in the range between 0.8 and 1.2.[52–55]

The dependence of Tf on Perdew–Burke–Ernzerhof (PBE)
band gap of 4456 HOIDPs are shown in Figure S1b, Supporting
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Information, in which all the compounds can be divided into
three categories: metals (zero band gap, 3533), semiconductors
(band gap between 0 and 3.5 eV, 776), and insulators (band gap
lager than 3.5 eV, 147). We extract 425 compounds with direct
band gap and verify the band gap by PBE-DFT calculation, to con-
stitute the dataset for further modeling. Considering that PBE
method usually underestimates the band gap of semiconductor,
we also build the band-gap ML model based on the reported 663
compounds with accurate Heyd–Scuseria–Erzenhof (HSE) band
gap. Involving all the 95 features for the PBE/HSE band-gap
training dataset does not mean characterizing perovskites well,
since too many features sometimes increase the complexity of
ML model (called “curse of dimension”), leading to over fitting.
Thus, we also implement the process of feature selection to sim-
plify the inputs of model.

As we know, Debye temperature (ΘD) is the most reliable proxy
for structural rigidity, and the materials with higher ΘD tend to
have higher-energy phonon modes that decrease the probabil-
ity of non-radiative relaxation,[25,26] which is beneficial for the
enhancement of quantum coherence and device performances
in HOIDP-based solar cells. Generally, above ΘD, all phonons
in materials are excited. According to the slack model,[56] the
lattice thermal conductivity in materials can be estimated by

𝜅L = A × M̄Θ3
D𝛿

𝛾2n2∕3T
, where M̄ is the average mass per atom in the

crystal, 𝛿3 is the volume per atom, 𝛾 is the Grüneisen parame-
ter, n is the number of atoms in the primitive unit cell, and A
is a constant determined by 𝛾 , that is, A = 2.43⋅10−8

1−0.514∕𝛾+0.228∕𝛾2
. The

Grüneisen parameter (𝛾) can been calculated by 𝛾 = 3
2
(

1+vp

2−3vp
),[57]

where vp =
1−2(vT∕vL)2

2−2(vT∕vL)2
according to longitudinal (vL) and transverse

(vT) sound velocity found in Equation (17). Therefore, large De-
bye temperature leads to high 𝜅L. Due to computational intensity,
we only calculate Debye temperature for the 425 HOIDP com-
pounds with direct band gap.

The ML models for formation energies per atom, band gap
and Debye temperature built by seven ML algorithms are shown
in Figure S2, Supporting Information, in which black dots are
the values of determination coefficient (R2), red dots represent
mean square error (MSE), and blue dots are mean absolute er-
ror (MAE). The higher R2, the smaller MSE, the smaller MAE,
and the better performance of the trained model. As shown in
Figure S2a– d, Supporting Information, among the seven re-
gression algorithms, the GBR algorithm performs best among
these models, which gives R2/MSE/MAE of 0.990/0.021/0.013
eV atom-1, 0.920/0.307/0.241 eV, 0.870/0.384/0.278 eV, and
0.990/16.741/11.737 K for models of formation energy, PBE band
gap, HSE band gap, and Debye temperature, respectively.

2.3. Basic Screening

Herein, the common valence of element is considered to
use to calculate the charge neutrality of each candidate. In
this way, we first screen out a large number of non-neutral
compounds from the possible candidate compounds. Mono-
valent A+-site organic cation, divalent B2 +-site and B′2 +-site
cations and monovalent X−-site halogen anion or monova-
lent A+-site organic cation, monovalent B+-site cation, triva-

lent B′3 +-site cation, and monovalent X−-site halogen an-
ion are collected to generate possible HOIDP candidates.
Here, 32 different kinds of monovalent organic molecular
cations including CH3NH+

3 , HC(NH+
2)2

, C(NH+
2)3

, OHNH+
3 ,

CH3C(NH+
2)2

, C3H5N+
2 , (CH3)2NH+

2 , (CH3)3NH+, (CH2)3NH+
2 ,

CH3CH2NH+
3 , CH3CH2CH2NH+

3 , (CH3)4N+, (CH3)2CHNH+
3 ,

CH3(CH2)3NH+
3 , NH+

4 , NH2NH+
3 , C3H4NS+, C7H+

7 , (CH)4NH+
2 ,

C(CH3)2CH2NH+
2 , (CH3)2(CH2)2NH+

2 , C(CH)5NH+
3 , C2NH+

6 ,
C2OH+

5 , C3OH+
7 , C4NH+

10, C4OH+
9 , C5OH+

12, C6NH+
14, C6OH+

13,
NC4H+

8 , C5NH+
12, are used in A+ site, which are shown in the top

of Figure 1b. Meanwhile, 9 monovalent B+-site cations (Li, Na, K,
Rb, Cs, Cu, Ag, Au, Tl), 49 divalent B2 +-site and B′2 +-site cations
(Be, Mg, Sr, Ba, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re,
Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Zn, Cd, Hg, Si, Ge, Sn,
Pb, Ca, Eu, Tm, Yb, Sm, P, Sc, As, Y, In, Sb, Au, Tl, Bi) and 35
trivalent B′3 + site cations (Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, B, Al,
Ga, In, Tl, As, Sb, Bi) are employed. The list of atoms at B-, B′-,
and X-site are shown in the periodic table of Figure 1b. Accord-
ing to the rule of charge neutrality, 180 038 electrically neutral
HOIDPs are firstly generated.

Then, we conduct further screening regarding the structural
formability of the firstly generated candidates, based on Tf and

the octahedral factor (Of)
[58] given by RB̄

RX
. As mentioned above, to

form a stable perovskite structure, generally, Tf and Of have val-
ues of 0.8 ≈ 1.2 and 0.4 ≈ 0.7, respectively.[52–55] Thus, 25983 com-
pounds with structural formability are selected from the 180 038
charge neutral candidates, which can be used to conduct further
prediction with ML method.

2.4. Model Inference

2.4.1. Chemical Stability: Formation Energy

The comparison of predicted formation energies with those in
test dataset for GBR model is shown in Figure 2a, which are ba-
sically coincident. The inset shows the percent error between pre-
dicted △HML and △HDFT of 95% compounds is less than 10%.
The SHAP (Shapley Additive exPlanations) method is used to fur-
ther interpret our model,[59] which is a generalized metric for
feature importance and employ the game-theory-based Shapley
values to obtain the contribution of each feature to the model’s
output. The top 15 features are displayed in Figure 2b, which are
listed by the ranking importance, that is, the heat of formation of
X site (Hfh

X ), the electronegativity of X site (𝜒x), molar mass (M),
the Mendeleev’s number of B site (Nmen

B ), and the first ionization
energy of B and B′ sites (Eip

B and Eip
B′ ).

Overall, as shown in Figure 2b, instead of the traditional
chemical tuition of Tf and Of for structural formability of per-

ovskites, the features from B, B′ and X sites, that is, Hfh
X , 𝜒x, M,

Nmen
B , Eip

B , and Eip
B′ , rank top six in determining the formation

energy, revealing the dominant role of the BX6 and B′X6 octa-
hedrons in the chemical stabilities of A2BB′X6 perovskites. The
heat of formation Hfh

X and electronegativity 𝜒x of X-site halogen
atom play the key role in △HML, which is consistent with the
widely-accepted point that the structural stability of HOIDPs is
roughly affected by the geometric criteria Tf and B − X bonding
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Figure 2. The chart results from formation-energy ML model. a) Actual formation energy per atom △HDFT in the test set and predicted formation energy
per atom △HML. Pearson coefficient (r), Coefficient of determination (R2), mean squared error (MSE), and mean absolute error (MAE) are computed
to estimate the prediction errors. The ideal line shown as red line is about ideal prediction result and the fit line shown as dark line is about actual
prediction result. These two lines basically coincide. The inset is the fraction of compounds according to their percent error between predicted △HML

and △HDFT. The red curve shows the trend. b) The feature importance ranking produced from the gradient boosting regression and SHAP library,
showing the elemental properties in descending order of importance. All samples in the dataset are presented and a point in the graph is corresponding
to a sample. The x-axis labeled as the SHAP value represents the impact of features on formation energy. The red and blue color indicate high and low
values of a given feature, respectively. c) The prediction of formation energy for all electrically neutral candidates with molar mass of compound.

strength,[60] and the latter is usually determined by the difference
of electronegativity and distance between bond partners. The
X-resolved dependence of △HML on M are shown in Figure 2c,
which reveals that △HML of X-based HOIDPs possess the re-
lationship of △HML

F <△HML
Cl <△HML

Br <△HML
I , confirming

that stronger electronegativity of halogen atom at X site or lighter
molar mass M leads to lower formation energy. Based on the
model of formation energy, we can obtain the formation energy
of each candidate and reduce the number of candidates to 17 051,
by excluding compounds with formation energies larger than
-0.2 eV atom-1.

2.4.2. Electronic and Optical Properties: Band Gap

The electronic and optical properties of semiconducting per-
ovskite solar cells are fundamental to understand or further
manipulate their interactions with light, and the production,
transport, collection, and recombination of photo-generated
non-equilibrium carriers. For large absorption coefficients the
HOIDPs are required to possess direct band gap, since the op-
tical transition of electrons for indirect-bandgap semiconductors
inevitably involves phonons to meet the conservation of momen-
tums, which leads to very weak absorption. Furthermore, the p
→ p transition for electrons from valence band (VB) to conduc-
tion band (CB) in direct-bandgap semiconductors is highly ben-
eficial for large absorption coefficient. As we know now, the VB
of HOIP, for example, CH3NH3PbX3 (X = F/Cl/Br/I), is usually
formed by the antibonding states of X − p and B/B′ − s atomic
orbitals, while the CB is formed by the antibonding states of X −
p and B/B′ − p atomic orbitals,[61] as shown in Figure 3a. Since
both VB and CB possess p −orbitals, the absorption coefficients
for directly semiconducting HOIPs are generally large, beneficial
for large PCE.

Here, we only consider HOIDPs with direct band gap. The
GBR model for PBE band gap shown in Figure 3b reveals a good
match between the predicted band gap and PBE-calculated ones
in the test set. By using GBR model to record the feature impor-
tance and combining “last-place elimination” algorithm,[35] the
feature selection based on importance is achieved, as shown in

Figure 3c. Each lavender dot is R2 value of GBR model during
each selection process, each cyan dot represents MSE value, and
each khaki dot denotes MAE value. Obviously, R2 abruptly de-
creases, and MSE and MAE abruptly increase when the number
of feature is smaller than 32. So we select these 32 features as im-
portant features for PBE band-gap model, as shown in Figure S3,
Supporting Information.

The top 10 important features are Rion
X − Rion

B̄
, 𝜒B, 𝜒B′ ,

Rion
X ∕Rion

B̄
(= 1∕Of ), MA, M, Of, Nproton

X , NA, and PA, which man-
ifest the key role of B/B′- and X-sites in the formation of band
gap, consistent with the aforementioned discussions. Since the
VB and CB of HOIDPs are dominantly attributed to the atomic
orbitals of B/B′ and X atoms, large energy-level differences ΔE
between B/B′ − s/p orbitals and X−s/p orbitals lead to large band
gap, as shown in Figure 3a, Supporting Information. The s/p
orbital energies for the halogen elements of F/Cl/Br/I can be

calculated by the Rydberg model, that is, E =
−Z2

eff

n2
13.6eV , with

Zeff and n representing the effective nuclear charge and principal
quantum number. The values of the orbital exponents 𝜁 for neu-
tral halogen atoms, defined as 𝜁 = Zeff/n, are obtained as listed
in Table S2, Supporting Information, then the s/p orbital ener-
gies can be calculated as E3p

Cl = −56.52eV > E4p
Br = −69.28eV >

E5p
I = −73.33eV > E3s

Cl = −75.49eV > E2p
F = −88.43eV > E2s

F =
−89.41eV > E4s

Br = −94.66eV > E5s
I = −97.74eV . When F → Cl →

Br → I, Rion
X and Nproton

X increase, as well as the absolute values of
the energy-level Es∕p

X of X atoms. When the Mendeleev’s number
of B/B′ atoms Nmen

B∕B′ decreases, generally Rion
B decreases and 𝜒B∕B′

increases, and the absolute values of energy Es∕p
B∕B′ of B/B′ − s/p

orbitals decrease. The X-resolved dependences of band gap on
Rion

X − Rion
B̄

and M are shown in Figure 3d,e, respectively, which
reveal that, as F → Cl → Br → I, Rion

X − Rion
B̄

and M increase,
and the band gap reduces, resulted from the decrease of energy
difference ΔE between B/B′ − s/p and X−s/p atomic orbitals.
The X-resolved dependence of band gap on octahedral factor
Of is shown in Figure 3f, which reveals that, as Of increases,
indicating enhanced octahederal distortions in HOIDPs, band
gap increase, which is due to the reduction of overlap between
B/B′ − s/p orbitals and X−s/p orbitals by enhanced octahederal
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Figure 3. a) Schematic illustration of the band diagram for HOIDPs. The results of GBR model for band gap EPBE
g b) the actual value of band gap EPBE

g

by DFT in the test set and the predicted value EPBE
g by ML. Pearson coefficient (r), coefficient of determination (R2), mean squared error (MSE), and

mean absolute error (MAE) are calculated to explain the training performance of the built model. The ideal line is shown as red line and the fit line is
shown as dark line. The inset is the fraction of compounds according to their percent error between predicted EML

g and actual EDFT
g . c) The values of R2,

MSE, and MAE of GBR model with the number of selected features. Relationship visualization of the prediction of band gap for all electrically neutral
HOIDP candidates with d) the difference of ion radius between X and B/B′ sites Rion

X − Rion
B̄

, e) molar mass M, and f) octahedral factor Of, respectively.
Different colors represents different X-site halogen elements.

distortion, responsible for widening band gap. Similar analysis
can be conducted on the influences from 𝜒B and 𝜒B′ .

To further analyze the correlation among the selected 32 fea-
tures, the Pearson correlation coefficient is calculated, which can
produce the positive and negative correlation between one pair
of features, and the results are shown in the inset of Figure S3,
Supporting Information. If the correlation value between two fea-
tures exceeds 0.8, the features with lower importance will be
deleted in order to further reduce the redundancy of features.
As shown in Figure S4, Supporting Information, through feature
pruning process, the total number of features is decreased to 14
and the top 10 important features before pruning is decreased to
6 (Rion

X − Rion
B̄

, 𝜒B, 𝜒B′ , MA, M, Of).
In addition, as mentioned above, PBE calculations always un-

derestimate the band gap for semiconductors, therefore, we also
select HSE-calculation results to obtain precise band gap for
semiconducting HOIDPs and build ML model for HSE band
gap. The related prediction performance is shown in Supporting
Information, and the calculated R2, MSE, and MAE are 0.870,
0.384, 0.278, respectively, as shown in Figure S5a, Supporting
Information. Compared with EPBE

g model, the top ten impor-

tant features for ML-models of HSE-bandgaps are M, Rion
X − Rion

B̄
,

the Mendeleev′s number of B′ and B, that is, Nmen
B′ and Nmen

B ,

Rion
X + Rion

B̄
, 𝜒B′ , 𝜒B, Rion

X ∕Rion
B̄

, PA and Of as shown in Figure S5b,
Supporting Information, which are nearly identical with those for
EPBE

g models.
We apply these ML-bandgap models to predict the band gap of

17051 HOIDP candidates screened on basis of formation energy,
and 1183 candidates with band gap ranging from 0.6 to 2.2 eV
and from 1.1 to 3.0 eV, respectively, for EPBE

g and EHSE
g beneficial

for light harvesting and PCE of PSCs are generated.

2.4.3. Thermal Properties: Debye Temperature

Although currently CH3NH3PbX3-based PSCs are extensively
used for photovoltaics, they not only suffer from the structural
instabilities in ambient environment and toxicity due to lead,
but also suffer from low lattice thermal conductivity 𝜅L due to
low Debye temperatures ΘD around 200 K,[62] which may lead
to decomposition of the crystals due to heat accumulation. Ma-
terials with low ΘD tend to have low-energy phonon modes, and
enhance phonon-phonon scattering processes since over ΘD all
phonons are excited, leading to the decrease of 𝜅L according to
Slack model, and the increase of the probability of non-radiative
relaxation time, the latter of which directly decreases PCEs of
PSCs. Therefore, the materials with high ΘD are highly expected
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Table 1. Twelve selected HOIDPs with relevant properties, where c and p represent calculated and predicted results, respectively, and p − EPBE1
g and EPBE2

g
represent the predicted results from the PBE band gap models of 4456 and 425 HOIDPs, respectively.

Formula Tf Of c − ΔH c − ΘD c − EPBE
g /EHSE

g c − 𝜅L Direct/Indirect p − ΔH p − ΘD p − EPBE1
g /EPBE2

g /EHSE
g

(CH3NH3)2AgAlBr6 1.02 0.54 -0.42 544.9 1.57 / 2.94 5.49 Direct -0.41 525.3 0.67 / 1.73 / 2.99

(CH3NH3)2AgGaBr6 1.00 0.56 -0.37 518.3 0.93 / 1.97 5.04 indirect -0.36 511.0 0.86 / 1.60 / 2.48

(CH3NH3)2AgInBr6 0.97 0.61 -0.38 496.9 0.51 / 1.70 4.39 Direct -0.36 502.5 0.43 / 0.73 / 2.12

(HC(NH2)2)2AgGaBr6 1.11 0.56 -0.45 521.4 2.35 / 3.84 4.63 Direct -0.40 525.6 0.65 / 2.59 / 2.94

(C2NH6)2AgTiBr6 1.02 0.56 -0.49 572.9 0.00 /2.49 5.73 Indirect -0.43 554.9 0.93 / 1.82 / 2.52

(C2NH6)2AgAlBr6 1.03 0.54 -0.47 577.4 1.85 / 3.29 5.74 Indirect -0.39 555.3 1.61 / 1.78 / 2.97

(C2NH6)2AgInBr6 0.99 0.61 -0.44 535.5 1.13 / 2.48 5.16 Indirect -0.31 515.0 1.24 / 1.60 / 2.47

(C2OH5)2AgAlBr6 1.04 0.54 -0.99 545.1 1.86 / 3.20 5.37 Indirect -0.70 523.7 1.42 / 1.68 / 2.93

(C2NH6)2TiTiBr6 1.13 0.41 -0.75 628.6 0.00 / 1.67 6.96 Indirect -0.62 591.2 0.93 / 1.80 / 2.01

(C2NH6)2TiMnBr6 1.12 0.43 -0.35 618.4 0.00 / 2.62 6.53 Indirect -0.31 586.6 0.93 / 1.78 / 2.40

(C2NH6)2TiZnBr6 1.10 0.45 -0.48 581.2 0.00 / 1.70 5.77 Indirect -0.41 571.6 0.85 / 1.59 / 1.94

(C2NH6)2TiGeBr6 1.15 0.39 -0.45 578.9 0.00 / 1.02 5.59 Indirect -0.27 560.8 0.82 / 1.57 / 1.87

for the design of high-efficiency and highly stable PSCs. Accord-
ing to the formulae for ΘD shown as Equation (15), ΘD value is
related to the bond strength in crystals.

Based on the high-throughput calculation of Debye tempera-
tures for 425 HOIDPs, GBR model predicts ΘML

D well matched
with the calculated ΘDFT

D as shown in Figure S7a, Supporting In-
formation. Based on the feature-importance selection process as
shown in Figure S6b, Supporting Information, 28 important fea-
tures are selected as shown in Figure S7b, Supporting Informa-
tion. The top ten important features are 𝜒X, Rion

X + Rion
B̄

, Eip
X , M,

Rion
X , Tf, Nproton

X , Epa
X , Nperiod

X , and Rs+p
X , which manifest the impor-

tant role of corner-sharing B/B′X6 octahedra in determining ΘD,
and five of them are sharing with those for the ML model of for-
mation energy. We also calculate the Pearson correlation value
between Debye temperatures and formation energies, and the
calculated result is 0.42, indicating the high correlation between
ΘD and ΔH, which is due to the similar underlying mechanism
of B/B′ − X bond strength for ΘD and ΔH.

The X-resolved dependence of ΘD on 𝜒X, M, Tf, and Of is
shown in Figure S8a– d, Supporting Information, respectively.
As shown in Figure S8a,b, Supporting Information, as F → Cl
→ Br → I, the value of 𝜒X decreases, and as a result B/B′ − X
bonds weaken, as well M increases, leading to the decrease of ΘD.
Similar tendency regarding X-site contribution to ΘD can be ob-
served in Figure S8c,d, Supporting Information. Different from
those in case of ΔH, the Goldsmith tolerance factor Tf, which
indicates the deviation of HOIDP structures from cubic crystal,
also plays an important role in determining ΘD, as shown in Fig-
ure S8c, Supporting Information, which reveals that, as Tf in-
creases, ΘD increases. According to the ML model for ΘD, we
select 597 HOIDPs from 1183 candidates, whose Debye tempera-
ture is higher than 500 K (much larger than ΘD of CH3NH3PbX3
crystal).

3. Discussions

It is worth to mention that three compounds ((CH3NH3)2AgSbI6,
(CH3NH3)2AgBiBr6, and (CH3NH3)2TlBiBr6) from 1183 HOIDP

candidates screened from the criteria of formation energy and
band gap have been experimentally synthesized, and the pre-
dicted HSE-bandgaps for them are quite close to the experimen-
tally observed ones, as shown in Table S3, Supporting Informa-
tion, validating the precision of our ML models. After screen-
ing the HOIDP candidates with the chemical space of 180 038
by formation energy less than -0.2 eV atom-1, PBE/HSE band
gap ranging from 0.6/1.1 to 2.2/3.0 eV and Debye temperatures
larger than 500 K, 597 HOIDP candidates are subsequently se-
lected, which are probable to possess chemical stability, appro-
priate band gap and good thermal transport property. Further-
more, considering selecting non-toxic elements and accessible
Br-based HOIDPs in experiments,[63] 12 rhombohedral Br-based
HOIDPs are finally selected for further detailed investigations on
their electronic, optical, photovoltaic, and thermal properties by
DFT calculation.

Since different elements occupy the vertices of the regular
corner-sharing BX6 and B′X6 octahedra and the lone-pair elec-
trons of the B/B′-site ions leads to the coordination symmetry
breaking, all these 12 undetected HOIDPs have different de-
grees of distorted BX6/B′X6 octahedra, although they possess
typical perovskite structures as listed in Table S4, Supporting
Information. The calculated octahedral factors Of for these
12 HOIDP candidates are listed in Table 1, which reveals a
larger Of for Ag-based HOIDPs compared to Ti-based HOIDPs.
The calculated formation energies for them are smaller than
-0.35 eV atom-1, most of which are well smaller than those of
CH3NH3PbI3 (-0.39 eV atom-1[32]), confirming their chemical
stabilities.

The PBE/HSE calculations of band gap for these 12 HOIDP
candidates are listed in Table 1 as well, which are in good agree-
ment with ML-predicted ones for Ag-based HOIDP candidates,
but PBE calculations give zero band gap for Ti-based HOIDP can-
didates. However, HSE calculations give band gap well matched
with those predicted by HSE ML-model for all these 12 HOIDPs.
By using the criterion of HSE band gap ranging from 1.1
to 3.0 eV and excluding Ti-based HOIDPs, four HOIDPs of
(CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6,
and (C2NH6)2AgInBr6 are selected in the end as shown in
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Figure 4. a–d) DFT optimized crystal structure, e–h) the calculated electronic band structures, i–l) orbital-resolved-pCOHP, m–p) the variation of total
energy and crystal structure during 5 ps AIMD simulations at room temperature for selected four HOIDPs (CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6,
(CH3NH3)2AgInBr6, and (C2NH6)2AgInBr6, respectively.

Figure 4a–d, respectively. The PBE-calculated bandstructures for
these four HOIDPs are shown in Figure 4e–h, respectively, which
reveals that, (CH3NH3)2AgAlBr6 and (CH3NH3)2AgInBr6 pos-
sess direct band gap, and the HSE-calculations of band gap
give 2.94 and 1.70 eV, respectively, well consistent with ML-
predicted ones as listed in Table 1. Since the difference of the
band gap for these two HOIDPs is large, therefore the band gap
for (CH3NH3)2AgAlxIn1 − xBr6 can be tunable by manipulating
the Al ratio according to the bowing effect.[64] In addition, the
hole or electron effective mass of these 12 HOIDP candidates
in x/y/z direction are different as listed in Table S5, Support-
ing Information, and the average of hole effective mass is usually
higher electron’s except (CH3NH3)2AgGaBr6, (C2NH6)2TiTiBr6,
and (C2NH6)2TiZnBr6, which indicates the hole extraction in
transport layer is more difficult and employing excellent hole

transport layer will lead to high photovoltaic performance in the
actual PSC design.

To further reveal the chemical bonding states for VB and CB in
(CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6,
and (C2NH6)2AgInBr6, we also use the crystal orbital Hamilton
population (COHP) method proposed by Bloechl et al.[65] to
calculate their Hamiltonian elements with positive/negative
values indicating the bonding/antibonding states between cho-
sen atomic orbitals. The calculated orbital-resolved -pCOHP for
these four HOIDPs are shown in Figure 4i–l, which reveals that
the CBs in all these HOIDPs are dominantly formed by the anti-
bonding states of B′ − s and Br − p, B′ − s and Br − s, and B − s
and Br − s, with B = Ag and B′ = Al/Ga/In, and the VBs for these
four HOIDPs are dominantly formed by the antibonding states
of B′ − p and Br − s. Similar to the case in CH3NH3PbI3 men-
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tioned above, the absorption coefficients of these four HOIDPs
will be beneficial from the p orbitals involved in their CBs and
VBs. In addition, we also calculate the electron localization func-
tion (ELF), which is position-dependent with the value ranging
from 0.0 to 1.0. The value of unity for ELF reflects maximum
probability to find the localized electrons, ELF = 0.5 corresponds
to the electron-gas-like pair behavior for electrons, and the value
less than 0.5 of ELF means electrons are emptied from this po-
sition. The calculated ELFs for these four HOIDPs are shown in
Figure S9, Supporting Information, which reveals that electrons
are emptied from the B/B′ metal-atom sites and accumulated
at the X halogen-atom sites, indicating that B/B′ − X bonds are
essentially ionic.

We also conduct AIMD simulations to investigate the ther-
mal stability of these four HOIDPs at 300 K for the total simu-
lation time of 5 ps with a time interval of 1 fs, as shown in Fig-
ure 4m–p, which reveal that during simulation time, their time-
dependent total energies fluctuate in a narrow range and the crys-
tal structures remain integrated, indicating their thermal stabili-
ties at 300 K. Furthermore, for the results of time-dependent evo-
lution of XRD simulations, as shown in Figure S10, Supporting
Information, no shift diffraction peaks appear, which further con-
firms that these selected HOIDPs have no change in structure
and keep their structural integrity in the process of simulations.
In addition, we calculate the general tolerance factor proposed
by Filip et al.[66] for these four HOIDPs to check the limits of
stretch, octahedral, tilt, and chemistry shown in Table S6, Sup-
porting Information, which indicates that (CH3NH3)2AgGaBr6,
(CH3NH3)2AgInBr6, and (C2NH6)2AgInBr6 meet the stability cri-
teria for double perovskites. Furthermore, the H2O adsorption
energy of four selected HOIDPs estimated by Eads = Eslab+H2O −
Eslab − EH2O, with Eslab+H2O, Eslab, and EH2O the total energies of
H2O adsorbed perovskite slab, perovskite slab, and the isolated
H2O molecule, respectively, is calculated to check the stabil-
ities against H2O. The H2O molecule is adsorbed along the
z-direction of perovskite slab with the vacuum thickness of

18
◦

A. Comparing with CH3NH3PbI3 whose H2O-adsorption en-
ergy is -0.48 eV, (CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6, and
(CH3NH3)2AgInBr6 show better environmental stability against
H2O with Eads of -0.32, -0.42, and -0.04 eV, respectively. H2O-
adsorption energy for (C2NH6)2AgInBr6 is -1.87 eV.

For accurate calculation of device performance of PSCs, for
example, PCE, we also calculate the quasi-particles (QP) band
structures for excited states based on many-body perturbation
theory (MBPT) and obtain the optical absorption by considering
many-body electron–hole interactions. We use one-shot G0W0
method to calculate the QP states based on the calculated Kohn–
Sham (KS) orbitals implemented in Quantum Espresso software
package,[67,68] and on top of QP states, the electron–hole excita-
tion states for these four HOIDPs can be calculated using the
G0W0+BSE method combined with the Tamm–Dancoff approx-
imation method, which are implemented in Yambo.[69] By the
summation of respective contribution from a large number of
electron-hole pairs according to Equation (9), the imaginary part
of the dielectric constant ϵ2 can be obtained, and the absorption
can be subsequently calculated as well.

The calculated QP band gap for (CH3NH3)2AgAlBr6,
(CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6, and

Figure 5. Energy-dependent optical absorption calculated by G0W0+BSE
of selected four HOIDPs a) (CH3NH3)2AgAlBr6, b) (CH3NH3)2AgGaBr6,
c) (CH3NH3)2AgInBr6, and d) (C2NH6)2AgInBr6. The gray line indicates
the QP bandgap.

(C2NH6)2AgInBr6 are 2.12, 1.30, 0.71, and 1.76 eV, respec-
tively. As shown in Figure 5, the calculated absorption with
and without considerations of electron–hole interactions
for the selected four HOIDPs, are plotted by red and green
lines, respectively. Obviously, the contribution from electron–
hole interactions influences the optical absorption signifi-
cantly, and no excitonic absorption peak can be observed in
(CH3NH3)2AgAlBr6 crystal, as shown in Figure 5a. The ab-
sorption spectra for (CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6,
(CH3NH3)2AgInBr6, and (C2NH6)2AgInBr6 cover the ultra-
broadband region ranging from 180/163/180/143 nm to
496/1127/2480/775 nm, respectively. Notably, the absorption
spectra for all the four HOIDPs cover the major part of the
solar-energy spectrum as shown in Figure 5, especially for
(CH3NH3)2AgGaBr6 and (C2NH6)2AgInBr6, indicating their
abilities to efficiently harvesting the solar energy by photovoltaic
effects similar to CH3NH3PbI3. The excitonic peaks within
the QP bandgap for (CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6,
and (C2NH6)2AgInBr6 locate at 1.22, 0.54, 1.70 eV, respectively,
denoted by red arrows as shown in Figure 5, and the correspond-
ing excitonic binding energies defined as the energy difference
between the excitonic eigenenergy and QP bandgap, are 0.08,
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Figure 6. Exciton lifetimes induced by many-body interactions for selected HOIDPs. The gray line is QP band gap and the circle radius shows the
contribution from exciton to excitonic absorption peak.

0.17, and 0.06 eV, respectively, which are comparable to 0.05 eV
for CH3NH3PbI3 crystal.[70] Among them, the relatively large
binding energy of 0.17 eV in (CH3NH3)2AgInBr6 is observed, im-
plying the potential applications for light-emission devices. The
vanishing excitonic absorption peaks or small excitonic binding
energies for these four HOIDPs imply easy dissociation of pho-
togenerated excitons, which is beneficial for high-performance
PSC devices. The calculated energy-dependent optical absorp-
tion of CH3NH3PbI3 is shown in Figure S12, Supporting
Information, for comparison. In addition, we also conduct the
analysis on the selection rule for optical transition based on the
group-theory argument for four HOIDP candidates which is
provided in Tables S7-S10, Supporting Information. Actually, for
the four candidates, the transitions of valence-band electrons at
some high-symmetric points in the Brillouin zone are allowed,
and some are forbidden, which means that, not all the optical
transition between valence bands and conduction bands are
forbidden restricted by the parity-induced dipole-forbidden
rule. Although the optical transition between VBM and CBM is
forbidden in some double perovskites, those transitions around
the band edge are still allowed due to the C1 symmetry, thus the
optical properties can be still significantly large.

As we know, the creation of the tail states in the band edge
of materials generates serious increase of open-circuit voltage
losses Vloss, which can be characterized quantitatively through the

evaluation of absorption tail, expressed by 𝛼 = 𝛼0 + e( E
Eu

), where
𝛼 is the absorption coefficient, E is the photon energy, and Eu
is the Urbach energy.[71] The Urbach energy is presumed as the
width of the tail of localized defect states in the band gap. It has

already been reported that Eu shows a direct correlation with Vloss
and the smaller Eu (i.e., sharper absorption edge) is beneficial to
suppressing Vloss. Based on the absorption curves calculated by
the precise G0W0+BSE method for the four selected candidates,
we calculate their Urbach energies Eu by fitting the reciprocal of
the slope of ln(𝛼), which gives 58.0, 18.3, 18.1, and 28.9 meV for
(CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6,
and (C2NH6)2AgInBr6, respectively, as shown in Figure S13, Sup-
porting Information, in comparison to the case for CH3NH3PbI3
as shown in Figure S14, Supporting Information, giving
Eu of 21.9 meV consistent with the experimental result of
11.3 meV.[72]

The calculated exciton-resolved radiative combination rates 𝜏R
at room temperature according to Equation (12) for these four
HOIDPs are shown in Figure 6, in which the circle radius is
proportional to the oscillator strength for the corresponding exci-
ton. The stronger oscillator strength leads to larger contribution
from the exciton to the excitonic absorption peak. As shown in
Figure 6, 𝜏R is isotopic irrespective of x- or y-polarization but z-
polarization is different, and the 𝜏R values for excitons with large
oscillator strength range from 10 ps to 10 ns, comparable to 14
ns for CH3NH3PbI3 and 37 ns for CH3NH3PbBr3.[73]

According to Equation (20), the calculated short-circuit
currents Jsc for (CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6,
(CH3NH3)2AgInBr6, and (C2NH6)2AgInBr6 are 7.0, 23.4,
53.2, 20.8 mAcm−2. Then, according to Equation (18), the
calculated PCEs for these four HOIDPs are 11.4%, 20.6%,
19.9%, and 27.6%, respectively. The relatively smaller PCE for
(CH3NH3)2AgAlBr6 compared to the rest is probable due to the
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smaller overlap of the absorption spectrum and solar-energy
spectrum as shown in Figure 5a.

In hybrid perovskites, since the materials are generally soft
and polar, charged carriers are generally dressed in phonons
resulted from large dielectric electron-phonon couplings, form-
ing the so-called polarons. Recent experimental and theoretical
studies have shown that the coupling between polar longitudinal
optical (LO) phonon and carriers, that is, the Fröhlich interaction,
dominates the charge carrier dynamics in hybrid perovskites
at room temperatures, and the low-frequency LO phonon vi-
brations, namely, X-B-X bond bending and stretching motions,
contribute dominantly to the Fröhlich interaction.[74] The Fröh-

lich coupling strength is defined as, 𝛼F = e2

ℏ
( 1
𝜀∞

− 1
𝜀0

)
√

m
2ℏw

where 𝜖∞ and 𝜖0 are the high-frequency and static dielectric con-
stant, and 𝜔 is the LO-phonon frequency. In the weak coupling
regime, that is, 𝛼F ⩽ 2, large polarons form. We calculate the
electron and hole 𝛼F for the four selected HOIDP candidates
and the results are listed in Table S11, Supporting Information,
which shows that, their hole 𝛼F (3.35, 5.54, 2.80, and 2.71 for
(CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6,
and (C2NH6)2AgInBr6, respectively) are larger than
CH3NH3PbI3 of 2.67,[75] and their electron 𝛼F (1.48, 4.10,
2.32, and 1.60 for (CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6,
(CH3NH3)2AgInBr6, and (C2NH6)2AgInBr6, respectively) are
comparable to CH3NH3PbI3 of 2.39,[75] revealing the formation
and existence of large or intermediate polarons in the four
selected HOIDP candidates, similar to CH3NH3PbI3. To further
investigate polaron behaviors in the predicted HOIDP candi-
dates, we also calculate their polaron masses and polaron radii,
and the results are listed in Table S11, Supporting Information.

Furthermore, we calculate the polaron mobility by solving
the low-field temperature-dependent mobility equation with
the FHIP, Kadanoff and Hellwarth methods, implemented
in the PolaronMobility.jl code developed by J. M. Frost.[76]

The results are listed in Table S11, Supporting Informa-
tion, which reveal that the electron polaron mobilities for
(CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6,
and (C2NH6)2AgInBr6 are 90, 8, 53, 81 cm2V−1s−1, respectively,
which are smaller than that of CH3NH3PbI3 of 197 cm2V−1s−1

but comparable to that of double-perovskite Cs2AgBiBr6 of 34
cm2V−1s−1 calculated by the Kadanoff method.[77] The hole po-
laron mobilities for (CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6,
(CH3NH3)2AgInBr6, and (C2NH6)2AgInBr6 are 5, 2, 27, 12
cm2V−1s−1, respectively, which are similarly smaller than that
of CH3NH3PbI3 of 133 cm2V−1s−1, but comparable to that of
double-perovskite Cs2AgBiBr6 of 42 cm2V−1s−1.[77] In addition,
the carrier mobility induced by deformation potential scattering
due to long-wavelength acoustic phonons implemented by the
ab initio scattering and transport AMSET code[78] for the four
HOIDP candidates is also calculated and the results are shown in
Table S11, Supporting Information, which reveals that, in com-
parison to inorganic Cs2AgBiBr6, for the four selected candidates,
the deformation potential scattering limited carrier mobilities are
larger by two to three orders than those limited by Fröhlich cou-
pling, especially for electrons. Therefore, the Fröhlich coupling
dominates in the four selected HOIDP candidates.

As listed in Table 1, the calculated Debye temperatures for
(CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6,

and (C2NH6)2AgInBr6 are 544.9, 518.3, 496.9, and 535.5 K, re-
spectively, much larger than those in CH3NH3PbI3 crystal, which
is probable due to the stiffer properties and larger phonon ve-
locities of these four HOIDPs, since they have larger optical
phonon frequencies resulted from smaller densities as listed
in Table S5, Supporting Information. The corresponding calcu-
lated Grueneisen parameters 𝛾 are 1.28, 1.28, 1.33, and 1.31, re-
spectively, which are larger than 1.17 experimentally reported in
CH3NH3PbI3 crystal,[62] implying enhanced anharmonic inter-
actions among phonons in these four HOIDPs. According to the
aforementioned Slack model, the calculated thermal conductiv-
ities 𝜅L at 300 K for (CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6,
(CH3NH3)2AgInBr6, and (C2NH6)2AgInBr6 are 5.49, 5.04, 4.39,
and 5.16 Wm−1K−1, which are much larger than experimentally
reported 0.5 Wm−1K−1 at room temperature in CH3NH3PbI3
crystal,[20] indicating their good thermal transport properties
beneficial for heat dissipation. Therefore, although the an-
harmonic interactions in these four HOIDPs are larger than
CH3NH3PbI3 crystal, the much larger Debye temperature re-
sulted from larger stiffness overrides the anharmonic interac-
tions, leading to the larger thermal conductivities by an order in
(CH3NH3)2AgAlBr6, (CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6,
and (C2NH6)2AgInBr6.

4. Conclusion

By combining high-throughput DFT calculation with ML tech-
nology, we developed a multi-step material screening scheme to
accelerate the discovery of hybrid organic-inorganic double per-
ovskite material A2BB′X6. 597 stable HOIDP solar cell materials
with suitable band gap and high Debye temperature were suc-
cessfully selected from 180038 compounds. After that, based on
the conditions of non-toxicity and experimental accessibility, 12
candidate materials were selected, and four of them pass the veri-
fication of DFT with excellent properties. More importantly, with
the help of ML technology, the prediction results of our HSE band
gap model can achieve the level of results of experimental prepa-
ration, and the multi-stage scheme of band gap prediction could
ensure the validity of final candidates. The structure property re-
lationship under different targets is established by full use of
input data, which provides a further understanding of material
properties. After DFT verification, the screened-out candidates
possess excellent properties.

As a new generation of material design strategy, ML driven
scheme can achieve high-precision material discovery in a
“cheap” way without deep physical and chemical knowledge, just
based on existing data and appropriate algorithms. Meanwhile,
ML technology can capture the structure property relationship
hidden in the data, which provides a unique way to understand
the complex material properties, so it can help researchers jump
out of the framework of known knowledge and find more suitable
descriptors. In addition, multi-objective screening can effectively
improve the screening efficiency, and the number of targets is
not limited. However, the limitations of ML-based material de-
sign method also exist, such as the prediction accuracy depends
on the reliability of dataset, which can be reflected from our two
PBE band gap models. It is full of challenges to obtain the dataset
with consistent data samples but also to ensure the diversity of
samples. We choose the mandatory way that the predicted values
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of the two models both need to meet the requirement at the ex-
pense of the number of final candidates. A more flexible solution
could be explored in the future research.

5. Methodology

5.1. Gradient Boosted Regression

Gradient boosted regression (GBR) is one of the tree-based
machine learning algorithms, which is based on the gradient
boosting method and realized in the open-source Scikit-learn
package.[79] It is a single strong learner f(x) through combining
many weak learners step by step using the gradient descent algo-
rithm. It means that GBR usually find the gradient of f(x) which
can minimize the average value of loss function to achieve the im-
provement of the accuracy of regression results. First, the model
is initialized with a constant and the specific expression is as fol-
lows:

f0(x) = argmin
c

m∑
i=1

L(yi, c) (1)

here x and yi are the input and output values in the training set,
c is the step size of gradient learning, and m is the number of
data samples. Basic learner hj(x) needs to fit the negative gradient
ỹj(xi) of the loss function L(yi, f(xi)) for n (j < n) times

ỹj(xi) = −
[
𝜕L(yi, f (xi))
𝜕f (xi)

]
f (x)=fj−1(x)

(2)

The next optimization function is solved to get each c, and the
equation is as follows:

cj = argmin
c

m∑
i=1

L(yi, fj−1(xi) + chj(xi)) (3)

After that, the model is obtained with the following form:

fj(x) = fj−1(x) + cjhj(x) (4)

Therefore, the final model fn(x) is applied to predict.

5.2. Hyper-Parameters Selection

In ML algorithm, in order to improve the efficiency and gener-
alization performance of model, the hyper-parameters of each
ML algorithm should be selected before starting the formal train-
ing process. The optimization of hyper-parameters is very im-
portant and this can be completed through a cross-validated grid
search or a randomized search over the parameter setting. For
GBR algorithm, the related hyper-parameters are loss function,
learning rate, the number of boosting stages to perform, max-
imum depth of the individual regression estimators, the mini-
mum number of samples required to be at a leaf node, and the
number of features to consider when looking for the best split.
When many hyper-parameters exists together, the speed of tradi-
tional way of optimizing hyper-parameters will be slow. A global

search algorithm based on the simulated annealing algorithm
is used to solve this problem, which is an open-source python
module called hyperopt.[80] Through this module, the speed of
hyper-parameters search can be greatly improved. This search
method is also applied to other algorithms involved in this ar-
ticle. The prediction results of our GBR model are the average
values through ten cross-validations after 100 iterations.

5.3. DFT Calculations

The calculations of material properties are performed using the
Vienna ab initio simulation package (VASP), which is based
on DFT.[81] The pseudopotential used to describe the inter-
action between valence electrons and core charges is based
on the projector-augmented wave (PAW) method. We use
the generalized gradient approximation (GGA) in parametriza-
tion of Perdew–Burke–Ernzerhof (PBE) version to describe the
exchange-correlation functional, with a kinetic energy cutoff of
600 eV. The K points in the Brillouin zone are sampled with
the smallest k-mesh interval of 0.2 under the Monkhorst-Pack
scheme. The convergence is set as 1 × 10−5 eV in total energy for
two consecutive electronic steps and 0.01 eV Å−1 for maximum
Hellman–Feynman force in the crystal. To eliminate the well-
known error in PBE calculation, we also use the Heyd–Scuseria–
Erzenhof (HSE) hybrid functional method to improve the accu-
racy of the calculation of band gap for semiconductors. The hole
and electron effective mass tensors, m∗

h and m∗
e are expressed as

the double partial differential of the energy band E(k) at the va-
lence band maximum (VBM) and conduction band minimum
(CBM), respectively:[82]

1
m∗

h,i,j

= 1
ℏ2

𝜕2E(k)
𝜕ki𝜕kj

|||||k=VBM

(i, j = x, y, z) (5)

1
m∗

e,i,j

= 1
ℏ2

𝜕2E(k)
𝜕ki𝜕kj

|||||k=CBM

(6)

And the averages of diagonal terms in each tensor are used as the
hole and electron effective mass, respectively.

In order to investigate the thermodynamic stability of candi-
dates, we also carry out the ab initio molecular dynamics sim-
ulation (AIMD) in canonical ensemble to simulate the evolu-
tion of crystals at room temperature using the NOSè–Hoover
method,[83] where the NVT set is adopted and 2 × 1 × 2 supercell
is constructed. A total of 5-ps AIMD simulation is implemented
with the time interval of 1 fs.

To investigate the optical properties of the candidates, we im-
ply the G0W0+BSE method implemented by Yambo code to cal-
culate the absorption spectra of those candidates.[84,85] The Kohn
sham states are obtained using 5 × 5 × 5 Monkhorst-Pack mesh
on top of 200 empty bands. The quasiparticle (QP) states con-
taining eight highest valance bands and eight lowest conduction
bands are used in the Bethe–Salpeter equation kernel written as

(
EQP

ck − EQP
vk

)
As

vck +
∑
v′c′k′

⟨
vck|||Keh|||v′c′k′

⟩
As

v′c′k′ = ΩSAS
vck (7)
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where As
vck is the amplitude of the Sth excitonic wave function,

ΩS is the corresponding excitonic eigenenergy, and Keh is the
electron–hole interaction kernel. On the basis of the Tamm–
Dancoff approximation, the exciton wave function in real space
can be written as

Ψ(re, rh) =
∑
k,v,c

As
vck𝜓k,c(re)𝜓

∗
k,v(rh) (8)

The imaginary part of the dielectric function ϵ2 can be produced
by summarization over all the exciton eigenstates,

𝜖2(𝜔) = 16𝜋2e2

𝜔2

∑
S

|e × ⟨0|v|S⟩|2𝛿(𝜔 − ΩS) (9)

where e × 〈0|v|S〉, and v is velocity operator of the incident pho-
tons along polarization direction. The real part of the dielectric
function ϵ1 can be obtained by the well-known Kramers–Kronig
relation as follows:

𝜖1(𝜔) = 1 + 2
𝜋

P ∫
∞

0

𝜖2(𝜔′)𝜔′

𝜔′2 − 𝜔2 + i𝜂
d𝜔′ (10)

Based on the calculated frequency-dependent complex dielectric
function, the absorption coefficient 𝛼(𝜔) can be calculated by as
follows:

𝛼(𝜔) =
√

2𝜔
c

{[
𝜖2

1(𝜔) + 𝜖2
2(𝜔)

]1∕2 − 𝜖1(𝜔)
}1∕2

(11)

The radiative decay rate of a given exciton state S at temperature
T for bulk crystal under the assumption that the exciton momen-
tum has a thermal equilibrium distribution, can be calculated as
follows:[86]

𝛾S(T) = 𝜏−1
S =

8
√
𝜋𝜖e2ℏp2

S

3𝜖0m2VES(0)2

(
ES(0)2

2MSc2kBT

)3∕2

(12)

where the exciton energy ES(0) and the transition dipole pS (and
p2

S = |pS|2) are produced by solving the BSE, and MS denotes the
exciton mass defined by MS = m∗

e + m∗
h.

To investigate the coupling of carriers to acoustic phonons, we
calculate the carrier mobility induced by deformation potential
scattering implemented by the ab initio scattering and transport
AMSET package, in which the electron-acoustic phonon scatter-
ing matrix element is given by[78]

gADP
nm =

⟨
mk + q|Sq : (Dnk + vnk

⨂
vnk)|nk

⟩
(13)

where |nk⟩ and |mk + q⟩ denote the initial and final states of elec-
trons, respectively, Sq is the strain associated with an acoustic
phonon q, vnk is the group velocity for electron |nk⟩, and Dnk is
the second rank deformation potential tensor.

5.4. Formation Energy and Debye Temperature

For HOIDPs with the formulae of A2BB′X6 under investigations
here, the average formation energy per atom (△H) is defined as

△H =
(
EA2BB′X6

− 2EA − EB − EB′ − 3EX2
− EH2

)
∕N (14)

where N is the number of atoms in the unit cell of HOIDPs com-
pounds; EA2BB′X6

, EA, EB, EB′ , EX2
, and EH2

are the total energies of
HOIDPs unit cell, the isolated neutral organic molecule A, a sin-
gle B atom and a single B′ atom in the corresponding elemental
crystals, the isolated X2, and H2 molecules, respectively. For the
group of tetramethylammonium cation (C4H12N+), the energy of
neutral trimethylamine (C3H9N) is used for EA, and the energies
of the molecules C2H6 is used instead of EH2

.
To evaluate the thermal stabilities and thermal conductivities,

we also investigate Debye temperature ΘD for A2BB′X6-HOIDPs,
which can be estimated on the basis of the results of the average
sound velocity (vm), as follows:

ΘD = h
kB

[
3n
4𝜋

(
NA𝜌

M

)] 1
3

vm (15)

where h is Planck constant, kB is Boltzmann constant, n is the
number of atoms per formula unit, NA is Avogadro constant, 𝜌
is the crystal structure’s density, M is the molar mass, and vm is
the average sound velocity. In a poly-crystalline material, vm can
be approximated as

vm =
[

1
3

(
2

vT
3
+ 1

vL
3

)]− 1
3

(16)

here, vL and vT are the longitudinal and transverse sound velocity,
respectively, which can be calculated from the bulk (B) and shear
(G) moduli according to

vL =

(
B + 4G

3

𝜌

) 1
2

, vT =
(

G
𝜌

) 1
2

(17)

5.5. Device Performances for Photovoltaic PSCs

The key parameter to characterize the photovoltaic devices is
PCE, also called as spectroscopic limited maximum efficiency,
that, 𝜂,[87] which is defined as the ratio of the maximum output
power density (Pmax) and the total incident solar energy density
(Pin), as follows,

𝜂 =
Pmax

Pin
=

max
{

(Jsc − J0(eeV∕kBT − 1))V
}

V

∫ ∞
0 EIsun(E)dE

(18)

where Pmax is obtained by numerically maximizing the product
of current density J and voltage V. We assume that the solar cell is
illuminated under the photon flux Isun and can be approximated
as an ideal diode. At temperature T, the current density J and
voltage V follow

J = Jsc − J0(eeV∕kBT − 1) (19)

where Jsc is the short-circuit current density, and

Jsc = e∫
∞

0
𝛼(E)Isun(E)dE (20)

where 𝛼(E) is the energy-dependent absorption, e is the elemen-
tary charge, and Isun is the AM 1.5 G solar spectrum.[88]
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The reverse saturation current J0 includes the radiative current
Jr

0 and nonradiative current Jnr
0 ,

J0 = Jr
0 + Jnr

0 =
Jr

0

fr
(21)

Here, Jr
0 = e𝜋 ∫ ∞

0 𝛼(E)Ibb(E, T)dE and the fraction of radiative re-

combination current fr is given by fr = e(Eg−Eda
g ∕kBT), where Eg is the

electronic band gap, Eda
g is the direct-allowed optical band gap,

and Ibb is the black-body spectrum at temperature T.
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2016, 3, 613.

[75] K. Miyata, T. L. Atallah, X. Y. Zhu, Sci. Adv. 2017, 3, e1701469.
[76] J. M. Frost, Phys. Rev. B 2017, 96, 195202.
[77] B. Wu, W. Ning, Q. Xu, M. Manjappa, M. Feng, S. Ye, J. Fu, S. Lie,

T. Yin, F. Wang, T. W. Goh, P. C. Harikesh, Y. K. E. Tay, Z. X. Shen, F.
Huang, R. Singh, G. Zhou, F. Gao, T. C. Sum, Sci. Adv. 2021, 7, 8.

[78] A. M. Ganose, J. Park, A. Faghaninia, R. Woods-Robinson, K. A. Pers-
son, A. Jain, Nat. Commun. 2021, 12, 2222.

[79] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
Plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
J. Mach. Learn. Res. 2011, 12, 2825.

[80] J. Bergstra, D. Yamins, D. D. Cox, in Proc. of the 12th Python in Science
Conference, SciPy, Austin, TX 2013, pp. 13–19.

[81] G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
[82] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Holt, Rinehart and

Winston, New York 1976.
[83] G. J. Martyna, M. L. Klein, M. Tuckerman, J. Chem. Phys. 1992, 97,

2635.
[84] B. Hou, Y. Zhang, H. Zhang, H. Shao, C. Ma, X. Zhang, Y. Chen, K.

Xu, G. Ni, H. Zhu, J. Phys. Chem. Lett. 2020, 11, 3116.
[85] B. Peng, H. Zhang, H. Shao, K. Xu, G. Ni, L. Wu, J. Li, H. Lu, Q. Jin,

H. Zhu, ACS Photonics 2018, 5, 4081.
[86] H.-Y. Chen, V. A. Jhalani, M. Palummo, M. Bernardi, Phys. Rev. B 2019,

100, 075135.
[87] K. Choudhary, M. Bercx, J. Jiang, R. Pachter, D. Lamoen, F. Tavazza,

Chem. Mater. 2019, 31, 5900.
[88] D. G. Collins, W. G. Blättner, M. B. Wells, H. G. Horak, Appl. Opt.

1972, 11, 2684.

Adv. Sci. 2022, 9, 2103648 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2103648 (15 of 15)


