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Abstract

We propose a model for high dimensional mediation analysis that includes latent variables. We 

describe our model in the context of an epidemiologic study for incident breast cancer with 

one exposure and a large number of biomarkers (i.e., potential mediators). We assume that the 

exposure directly influences a group of latent, or unmeasured, factors which are associated with 

both the outcome and a subset of the biomarkers. The biomarkers associated with the latent 

factors linking the exposure to the outcome are considered “mediators.” We derive the likelihood 

for this model and develop an expectation-maximization algorithm to maximize an L1-penalized 

version of this likelihood to limit the number of factors and associated biomarkers. We show 

that the resulting estimates are consistent and that the estimates of the nonzero parameters have 

an asymptotically normal distribution. In simulations, procedures based on this new model can 

have significantly higher power for detecting the mediating biomarkers compared with the simpler 

approaches. We apply our method to a study that evaluates the relationship between body mass 

index, 481 metabolic measurements, and estrogen-receptor positive breast cancer.
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1 | INTRODUCTION

In epidemiology, a mediation model aims to explain how an exposure (E) is associated with 

an outcome (Y). Traditionally, the model proposes that the exposure influences a single 

mediating variable (M), which, influences the outcome. More advanced models propose that 

the exposure influences a small set of mediating variables (M = (M1,...,Mp)), which, in turn 

influence the outcome (VanderWeele and Vansteelandt, 2014; Assi et al., 2015; Steen et al., 

2017). Here, we consider the scenario where the set of (putative) mediators is large and a 

study aims to identify the true set of mediators and to describe the underlying mediation 

model. Our motivation is an estrogen-receptor positive (ER+) breast cancer case-control 
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study that measured body mass index (BMI) and 481 serum metabolites. The objective is to 

identify those metabolites that mediate the well-established relationship between high BMI 

and an increased risk of ER+ breast cancer (Moore et al., 2018).

In most discussions of mediation, the presumption is that the exposure directly influences 

a subset of conditionally independent mediators (Figure 1A), with more recent discussions 

(Daniel et al., 2015) allowing the mediators to be causally ordered (Figure 2A). Here, 

following our beliefs about the underlying biology, we presume that the exposure directly 

influences a group of conditionally independent latent, or unmeasured, factors (F = 

(F1,...,Fq)) which, in turn, influence both a subset of “mediating” biomarkers and the 

outcome (Figure 1B). In our motivating breast cancer study, for example, we might expect 

BMI to reduce the level of the sex hormone-binding globulin (SHBG) protein (Calle and 

Kaaks, 2004), which increases the availability of many of the measured hormones listed 

in Table 1 and the unmeasured, carcinogenic, hormones (i.e., estrogens) that cause breast 

cancer. In this example, the factor is a well-defined but unmeasured protein level. A more 

heuristic example might be evaluating the relationship between poverty, metabolites, and 

cancer, where poverty influences a number of distinct factors (e.g., consumption of specific 

foods, hours of sleep, proximity to sources of pollution, etc) that are each known to affect 

the levels of multiple metabolites and the risk of cancer.

Our goal is to formalize the latent variable model for mediation depicted in Figure 1B. 

We specify an L1-penalized version of the corresponding likelihood, propose an extension 

of the expectation-maximization (EM) algorithm used for sparse factor analysis (Hirose 

and Yamamoto, 2014; Srivastava et al., 2017) to obtain the maximum-likelihood estimates, 

and show that these estimates have the “oracle” property (Zou, 2006). We develop our 

estimation procedure for data from cohorts and retrospectively collected case-control 

studies. Furthermore, we show that accounting for latent variables, when the proposed 

model holds, can significantly increase a study’s power to detect “mediating” biomarkers 

(i.e., those biomarkers influenced by the mediating factors). Importantly, we note that our 

model is a simplification. The graph describing the true relationship between the exposure, 

biomarkers, and outcome is likely more complicated, where in addition to unmeasured 

confounders, the mediating factors can be causally ordered (Figure 2B), the graph can 

include bidirectional edges and cycles (Figure 2C), and the graph can include edges directly 

connecting the biomarkers (Figure 2D).

We note that the models in Figures 1B, 2B, and 2C are not distinguishable without 

imposing additional restrictions (Bai and Li, 2012) on the latent variables (e.g., conditional 

independence). Therefore, our independent factors are constructs of the model and we 

caution against the interpretation of the indirect effects through any specific factors. 

Nevertheless, with more modest assumptions, we can estimate and interpret the total indirect 

effect through all factors.

These methods extend procedures that handle latent factors affecting a small set of 

biomarkers (Muthén and Asparouhov, 2015; Albert et al., 2016) and add to the literature 

exploring high dimensional mediators. Zhang et al. (2016) model how epigenetic changes 

mediate the relationship between smoking and reduced lung function, assuming smoking 
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directly affects methylation levels (i.e., Figure 1A). Huang and Pan (2016) test whether the 

expression levels of specific sets of genes mediate the relationship between miR-223 and 

glioblastoma by rotating the biomarkers and testing the resulting conditionally independent 

components. Chen et al. (2018) identify brain regions, from functional magnetic resonance 

imaging (fMRI) images, that link thermal response and self-reported pain by identifying 

orthogonal linear combinations of the biomarkers (i.e., fMRI voxels), known as “directions 

of mediation.” We contrast these methods with our own approach further in Section 6.

The remainder of the paper is organized as follows. In Section 2, we describe the statistical 

model and the proposed EM algorithm. In Section 3, we state the theoretical properties of 

the resulting estimates. In Section 4, we describe two alternative approaches for identifying 

mediating biomarkers and estimating relevant parameters. In Section 5, we study the 

properties of the estimates obtained using the different approaches and apply our method 

to the motivating study of breast cancer. Section 6 concludes with a brief discussion.

2 | LATENT-VARIABLE MEDIATION ANALYSIS

2.1 | Overview

Our first goal is to propose a mediation model, where mediators are latent variables (Figure 

1B). Our second goal is to provide a procedure to estimate the parameters in this model.

2.2 | Mediation model

We index subjects in the study by i, i = 1,...,N, and assume that the relationship between 

the exposure (Ei), factors (Fi), biomarkers (Mi), and outcome (Yi) can be described 

by the directed acyclic graph in Figure 1B. Moreover, although not pictured, we allow 

for a set of baseline covariates (Xi) that can influence Ei, Fi, and Yi. We then define 

Fi(e) = Fi1(e), …, Fiq(e) ′, where Fij (e) is the value of the jth factor in subject i if Ei is set to 

e and Y i e, Fi e′  is the value of Yi if Ei is set to e and the vector of factors Fi is set to Fi e′ . 

We further assume that sequential ignorability (Imai et al., 2010) holds, or more specifically, 

that

Y i(e, f), F i e′ ⫫ Ei ∣ Xi = x (1)

Y i(e, f) ⫫ F i e′ ∣ Ei = e′, Xi = x . (2)

We note that, in contrast to standard models, our mediators are latent variables (Albert et 

al., 2016). These latent variables are unlikely to individually match up with the underlying, 

conditionally independent biologic variables (e.g., F1 is the unmeasured level of SHBG in 

the motivating example and is conditionally independent of all other mediating factors). 

In reality, it is more likely that there is a set (B = (Bi1,...,Biq)) of interrelated biologic 

mediators (e.g., levels of SBHG, insulin, and cytokines) and the independent factors 

represent weighted combinations of these biological quantities (e.g., Fj = ∑j′ wj′Bij′ ). This 

truth suggests that we should focus and interpret the combined (i.e., through all factors) 

indirect effect defined in Equation (5), as opposed to factor or path specific indirect effects.
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We can now partition the total effect (TE) of changing the exposure from e to e′ into the 

natural direct effect (NDE) and natural indirect effect (NIE): TE = NDE + NIE, where the 

indirect effect passes through those pathways captured by the latent factors:

TE = E Y i e′, F e′ − Y i e, F(e) , (3)

NDE = E Y i e′, F(e) − Y i e, F(e) , (4)

NIE = E Y i e′, F e′ − Y i e′, F(e) . (5)

For binary Yi, we focus on the mediation effects defined on the odds ratio scale 

(VanderWeele and Vansteelandt, 2014), where ORTE = ORNDE × ORNIE,

ORTE =
P Yi e′, F e′ = 1

1 − P Yi e′, F e′ = 1 /
P Yi e, F(e) = 1

1 − P Yi e, F(e) = 1 ,

ORNDE =
P Yi e′, F(e) = 1

1 − P Yi e′, F(e) = 1 /
P Yi e, F(e) = 1

1 − P Yi e, F(e) = 1 ,

and

ORNIE =
P Yi e′, F e′ = 1

1 − P Yi e′, F e′ = 1 /
P Yi e′, F(e) = 1

1 − P Yi e′, F(e) = 1 .

We note that it has already been demonstrated (Albert et al., 2016) that these effects 

are not generally (e.g., nonparametrically) identifiable when the mediators are factors. 

However, these effects are identifiable under the parametric model represented in Figure 

1B and discussed in the next section. Moreover, these effects are identifiable even without 

assumptions (e.g., independence) about the factors as discussed in Web Appendix A. Finally, 

path-specific or factor-specific indirect effects are not well-defined because the models of 

Figures 1b, 2a, 1b and 2c are not distinguishable.

2.3 | Parametric assumptions

Recall our notation. For subject i, i = 1, ..., N, let Ei be the exposure, Yi be the outcome, 

and Mi = Mi1, …, Mip ′ be a vector of biomarkers with p > > N, and Fi = Fi1, …, Fiq ′ be a 

vector of q latent mediators with q < < p. We assume that the distribution of Yi belongs to an 

exponential family,

f Y i; ζi, ψY = exp Y iζi − b ζi /a ψY + c Y i, ψY (6)

with
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ζi = γY + βEY Ei + βFY′ F i . (7)

We also assume that Fi and Mi are normally distributed:

F i = βEFEi + ef, i with ef, i ∼ N 0, Iq , (8)

where Iq is the q by q identity matrix and

Mi = γM + ΛF i + em, i with em, i ∼ N 0, Ψ2 ,
Ψ2 = diag ψ1

2, …, ψp2 .
(9)

Under retrospective sampling (i.e., for case-control data), we rely on the 

additional assumption that E ∼ N γE, σE
2 . We note that βEF = βEF, 1, …, βEF, q ′ and 

βFY = βFY , 1, …, βFY , q ′ are vectors of length q, Λ is a p × q matrix and the (m, j)th element, 

denoted by λmj, represents the effect of the jth factor on the mth biomarker. Moreover, we 

define “mediating” biomarkers to be the set {m: ∑j βEF, jβFY, jλmj ≠ 0} and therefore, when 

trying to identify the mediators, select the set m: ∑j βEF, jβFY, jλmj ≠ 0 .

The proposed setup accommodates outcomes from a variety of distributions, but for ease 

of exposition we focus on outcomes from either a binomial or a normal distribution. For 

a continuous Y we assume ψY = σY
2 , b ζi = ζi

2/2 and c Y i, ψY = − 1/2 Y i/σY
2 + log 2πσY

2

Equation (6) simplifies to

Y i = γY + βEY Ei + βFY′ F i + ey, i with ey, i ∼ N 0, σy2 . (10)

In this scenario, the pathway specific effects can be related to model parameters by

TE = βEF′ βFY + βEY e′ − e ,

NDE = βEY e′ − e ,

NIE = βEF′ βFY e − e′

and we note that these effects are identifiable. Similar conclusions were drawn by 

Albert et al. (2016) in the case of a single latent mediator. For a binary Y we 

assume ψY = 1 and b ζi = log 1 + exp ζi  and rewrite Equation (6) in logistic form, 

P Y i = 1; ζi, ψY = exp ζi / 1 + exp ζi . When the outcome is rare, we can approximate 

the pathway-specific effects on the OR scale by ORNDE ≈ exp βEY e′ − e  and 

ORNIE ≈ exp βEF′ βFY e′ − e , with modifications available to accommodate matched case-
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control studies (VanderWeele and Tchetgen Tchetgen, 2016) or interactions between the 

factors and exposure (VanderWeele and Vansteelandt, 2014).

In Web Appendix E, we consider extensions of Models (6–9) to accommodate additional 

covariates and extend the estimation procedure and theory presented to this setting. To 

estimate the vector of parameters θ = γY , βFY , βEY , ψY , βEF , γM, Λ, Ψ2 ′ using the observed 

data, Y i, Mi, Ei  for i = 1, ...,N, we first assume q, the number of latent factors, is known. In 

Section 2.5, we discuss how to choose q in practice.

2.4 | Likelihood

Under prospective sampling, we derive the joint likelihood of (Yi, Mi, Fi) and (Yi, Mi) while 

conditioning on Ei to avoid modeling the distribution of the exposure. Under retrospective 

sampling (i.e., case-control data), we derive the joint likelihood of (Yi, Ei, Mi, Fi) and (Yi, 

Ei, Mi).

2.4.1 | Prospective likelihood—Here the full data likelihood for (Y, M, F) is

LP
F(θ) = ∏

i = 1

N
f Y i, Mi, F i ∣ Ei; θ , (11)

where f is the product of the densities defined by Equations (6–9),

f Y i, Mi, F i ∣ Ei; θ = fY Y i ∣ F i, Ei; γY , βFY, βEY, ψY
× fM Mi ∣ F i; γM, Λ, Ψ2 fF Fi ∣ Ei; βEF . (12)

We use fM, fY, and fF to denote implied distribution of M, Y, and F, respectively. However, 

the factors Fi are not observed. The likelihood for the observed data, (Yi, Mi), is therefore

LP
O(θ) = ∏

i = 1

N ∫
F

f Y i, Mi, F i ∣ Ei; θ dF . (13)

Although LP
O(θ) does not have a closed form in general, we show in the Web Appendix B 

that LP
O(θ) is the product of normal distributions when Yi is normally distributed.

2.4.2 | Retrospective likelihood—Under retrospective sampling, N1 cases and N0 

controls are drawn from the population of cases and controls, respectively, and biomarkers 

and exposures are observed (N1 + N0 = N). The corresponding likelihood is

LR
F(θ) = ∏

t ∈ case
f Ei, Mi, F iY i = 1; θ

× ∏
t ∈ control

f Ei, Mi, Fi ∣ Y i = 0; θ . (14)
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Here, we assume Ei ∼ N γE, σE
2  in the overall population. Although closed forms of the 

conditional distributions of (Ei, Mi, Fi) are generally not available, they can be approximated 

well when the outcome is rare in the general population, that is,

P Y i = 1 ∣ Ei, Fi; γY , βEY , βFY

=
exp γY + βEY Ei + βFY′ Fi

1 + exp γY + βEY Ei + βFY′ F i
≈ exp γY + βEY Ei + βFY′ F i

(15)

Under the rare disease assumption, the distribution of (Ei, M i, Fi) in controls is 

approximately equal to the distribution in the general population. Thus, under Models (6–9)

f Ei, Mi, F i ∣ Y i = 0; θ) ≈ f Ei, Mi, F i; θ
= ϕ Ei, Mi, F i; μ0, ΣE, M, F , (16)

where ϕ . ; μ0, ΣE, M, F  is a multivariate normal distribution with mean μ and covariance 

matrix ΣE,M,F. The covariance matrix ΣE,M,F is defined in the Web Appendix B.2 and 

μ0 = μE, μM, μF ′. Note that, ΣE,M,F is a function of the parameters used in Models (6–9). 

The distribution of (Ei, Mi, Fi) in cases under Model (15) is

f Ei, Mi, F i ∣ Y i = 1; θ ≈ ϕ Ei, Mi, F i; μ1, ΣE, M, F (17)

where

  
μ1 = μE

1 , μM
1 , μF

1 ′ = μE, μM, μF ′
+ΣE, M, F βEY , 0′, βFY′ ′

Note that the distributions of (Ei, Mi, Fi) in cases and controls differ only in their means.

Based on the above approximations, the likelihood for the full data (Ei, Mi, Fi) is

LR
F(θ) = ∏

t ∈ case
ϕ Ei, Mi, F i; μ1, ΣE, M, F

× ∏
t ∈ controls

ϕ Ei, Mi, F i; μ0, ΣE, M, F . (18)

and the likelihood for the observed data is therefore easily shown to be

LR
O(θ) = ∏

t ∈ case
ϕ Ei, Mi; μ1; M, E, ΣM, E

× ∏
t ∈ controls

ϕ Ei, Mi; μ0; M, E, ΣM, E , (19)

where μ1; E, M = μE
1 , μM

1 ′, μ0; E, M = μE, μM ′, and ΣE, M is the appropriate submatrix of 

ΣE,M,F. The effects of the exposure and the latent factors on the outcome are thus completely 

captured by the difference between the means of (Ei, Mi) in cases and controls.
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2.5 | Penalty to induce sparsity in the factors, F

To introduce sparseness in the factors F and the number of biomarkers associated with those 

factors, we maximize the penalized log-likelihood

PLL(θ) = log LO(θ) − ρ1N ∑
j = 1

q
P βFY , j

−ρ2N ∑
j = 1

q
P βEF, j − ρ3N ∑

m = 1

p
∑
j = 1

q
P λmj ,

(20)

where LO(θ) is the likelihood defined in (13) or (19) and P(·) is the chosen penalty function. 

We use the adaptive lasso penalty, where P(φ) = |φ|
φ0  and φ0 is a square root consistent 

estimate of φ, but other options, such as SCAD or MC+ (Fan and Li, 2001; Zhang, 

2010), are possible. In practice, we let βEF, j
0 , βFY, j

0  and λmj
0  be initial estimates from the 

observed likelihood LO (θ). We allow the penalties (ρ1N, ρ2N, ρ3N) to differ for each type of 

association. The penalized log-likelihood estimator θP  is defined as

θP ≡ θP ρ1N, ρ2N, ρ3N = argmax
θ

PLL(θ) . (21)

Because θP  cannot be expressed in a closed from, we develop an (EM) algorithm building 

upon the methods for sparse factor analysis (Hirose and Yamamoto, 2014; Srivastava et al., 

2017). Although the EM algorithm is a significant contribution of this paper, we provide 

details in Web Appendix C to keep the main text focused.

In practice, we specify the total number of factors, qmax, to be 40 and choose values of 

ρ1N, ρ2N, and ρ3N that minimize the extended Bayes information criterion (EBIC; Chen and 

Chen, 2008) defined as EBIC = − 2l θP ρ1N, ρ2N, ρ3N + log(N)df + 2γlog(τ), where l(θ) is 

the observed log-likelihood (Equations (13) or (19)), df is the number of parameters with 

nonzero estimates, and τ is the number of possible models with df nonzero parameters. We 

generally suggest that users start with a value of qmax that is likely to exceed the true number 

of factors influencing the biomarkers. In practice, we set γ = 0.5 in Equation (21). EBIC 

tends to outperform the more traditional selection criteria AIC and BIC in previous high 

dimensional settings (Chen and Chen, 2008; Srivastava et al., 2017) and in our simulations.

3 | THEORETICAL PROPERTIES OF THE ESTIMATES

We highlight key properties of the model, the EM algorithm, and the estimates, θP , with 

proofs in the Supporting Information (see Web Appendix D). First, we show that the 

parameters θ are identifiable under the following condition for factor analysis presented in 

Anderson and Rubin (1956),
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Condition 1.

If any row of the loading matrix Λ is deleted, there remain two disjoint submatrices of rank 
q.

Proposition 1 (Identifiability).

If Condition 1 holds, then θ is identifiable, and Λ, βFY, βEF are identifiable up to an 
orthogonal rotation.

We note that the products of parameters ΛΛ′, ‖βFY‖2 = βFY′ βFY, ‖βEF‖2 = βEF′ βEF and mixed 

products ΛβFY, ΛβEF and βEF′ βFY are uniquely identified. The identifiability of these terms is 

crucial when estimating direct and indirect effects (Section 2.2).

Our second property, building upon previous work of Hirose and Yamamoto (2014), 

Srivastava et al. (2017), states the properties the EM algorithm.

Proposition 2 (Convergence of the EM algorithm).

With each iteration of the proposed EM algorithm, the penalized log-likelihood (20) does 
not decrease,

PLL θk ≤ PLL θk + 1 , k ≥ 1,

and the sequence of EM estimates θk
 converges to a local maximum θP

∗
.

Our third property, building upon work of Zou (2006), is that the resulting estimates, 

θP = θP1, …, θPW ′, where W is the total number of parameters, have the oracle property. 

Let θ be the vector of all parameters (see Section 2.3), A = {j|θj ≠ 0} index the set of 

parameters not equal to 0, AN = j ∣ θP j ≠ 0  index the set of parameters with nonzero 

estimates; based on our dataset of N subjects and let θP
S = θP j: j ∈ A  be the vector of 

estimates for the nonzero parameters θS = θj: j ∈ A .

Proposition 3 (Oracle Property).

Suppose that ρkN / N 0 and ρkN ∞ for k ∈ {1, 2, 3}. Then we obtain

1. consistency of the selection of nonzero effects:

lim
N ∞

P AN = A = 1, (22)

2. asymptotic normality for the nonzero effects:

lim
N ∞

N θP
S − θS

d N 0, IθS
−1 , (23)
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where Iθs is Fisher’s information matrix for the true model (i.e., excluding zero 

coefficients).

4 | ALTERNATIVE METHODS TO IDENTIFY SUBSETS OF MEDIATORS

Here, we propose two alternative, two-step approaches to identify the subset of “mediating” 

biomarkers. Recall for latent variable mediation analysis (LVMA), we identify the mediating 

biomarkers to be the set m: ∑j βEF, jβFY , jλmj ≠ 0 .

4.1 | Individual marker mediation analysis (IMA)

We first consider testing each biomarker individually using Sobel’s test (Sobel, 1982). For a 

continuous outcome, we can test biomarker m by fitting two linear regression models

Yi = γY∗ + βMY, m∗ Mm, i + βEY, m∗ Ei + ϵY∗

Mm, i = γM∗ + βEM, m∗ Ei + ϵM, m∗

and then calculating the P value, pm, for the test statistic Zm = βMY, m
∗ βEM, m

∗ /σββ, where 

σββ
2  is the estimated variance of the product βMY, m

∗ βBM, m
∗  and is calculated using the 

Taylor-Series expansion (Sobel, 1982). Logistic regression would be used when Y is binary. 

We can then identify the set of “mediating” biomarkers as those with a P value below a 

specified threshold.

4.2 | Two-step mediation analysis (TMA)

We next consider a two-step approach where, in the first step, we identify the latent factors 

underlying the biomarkers and, in the second step, we test whether each of those latent 

factors are mediators. Specifically, in the original-version (TMAO), we first perform sparse 

factor analysis on M, ignoring E and Y :

argmax
Λ, Ψ2

∑
i = 1

N
log ϕ Mi; Λ, Ψ2 − ρ ∑

m = 1

p
∑
j = 1

q λmj

λmj
0 , (24)

where ϕ ⋅ ; Λ, Ψ2  is a multivariate normal distribution with mean 0 and variance ΛΛ′ + Ψ2

and obtain our estimated factors F i1, …, F iq = Λ′ ΛΛ′ + Ψ2 −1
Mi. Again, we choose the 

penalty, ρ, which minimizes the EBIC. In the second step, we use Sobel’s test (Sobel, 1982), 

to individually test each of the estimated factors. The “mediating” biomarkers are those with 

a nonzero loading on the selected factors.

In a modified version (TMAR), we perform sparse factor analysis (24) on MR, where 

the jth row of MR are residuals after regressing the jth row of M on E. Specifically, 
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we substitute MR for M in Equation (24) to obtain ΛR and ΨR, and then let 

F i1, …, F iq ′ = ΛR′ ΛRΛR′ + ΨR
2 −1

Mi. Under prospective sampling, M, Y, and E need to 

be centered by their corresponding sample means because intercepts of are not identifiable 

directly from M or MR by these two approaches. Under retrospective sampling, M and the 

exposure E are centered by their means in the controls. TMAR is conceptually similar to the 

mediation approach proposed by Huang and Pan (2016) and to surrogate variable analysis 

(Leek and Storey, 2007); that it is MR, not M, that is accurately described by factor analysis.

4.2.1 | Remarks—TMAO and TMAR are computationally faster than the full joint 

model LVMA and, for TMAO, it is straight-forward to calculate P values for the tested 

factors. However, by ignoring E and Y, less information is available for identifying factors 

and, ultimately, detecting mediators. Second, TMAO incorrectly assumes independence of 

factors. TMAR, or allowing for correlated factors (Hirose and Yamamoto, 2014), attempts to 

handle this issue, but these methods perform poorly in small samples. Third, in case-control 

studies, the assumption that the biomarkers are normally distributed is violated and Section 

2.4.2 shows that much of the information is contained in the difference between the group 

means. Fourth, by not explicitly modeling the latent variables, the terms, βEY and βEF′ βFY
used to estimate the direct and indirect effects are biased because the imputed mediators 

contain measurement error (Carroll et al., 2006; le Cessie et al., 2012; Valeri et al., 2014).

5 | SIMULATIONS

5.1 | Data generation

We compared the properties of LVMA, IMA, and TMA (O and R) in simulated data with 

N = 300 or N = 500 observations. We assumed that there were fifteen factors (q = 15) 

each affecting twenty unique biomarkers, M. The first factor was a mediator (i.e., βEF,1 

≠ 0 and βFY,1 ≠ 0), the next four factors were associated only with E (i.e., βEF,j ≠ 0 and 

βFY,j = 0 for j = 2,...,5) and the last ten factors were associated with neither E nor Y (i.e., 

βEF,j = 0 and βFY,j = 0 for j = 6,...,15). We then added an additional ninety independent 

normally distributed biomarkers so that p = 390. Data were simulated based on the model 

in Section 2.3, with binary outcomes assuming a logistic link and continuous outcomes 

assuming normality. For case-control studies, we sampled an equal number of cases and 

controls (i.e., N1 = N0 = 150 or N1 = N0 = 250) from a larger population prospectively 

simulated. We varied the effect of the exposure on the mediating factor (βEF,1 ∈ {0.4, 0.5}), 

the effect of exposure-related factors on their constituent biomarkers (λ1 ∈ {0.25, 0.3}), and 

the effect of exposure-unrelated factors on their constituent biomarkers (λ0 ∈ {0.4, 0.5}). 

Here, λmj = λ1 if j ≤ 5 (when λmj ≠ 0) and λmj = λ0 if 6 ≤ j ≤ 15 (when λmj ≠ 0). Other 

parameters/distributions were set as follows: βEY = βFY,1 = 0.3, βEF,2 = ··· = βEF,5 = 0.7, 

γM,1 = ··· = γM,p = 0.5, ψ1
2 = ⋯ = ψp2 = 1, γY = 4.6 (i.e., P(Y = 1|E = 0, F1 = 0) = 0.01 for 

binary outcomes), and E∼N (0.5, 1). In Web Appendix F, we describe the simulation setup 

and corresponding results for scenarios when there are no latent variables and the exposure 

directly affects individual biomarkers.
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For each parameter and sample size combination, we simulated 1000 datasets. Then we 

applied each of the four methods and calculated the average number of true positives (TPs) 

selected, the average number of false positives (FPs) selected, and the average estimate of 

the conditional exposure effect, βEY. Here, the biomarker m is a “true positive” (TP) if it 

is identified as a mediator and ∑j βEF, jβFY, jλmj ≠ 0. It is a “false positive” (FP) if it is 

identified as a mediator but ∑j βEF, jβFY, jλmj = 0. For valid comparison between LVMA and 

the other methods, we selected P value thresholds for these methods so that the FP remained 

constant. Note, the requirement for a biomarker to be “selected” as a mediator is defined in 

Section 2. For IMA, TMAO, and TMAR, we estimated the conditional exposure effect as 

the coefficient for the exposure in a model for the outcome that also included all selected 

biomarkers or factors.

5.2 | Results

We summarize our results in Figures 3. First, for most settings, LMVA tended to have, the 

largest TP rate (panels (A) of Figures 3-5). Recall, we chose significance thresholds for the 

other three methods so that the average FP rate (see panels (B) of Figures 3-5) was similar 

across methods. TMAR and TMOR tended to perform similarly. The one exception is that 

TMAR performed poorly when we reduced the effect of exposure-related factors to λ1 = 

0.25 (see Figure 5). IMA consistently performed poorly (e.g., on average it had four-five 

times lower TP rate). The latter reinforces the need to use some form of latent variable 

analysis when the exposure does not directly affect biomarkers individually.

The pronounced when the effect of factors on associated biomarkers is small (Figure 5) 

and when the outcome was a binary variable (Figures 4 and 5). When comparing TMAO 

to TMAR, neither clearly performed better. Their relative performance strongly depends on 

sample size, with TMAR performing better as the sample sizes increased and the effect 

of the exposure could be better estimated. This advantage was further magnified when the 

effects of the factor on the biomarkers increased.

As expected, TMAR, TMAO, and IMA produced biased estimates of the conditional effect 

of exposure; compare the results in panel (C) of Figures 3-5 to the true direct effect, βEF = 

0.3. Although LVMA had smaller bias, the estimates of the conditional effect of exposure 

using LVMA still exceeded 0.35 in most scenarios. When we increased the sample size or 

the effect size so that TP = 20 (see Web Figures 5, 8, and 21), the bias in LVMA, but not for 

the other methods, disappeared.

LVMA was robust to the number of specified factors (see Web Figures 11 and 12). 

Therefore, in practice, we suggest specifying a relatively large number of factors. 

Furthermore, we found that using EBIC was slightly preferable to using AIC or BIC, but the 

two two-step methods, TMAO and TMAR, were far more sensitive to the choice of selection 

criteria (see Web Figures 5-10). LVMA was also robust to violations of the assumption 

that the error terms for the biomarkers were normally distributed (see Web Figures 13-18). 

Finally, when we decreased exposure effects on nonmediating factors to βEF,2 = ··· =βEF,5 

= 0.4, the TP of LVMA, TMAO, and TMAR become similar. Web Figures 19-21 shows 

that, if we also decrease the effect of the mediating factors on the biomarkers to λ1 = 0.25, 
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LVMA regains its advantages. Note, in this latter setting the exposure becomes important for 

identifying factors.

5.3 | Data example

Our motivating study aims to identify metabolites that mediate the known relationship 

between high BMI and the increased risk of ER+ breast cancer. This study, nested inside the 

prostate, lung, colorectal, and ovarian cancer screening study (PLCO), includes 410 (ER+) 

breast cancers and 410 controls matched on study age (±2 years), date of blood collection 

(±3 months), and hormone therapy use at baseline. The study collected serum samples at the 

first follow-up visit, 1-year after baseline, and using these specimen, measured 481 known 

serum metabolites (<kDA). Metabolite levels were log transformed. Details on the study are 

in Moore et al. (2018).

We modeled the data using LVMA with qmax = 40 factors adjusting for the three matching 

variables (see Web Appendix E). The model identified only a single factor associated with 

both BMI (βEF, 1 = 0.035) and risk of breast cancer (βFY, 1 = 0.14). This factor had 111 

nonzero loadings but only 16 of these loadings had an absolute value larger than 0.4, with 

the majority of remaining metabolites having loadings below 0.01. In Table 1, we list these 

16 metabolites. In Web Figure 22, we display loadings for all metabolites from LVMA and 

standard factor analysis. Of interest, many of these metabolites are products of estrogen 

metabolism, suggesting estrogen metabolism does partially explain why increased BMI is 

associated with increased risk of ER+ breast cancer. However, most of the effect of BMI was 

not mediated by this factor. When estimating the TE, NDE, and NIE on the OR scale, we 

find ORTE = exp(0.039), ORNDE = exp(0.034), and ORNIE = exp(0.005) suggesting that the 

estrogen pathways explains only a small fraction of the TE of BMI.

We also applied TMAO, TMAR, and IMA to the data, adjusting for the matching variables. 

TMAO and TMAR did not detect statistically significant factors mediating the relationship 

between BMI and the risk of ER+ breast cancers (Web Figures 23 and 24). Similarly, IMA 

did not identify statistically significant metabolites mediating the relationship (Web Figure 

25). Further details are in Web Appendix G.

6 | DISCUSSION

We proposed a latent variable model for high dimensional mediation analysis (LVMA). 

Our theoretical results show that the model parameters are identifiable, and LVMA 

estimates those parameters that have the so-called oracle properties of consistency and 

efficiency. Our simulation results further show that using LVMA, when appropriate, can 

significantly increase the number of discovered mediators. LVMA, by considering all 

variables simultaneously, efficiently estimates all parameters in the model. Specifically, 

using LVMA, we better estimate the mediating factors by using additional information 

about the exposure and outcome, as opposed to only using the information about the 

biomarkers. However, under model misspecification, such as when the exposure directly 

affects individual biomarkers, the assumption of latent variables can reduce the power to 

detect such biomarkers.
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We highlight a couple of features of our method. First, we extend current literature on 

mediation analysis with a single latent mediator (Muthén and Asparouhov, 2015; Albert 

et al., 2016) to handle multiple latent mediators. Second, although some recent studies 

have started exploring penalized structural equation modeling (Jacobucci et al., 2016), these 

methods were not designed to handle the p > > n setting. Third, we extend our mediation 

model and, more generally, sparse factor analysis to accommodate case-control sampling.

None of the previously published methods (Boca et al., 2013; Huang and Pan, 2016; 

Zhang et al., 2016; Zhao and Luo, 2016; Chen et al., 2018 explicitly assumed the latent 

structure illustrated in Figure 1, but two methods did so implicitly. Huang and Pan (2016) 

take an approach similar to TMAR but do not impose any sparsity on the factors. Their 

objective is also fundamentally different as they are testing whether the set of all biomarkers 

are mediators as opposed to trying to identify the subset that is mediators. Chen et al. 

(2018) aims to identify linear combinations of biomarkers that are associated with both the 

exposure and outcome. However, their approach does not allow for factors that are only 

associated with the exposure or the outcome. Therefore, the biomarkers associated with only 

one of those variables get mistakenly included in the “direction of mediation.”

Several problems remain to be addressed in future work. Our latent model in (6–9) does not 

detect the existence of biomarkers that directly mediate the effect of E on Y. As evidenced 

by a large number of nonzero loadings in our application, the shrinkage of loadings for 

unrelated biomarkers may not be satisfactorily using EBIC. Some of our assumptions could 

also be violated in real-world examples. The factors need not be independent conditional on 

the exposure; the biomarkers need not be normally distributed; for retrospective sampling, 

the exposure needs to be normally distributed. We note the latter may be accommodated 

by the semiparametric approach based on Qin (1998) but that the discussion is beyond the 

scope of this paper. Despite these limitations, we believe the newly proposed LVMA offers a 

novel important tool for detecting biological mediators.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Causal graphs of the mediation models. A, Traditional mediation analysis where the 

exposure influences the biomarkers. B, Latent-variable mediation analysis where the 

exposure influences a set of q latent, or unmeasured, factors and those factors influence 

both the biomarkers and the outcome. To simplify the figure, we highlight the arrows and 

notation for only a single factor. In the sparse scenario, we expect most effects to be 0 (i.e., 

λ, βEY, and βFY, are usually 0). We define the p × q matrix, Λ, so that the m, jth entry is λmj
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FIGURE 2. 
Alternative causal graphs of the mediation models. A, Causally ordered mediation analysis 

where the exposure influences the biomarkers. B, Latent-variable mediation analysis where 

the exposure influences a set of q causally ordered latent factors. C, Latent-variable 

mediation analysis where the exposure influences a set of q bidirectionally connected latent 

factors. D, Latent-variable mediation analysis where the exposure influences a set of q 
bidirectionally connected latent factors and those factors influence bidirectionally connected 

biomarkers
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FIGURE 3. 
Continuous outcome and large factor effects (λ1 = 0.3). The panels, labeled A-C, show the 

average number of true positives (TP), the average number of false positives (FP), and the 

average estimate of the direct effect for the four methods (red = LVMA; blue = TMAO; 

green = TMAR; purple = IMA) and for four scenarios (a: βEF,1 = 0.4, λ0 = 0.4; b: βEF,1 = 

0.4, λ0 = 0.5; c: βEF,1 = 0.5, λ0 = 0.4; d: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. 

Top and bottom panel are for studies with N = 300 and N = 500 subjects, respectively. The 

whiskers show two standard errors around the average estimates.
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FIGURE 4. 
Binary outcome and large factor effects (λ1 = 0.3). The panels, labeled A-C, show the 

average number of true positives (TP), the average number of false positives (FP), and the 

average estimate of the direct effect for the four methods (red = LVMA; blue = TMAO; 

green = TMAR; purple = IMA) and for four scenarios (a: βEF,1 = 0.4, λ0 = 0.4; b: βEF,1 = 

0.4, λ0 = 0.5; c: βEF,1 = 0.5, λ0 = 0.4; d: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. 

Top and bottom panel are for studies with N = 300 and N = 500 subjects, respectively. The 

whiskers show two standard errors around the average estimates.
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FIGURE 5. 
Small factor effects (λ1 = 0.25). The panels, labeled A-C, show the average number of true 

positives (TP), the average number of false positives (FP), and the average estimate of the 

direct effect for the four methods (red = LVMA; blue = TMAO; green = TMAR; purple = 

IMA) and for four scenarios (a: βEF,1 = 0.4, λ0 = 0.4; b: βEF,1 = 0.4, λ0 = 0.5; c: βEF,1 = 

0.5, λ0 = 0.4; d: βEF,1 = 0.5, λ0 = 0.5) based on 1000 simulations. Top and bottom panel are 

for studies with continuous and binary outcomes, respectively (N = 500). The whiskers show 

two standard errors around the average estimates.
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TABLE 1

Metabolites linking BMI and breast cancer

Metabolite Loading (λmj)

5α-Pregnan-3β,20-α-diol monosulfate (2) 0.46

5α-Pregnan-3β,20-α-diol disulfate 0.49

Etiocholanolone glucuronide 0.49

16α-Hydroxydehydroepiandrosterone 3-sulfate 0.51

Epiandrosterone sulfate 0.60

Androsterone sulfate 0.61

4-Androsten-3β,17-β-diol monosulfate (2) 0.61

Pregnen-diol disulfate 0.63

4-Androsten-3β,17-α-diol monosulfate (3) 0.64

5α-Androstan-3β,17-β-diol disulfate 0.65

21-Hydroxypregnenolone disulfate 0.65

Pregnen steroid monosulfate 0.65

4-Androsten-3β,17-β-diol monosulfate (1) 0.67

4-Androsten-3β,17-β-diol disulfate (2) 0.70

4-Androsten-3β,17-β-diol disulfate (1) 0.70

Dehydroisoandrosterone sulfate (DHEA-S) 0.75

This list includes those metabolites that were strongly affected (γ > 0.4) by the factor mediating increased BMI and ER+ breast cancer in PLCO.
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