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ABSTRACT: Machine learning and deep learning have facilitated
various successful studies of molecular property predictions. The
rapid development of natural language processing and graph neural
network (GNN) further pushed the state-of-the-art prediction
performance of molecular property to a new level. A geometric
graph could describe a molecular structure with atoms as the nodes
and bonds as the edges. Therefore, a graph neural network may be
trained to better represent a molecular structure. The existing
GNNs assumed homogeneous types of atoms and bonds, which
may miss important information between different types of atoms
or bonds. This study represented a molecule using a heterogeneous
graph neural network (MolHGT), in which there were different
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types of nodes and different types of edges. A transformer reading function of virtual nodes was proposed to aggregate all the nodes,
and a molecule graph may be represented from the hidden states of the virtual nodes. This proof-of-principle study demonstrated
that the proposed MolHGT network improved the existing studies of molecular property predictions. The source code and the
training/validation/test splitting details are available at https://github.com/zhangruochi/Mol-HGT.

Bl INTRODUCTION

Accurate prediction of chemical molecular properties is an
essential and challenging topic in the area of high-throughput
pharmaceutical screening.' The process of candidate drug
screening could be substantially accelerated through the virtual
prediction of the molecular properties. The rapid accumulation
of experimentally confirmed molecular properties and the
development of supervised learning algorithms continuously
improve the prediction performances. The deployment of
machine learning and deep learning techniques significantly
improved the conventional ab initio computational modeling of
molecular properties, including density functional theory,” GW
approximation,” quantum Monte Carlo,” and so forth.

Graph-based models precisely captured the interatom
correlations and demonstrated the state-of-the-art results for
various prediction problems of molecular properties.””"” Some
open-source toolkits have been released to facilitate the graph-
structured biomedical data.'® Wu et al. comprehensively
evaluated the graph-based models on 17 data sets of various
molecular properties and demonstrated the superior prediction
performances over the conventional machine learning methods
on 11 data sets."”

Most of the existing graph neural network (GNN) models
assumed that there was only one type of graph node, which was
connected through one type of edge. Gilmer et al. introduced the
edge-dependent variations to the framework message passing
neural network (MPNN) for the molecular property prediction
problem.” Their data demonstrated that the edge-level
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variations improved the molecular property prediction perform-
ances.

Such edge-level variations may be described by the
heterogeneous graph neural networks,””
widely utilized in the graph data mining tasks, for example, link
prediction,22 node classification,”® and node clustering.24 The
heterogeneous graph attention network (HAN) introduced
heterogeneous structures and semantic-level attentions to the
graph attention networks.”> Moreover, the heterogeneous graph
network with the transformer-like attention mechanism out-
performed the state-of-the-art graph networks by 9—21% on
downstream tasks on the open academic graph data sets.”®

This research uses a heterogeneous graph network to
represent the molecular graph structure and utilized MolHGT
for the molecular property prediction problem. In summary, this
study has three main contributions.

which have been

1. We created a new molecular heterogeneity setting for the
graph neural network, including 11 types of nodes and 4
types of chemical bonds.
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2. A virtual node transformer (VNT) readout function was
introduced to aggregate all the structurally heterogeneous
nodes to represent a molecule graph.

3. We proposed the MolHGT framework which represented
both the atoms and interatom bonds of a chemical
molecule with heterogeneous graph structures.

B RESULTS AND DISCUSSION

Tuning the Hyperparameters. The proposed graph
MolHGT consisted of many hyperparameters, and different
value choices may have a major influence on the model
performance. The Bayesian hyperparameter optimization
(BayesHyperOp) search demonstrated its superiority in
optimizing a prediction model with an unknown ob_}'ective
function and a high computational complexity.”’ The
BayesHyperOp search strategy estimated the posterior dis-
tribution of the objective function using the Bayes theorem and
then selected the next value choice of the hyperparameters based
on the distribution combination. Therefore, the BayesHyperOp
search strategy was anticipated to make full use of the
information from the previously evaluated value choices of the
hyperparameters.

This study utilized the BayesHyperOp search strategy to find
the best value choices of the three hyperparameters for all the
100 data sets, and the results are shown in Table 1. The max

Table 1. Best Hyperparameter Combination for Each of the
10 Data Sets from the Bayesian Hyperparameter
Optimization Search”

data set LRate HiddenState LayerNum
ESOL 0.0001 400 4
FreeSolv 0.0005 240 3
Lipo 0.0001 560 3
HIV 0.0001 440 3
BACE 0.0001 400 2
BBBP 0.0005 680 4
Tox21 0.0001 560 3
ToxCast 0.0001 760 3
SIDER 0.0001 640 4
ClinTox 0.0005 720 2

“The column “data set” gave the data set name. The other three
columns, “LRate”, “HiddenState”, and “LayerNum” gave the best
value choices for the hyperparameters “Learning Rate”, “dimension of
the hidden states”, and “the number of layers” of the graph neural
network MolHGT.

number of iterations was set to 20. Due to the time complexity
and the computation cost, we cannot exhaustively screen all the
hyperparameters. The following three hyperparameters were
evaluated. Two values, 0.0005 and 0.0001, were evaluated for
the hyperparameter learning rate (LRate). The hyperparameter
dimension of hidden states (HiddenState) was set to be between
the range [200, 800] with an internal 40. Three numbers of
layers for the hyperparameter LayerNum were evaluated, that is,
2, 3, and 4. The best value choices of these three hyper-
parameters were calculated and are shown in Table 1. The
following evaluation and ablation experiments were conducted
using these best value choices of the three hyperparameters.
Performance Comparison with the Existing Models.
Figure 1 illustrates the performance comparison of the proposed
MOolHGT with the best graph-based model listed in the database
MoleculeNet."” The database MoleculeNet maintained the

3714

results of many graph-based models, including the graph
convolutional network, weave network, directed acyclic graph
network, deep tensor neural network, ANI-1 network, and
MPNN. The data series “BestGraph” in Figure 1 was the
performance measurements of the best graph-based models
from the database MoleculeNet. The proposed network
MoIHGT achieved the average improvement of 16.49% on
the three regression data sets and 4.84% on the seven
classification data sets. The minimum improvement 0.67% was
achieved by MolHGT on the data set ToxCast, and this data set
may be difficult to be classified, since the minimum improve-
ment of the other data set was at least 2.10%. A smaller RMSE
suggested a better regression model, and the largest reduction
19.30% of RMSE was achieved by MolHGT on the data set
FreeSolv.

The proposed model MolHGT was also compared with the
D-MPNN model on eight of the ten data sets, as shown in Figure
1. The D-MPNN model was not evaluated on the two data sets
BACE and ToxCast in its original study.'” MolHGT out-
performed D-MPNN on seven out of the eight data sets except
for SIDER. A minor decrease —0.59% of MolHGT was found on
this data set SIDER. MolHGT achieved an averaged improve-
ment 1.07% in AUC for the eight classification data sets and
8.40% for the three regression data sets. The largest improve-
ment 13.67% in RMSE was achieved by MolHGT on the data set
Lipo.

Recently, Chen et al. proposed to use algebraic graph-assisted
bidirectional transformers to predict molecular properties.””
They got an RMSE value of 0.994 on the data set FreeSolv.
AUC-ROC of 0.555 and 0.763 were obtained, respectively, on
Lipophilicity and BBBP data sets. Shen et al. proposed the
MolMapNet model, which combined the potential of human
expert knowledge of molecular representations and convolution
neural networks to predict pharmaceutical properties.”” They
obtained an ROC-AUC of 0.739 on the BBBP data set, which is
slightly better than the 0.738 of MoIHGT. However, the results
on the other eight data sets are all lower than MolHGT. Detailed
data comparison is in Table 2.

Overall, the proposed model MolHGT achieved the best
results in most of the 10 evaluated data sets, as shown in Figure 1
and Table 2. MolHGT was the best model on all the three
regression data sets, compared with the BestGraph model and
the D-MPNN model. The D-MPNN model did not give the
performance data on the two classification data sets BACE and
ToxCast. Also, the proposed model MolHGT outperformed D-
MPNN on seven out of the remaining eight data sets. The
column “BestGraph” in Table 2 suggested that the existing graph
models listed in the database MoleculeNet did not achieve
consistently on all the 10 data sets. In addition, the D-MPNN
model may deliver performance improvements in most cases.

Necessity of the Node Heterogeneity. The node
heterogeneity is one of the main contributions of MolHGT,
and this section evaluated whether it is necessary to add the node
heterogeneity to the graph network. The MolHGT model
without the node heterogeneity learned the same weights for
different types of atoms. The experimental results in Figure 2
showed that the node heterogeneity improved all the three
regression data sets and an averaged improvement 4.01% in
RMSE was achieved. Only the two data sets BBBP and ClinTox
received the decreased classification AUC —0.14 and —1.53%,
respectively. The node heterogeneity did not change the
classification performance of MolHGT on the data set BACE.

https://doi.org/10.1021/acsomega.1c06389
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Figure 1. Performance comparison with the benchmark graph models in the database MoleculeNet and D-MPNN. The comparison was conducted on
the (a) three regression data sets and (b) seven classification data sets. The horizontal axis gave the data set names, and the vertical axis gave the
performance metrics, where RMSE is for the regression data sets and AUC is for the classification data sets. The data series “BestGraph” gave the best
performance measurement of the graph-based models in the database MoleculeNet. In addition, the other data series, “D-MPNN”, gave the
performance of the model D-MPNN.

Table 2. Detailed Performance Data Achieved Using the BestGraph Models, the D-MPNN Model, and the Proposed MolHGT
Model”

Data set split type metric MolNet best graph-based methods D-MPNN AGBT MolMap MOolHGT features
ESOL random RMSE MPNN: 0.580 0.5585 + 0.047 0.575 0.518 + 0.021
FreeSolv random RMSE MPNN: 1.150 1.075 + 0.054 0.994 1.155 0.929 + 0.121
lipophelicity random RMSE GC: 0.655 0.5585 + 0.023 0.57 0.625 0.536+0.032
HIV scaffold ROC-AUC GC: 0.763 0.776 + 0.008 0.777 0.780 + 0.026
BACE scaffold ROC-AUC weave: 0.806 0.849 0.857+0.008
BBBP scaffold ROC-AUC GC: 0.690 0.738 + 0.001 0.763 0.739 0.738 + 0.003
Tox21 random ROC-AUC GC: 0.829 0.851 + 0.002 0.845 0.862+0.006
ToxCast random ROC-AUC weave: 0.742 0.747+0.021
SIDER random ROC-AUC GC: 0.638 0.676 + 0.014 0.68 0.676 + 0.013
ClinTox random ROC-AUC weave: 0.832 0.864 + 0.017 0.888 0.9004-0.019

“The columns “data set” and “metric” gave the data set names and the performance metrics used by the data sets. The column “BestGraph” gave
the best performance measurement of all the graph-based models listed in the database MoleculeNet. The column “D-MPNN” gave the
performance measurement of the D-MPNN model. The column “AGBT” gave the performance measurement of the algebraic graph-assisted
bidirectional transformer model. The column “MolMap” gave the performance measurement of MolMapNet. The column “MolHGT Features”
gave the performance measurement of MolHGT on the 10 data sets, and the data were averaged over 10 random runs with the random seeds 0—9.

The best model of each data set was highlighted in bold.
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Figure 2. Contribution evaluation of the node heterogeneity. The performance comparison between the MolHGT models with (MolHGT) and
without (MolJHGT-HNode) the settings of heterogeneous nodes for the (a) regression data sets and (b) classification data sets. The regression models
were evaluated for the metric RMSE (the smaller, the better). Also, the classification models were evaluated for the metric AUC (the larger, the better).

All the other five classification data sets were improved by node
heterogeneity.

Necessity of the Edge Heterogeneity. The edge
heterogeneity is another main contribution of the proposed
MolHGT model. Figure 3 illustrates the performance differ-
ences if the edge heterogeneity was not introduced to MolHGT.
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MolHGT improved nine out of the ten data sets with the edge
heterogeneity, except for the classification data set ClinTox. The
classification AUC of the data set ClinTox was decreased by
1.42%. The performance metric RMSE values of the three
regression data sets were decreased by an average improvement
2.02%. Except for the data set ClinTox, MolHGT achieved an

https://doi.org/10.1021/acsomega.1c06389
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Figure 3. Contribution evaluation of the node heterogeneity. The performance comparison between the MolHGT models with (MolHGT) and
without (MolHGT-HEdge) the settings of heterogeneous edges for the (a) regression data sets and (b) classification data sets. The regression models
were evaluated for the metric RMSE (the smaller, the better). Also, the classification models were evaluated for the metric AUC (the larger, the better).

average improvement 0.48% in AUC values of the six
classification data sets.

Other Ablation Evaluations of MolHGT. The ablation
experiments were conducted to evaluate the other MolHGT
components, as shown in Table 3. The proposed model

Table 3. Ablation Evaluation of the Other MolHGT
Components”

data set MolHGT MolHGT-MR MolHGT-EF MolHGT + GRU
ESOL 0.514 0.532 0.569 0.533
FreeSolv 0.928 0.95 0.965 0.946
Lipo 0.532 0.549 0.533 0.522
HIV 0.779 0.789 0.787 0.778
BACE 0.859 0.854 0.806 0.858
BBBP 0.738 0.741 0.703 0.74
Tox21 0.862 0.863 0.866 0.865
ToxCast 0.747 0.748 0.744 0.748
SIDER 0.672 0.668 0.669 0.666
ClinTox 0.901 091 0.898 0.909

“The column “MolHGT” gave the results of the proposed model
MOolHGT on all the 10 data sets. The column “MolHGT-MR” gave
the results of the MolHGT model without the metarelations. The
column “MolHGT-EF” gave the data of the MoIHGT model without
the external features. Also, the column “MolHGT + GRU” gave the
data of the MolHGT model with the original version of a gated
recurrent unit (GRU) as the update function. The performance
metrics RMSE and AUC were used for the first three regression data
sets and the other seven classification data sets, respectively.

MOolHGT gained performance improvements with the compo-
nents’ metarelation, external features, and the modified gated
recurrent unit (GRU) update function for all the three
regression data sets. The additions of the component external
features in the proposed model MolHGT contributed an
average improvement 1.61% in AUC for the seven classification
data sets. The addition of the component metarelation and the
modified GRU introduced the positive contributions to many
classification data sets and the minor decreases in the averaged
classification AUC, by the averaged decreases of —0.25 and
—0.07%, respectively.

B CONCLUSIONS

This study proposed a novel graph network MolHGT with
heterogeneous structures for different types of nodes and edges
for the molecular property prediction problem. The transformer
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modules fused the features represented by these heterogeneous
nodes and edges and passed the messages between these nodes
and edges. The comprehensive ablation experiments demon-
strated that the proposed network MolHGT delivered perform-
ance improvements on the 10 data sets with the major network
components, and the heterogeneities in both nodes and edges
were beneficial to the molecular property prediction problems.
MOolHGT also outperformed the existing graph-based molecular
property prediction models in most cases, especially the
regression data sets.

It is worth noting that the heterogeneity setting of the
proposed MolHGT increases the model complexity and the
largely increased number of parameters may potentially increase
the possibility of model overfitting, as shown in Table S1. For
example, MolHGT utilizes 11 node types and 4 edge types, and
the numbers of model parameters to represent nodes and edges
are increased to 11 and 4 times compared with the conventional
graph neural network, respectively. This study splits the data set
into the training/validating/testing sets by the ratio of 8:1:1 and
carries 10 random runs of the experiments in order to reduce the
overfitting bias. It will be important to further evaluate the
proposed models using the future accumulation of more
molecular samples.

B MATERIALS AND METHODS

Problem Settings and Data Sets. This study evaluated the
proposed graph neural network MolHGT using 10 public data
sets, as shown in Table 4. These 10 popular data sets retrieved
the database MoleculeNet."” All the data sets used the SMILES
sequences to represent chemical molecules and consisted of less
than 50,000 molecules. There were three regression data sets
and the other seven data sets were classification problems. The
three regression data sets investigated the physical chemistry
properties. There were two classification data sets for the
biophysical properties and the other five classification
physiological properties.

Performance Metrics. A receiver operating characteristic
curve (ROC curve) is a graph showing the performance of a
classification model at all classification thresholds. It plots TPR
versus FPR at different classification thresholds. Lowering the
classification threshold classifies more items as positive, thus
increasing both false positives and true positives. AUC stands for
“area under the ROC curve”. AUC measures the entire two-
dimensional area underneath the entire ROC curve. Therefore,

https://doi.org/10.1021/acsomega.1c06389
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Table 4. Descriptions of the 10 Data Sets Used in This Study”

category data set # molecules  # tasks task type
physical chemistry ESOL 1128 1 regression
FreeSolv 642 1 regression
Lipo 4200 1 regression
biophysics HIV 41127 1 classification
BACE 1513 1 classification
physiology BBBP 2039 1 classification
Tox21 7831 12 classification
ToxCast 8576 617 classification
SIDER 1427 27 classification
ClinTox 1478 2 classification

“The columns “# molecules” and “# tasks” gave the numbers of
molecule samples and the number of tasks of each data set. The
column “task type” gave whether this data set was a regression or
classiflgcation task. Further details on the data sets are available in Wu
et al.

ROC-AUC provides an aggregate performance measure across
all possible classification thresholds.*

TP + FN (1)
FP
FPR= ——
FP + EN ()

1
AUC = f TPR(FPR(X))dx
x=0 (3)

Root mean square error (RMSE) is the standard deviation of
the residuals (prediction errors). Residuals measure how far
from the regression line data points are; RMSE is a measure of
how spreading out these residuals are. In other words, it tells
how concentrated the data are around the line of best fit. RMSE

is commonly used in climatology, forecasting, and regression
analysis to verify experimental results.

RMSE =

(4)

where M is the number of the samples, y; is the target variable of
sample i, and j is the prediction of sample i.

Data Set Splitting Strategy. For a fair comparison with the
other studies, we downloaded the data sets in their original
splitting strategy provided by MoleculeNet.'” That is to say, the
splitting was carried out using 10 fixed random seeds (0—9) and
the recommended splitting types (“random” or “scaffold”). Each
data set was split into the ratio of 8:1:1 for the training/
validation/testing data sets. The models were trained on the
training data sets, and the hyperparameters were tuned on the
validation data sets. The final performance was calculated on the
testing data sets.

Heterogeneity Setting of a Molecule Graph. Heteroge-
neous graphs are composed of multiple types of nodes and edges
and contain comprehensive information and rich semantics. A
heterogeneous graph neural network will pass messages from
source nodes to target nodes based on the specific nodes and
edge types. While the message passing mechanism and neural
network weights in the homogeneous graph network are the
same, regardless of node types and edge types. Figure 4
illustrates the difference between homogeneous and heteroge-
neous graph neural networks. Our study introduced the
heterogeneities in both nodes and edges into the graph-
represented chemical compounds. A molecule was represented
by a labeled graph with the nodes corresponding to the atoms
and the edges corresponding to the chemical bonds between
atoms of this molecule. There were many types of atoms and
chemical bonds in a compound. This study defined 11 types of
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Figure 4. Difference between homogeneous and heterogeneous graph neural networks. (a) Message passing mechanism is the same for different nodes
in the homogeneous graph neural network. The different types of nodes have the same neural network weights. (b) Message passing mechanisms for
different nodes in the heterogeneous graph neural network. Different types of nodes and different types of edges have different neural network weights.
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Figure S. Submodules and overall architecture of the proposed graph network MolHGT. (a) Architecture of a heterogeneous graph transformer. (b)
Architecture of the VNT. (c) Overall architecture of MolHGT. Molecules were loaded to train the graph network MolHGT, and the molecular

nodes, representing 10 common atoms (H, C,N, O, F, P, S, Cl,
Br, and I) and the last type for all the other atoms rarely found in
drug molecules. Five types of edges were defined, including four
common types of chemical bonds (single, double, triple, and
aromatic) and the last type for the self-connected edge. We
hypothesized that this heterogeneity in the molecule graph may
better represent a chemical molecule.

Shui and Karypis introduced HMGNN, a graph representa-
tion learning model with two node types (one-body and two-
bodies) and three edge types (1—1, 2—2, and 1-2), and fused
the heterogeneous nodes by summing the node embeddings of
each p-body module and concatenating them into an
intermediate representation.”’ HMGNN can capture complex
geometric information of molecular graphs. For example, it can
learn the rotation invariance of atoms. However, the
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heterogeneity of HMGNN lies in the construction strategies
of new types of nodes and edges. HMGNN regards atom pairs
and single atoms as two different types of nodes. For atoms such
as C and O, they are still encoded into the same vector space by
HMGNN. Different types of chemical bonds such as single
bonds and double bonds are also encoded in the same vector
space. We hypothesize that such a representation may cause the
loss of some useful chemical information. MoIHGT proposes a
specifically designed framework to represent 11 node types and
4 edge types and directly encodes different types of atoms and
edges into different vector spaces. MolHGT may better capture
the rich chemical information of the target molecule. Moreover,
the VNT readout function in this study facilitates a much more
flexible and data-specific fusion interface for the heterogeneous
graph structures.
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Model Architecture of MolHGT. This study combined the
graph neural network with the transformer module to represent
the chemical molecules based on the previous observations that
transformers may fuse the heterogeneous modules in graph
neural networks. Yun et al. suggested that the graph transformer
network may efficiently learn new graph structures based on the
data and tasks without domain knowledge and deliver powerful
node representations via convolution of the learned new
graphs.®” Hu et al. demonstrated that the heterogeneous graph
transformer outperformed the state-of-the-art graph neural
network baseline models by 9—21% on various downstream
tasks.*

We followed the terminology of the study MPNN® to separate
the graph model into two phases, that is, the message passing
phase and the readout phase, as shown in Figure S. The message
passing phase ran for L graph layers. The graph layer I € [1, L]
had the message function M' and node update function U'. The
target node t aggregated the message from the source node s
using the formula

mi= Y M@ e

SEN(t)

©)

The notations N(t) represent the neighbors of the target node
t and the node t, e represents the type of the edge from the
source node s to the target node t, and M' represents the
heterogeneous graph transformer message function.”® The

hidden states htl_1 were updated based on the message mtl
using the formula

h = U'(h'™", m)) (6)

The notation U’ represents the GRU update function. The
previous graph model MPNN got the graph features from the
last graph layer.” We introduced more flexibility by concatenat-
ing the node hidden states of all the graph layers into the graph

feature H' using the formula

7 =f(IK) @)
and
W = R({nls € G}) (8)

The notations f() are a fully connected neural network and R’
represents the VNT readout function, which was described in
the following section.

This study concatenated the graph features with the external
features for the last fully connected output layer. The external
features were defined in the same way as in the D-MPNN'’
where the 2D molecular descriptors were calculated using the
tool RDKit.”’

Heterogeneous Graph Transformer Message Func-
tion. The message function was inspired by the architecture
design of the transformers®* in the network HGT.*® The main
idea was to aggregate the multihead attention-weighted
messages from the source nodes using the formulas

1 1
mo= | h
le[1,L] 9)
head' = Z Attention'(s, e, t)~Messagei
seN(t) (10)

The notation h represented the number of attention heads,
where this study set h = 10.
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The ith head Q — linearti function mapped the target node ¢
into the ith head query vector Q/(t) with the dimension RY — R%
, where d is the node hidden state dimension and d), — 9, is the
vector dimension per head. Similarly, the functions K — linear;

and V — linear! mapped the source node into the ith head key
vector K'(s) and value vector V'(s) using the mathematical
formulas

Q(t) = Q — linear(h, ") (11)
K'(t) = L — linear:(h/™") (12)
Vi) =V - lineari(hsl_l) (13)

Unlike the transformer vanilla, the parameters of the Q/K/V
linear function depended on the node types they worked on.
Therefore, this study defined them as the heterogeneous node
parameters. There were 11 different heterogeneous node types,
among which 10 for the common atoms (H, C,N, O, F, P, S, CJ,
Br, and I) in the drug molecules and the last one for all the other
atoms. Second, the ith head attention weight between the target
node t and the source node s was calculated by

Attention'(s, ¢, £) = Softmax| (Q/(1)AK(s)")e 1222 1]
VeN(t) \/d_h

(14)

The notation A, € R% is the ith head edge-based matrix,
which was defined as the heterogeneous edge parameters. There
were five different heterogeneous edge types, among which four
represented the bond types (single, double, triple, and aromatic)
and the last one represented the special self-connected edge
type. The notation u'[s,e,t] is the ith head learnable meta relation
scalar, which was another heterogeneous parameter relying on
the heterogeneities of both nodes and edges. Finally, the
multihead message was calculated as

Messagei(s, e) = Vi(s)Mei (15)

The notation M! € R is the ith head edge-based matrix,
and it is also a heterogeneous edge parameter.

HGT is a general-purpose heterogeneous graph neural
network, while MolHGT improves the HGT framework with
molecule-specific features, as illustrated in Figures 4 and S.
Besides the heterogeneous definitions of node types and edge
types, the GRU update function provides the more efficient
capability to capture the messages when updating the node
states from different graph layers. The VNT generates the final
representation of the molecules and delivers satisfying perform-
ances of the molecular property prediction task.

GRU Update Function. The GRU update function was
used in this study. GRU was first introduced in the graph model
GG-NN, which was believed to be a strong baseline graph
model.*>*® GRU was an attention-like architecture with reset
and update gates. We assumed that GRU may capture the
important messages during updating the node states of different
graph layers and compared it with the target node-dependent
node update function in the HGT.” This study accompanied
the GRU update function with layer normalization®” using the
following formula

htl = LayerNorm(GRU(htl_l, LayerNorm(mtl))) (16)
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The node hidden states were the hidden states of the GRU
update function, and the message was the new input of GRU.
Similar to the vanilla GRU in the recurrent neural networks,*®
the parameters of the GRU update function were shared across
all the graph layers.

VNT Readout Function. This study used the VNT as the
readout function. A set transformer’” was a framework for the
attention-based permutation-invariant neural networks and was
specifically designed to handle set data, instead of summing the
final node states. As similar in the pooling architecture of the set
transformer, this study used one random initial virtual node h,ln
to aggregate the attention-weighted messages from all the nodes
in the graph network, where the attention was between the
virtual node m and the source node s using the formula

W = LayerNorm(f(LayerNorm( | head’)))

i€[Lh] (17)

head’ = Mean SOftmax[w-V"(s)]
et R N .
Q(m) = h,w, (19)
K'(s) = hw, (20)
Vi(s) = hw, (21)

The notations f(-) are a fully connected layer with ReLU
activation, and w;, wi, w, € R%*%_ This study used the mean

aggregation, instead of the summing one. The experimental data
showed that MolHGT has better results when the VNT block
uses different parameters in different graph layers. Therefore,
VNT adopts the setting of nonsharing of parameters in this
study.

Figure Sb shows that a virtual node combines the
representation of each node in the molecular graph in a
weighted form. Therefore, a virtual node carries the information
from the entire molecular graph. MolHGT has L graph layers,
and each graph layer contains a representation of a virtual node.
We use a concatenation operator to merge them together and
then load the concatenation to the final linear layer as the final
representation of the molecular graph. The molecular data have
to be encoded by the VNT layer, and it is difficult to remove the
VNT module from the MolHGT framework. Therefore, VNT is
not evaluated by the ablation experiment.

Implementation and Running Environment. All the
experiments were implemented using the Python programming
language version 3.6.12 with the package TensorFlow version
2.0.0. The experiments were conducted on a computing server
with an Intel CPU (Intel(R) Xeon(R) Silver 4210 CPU 2.20
GHz), 4 GPU cards (Nvidia 2080Ti, 11 GB memory per card),
and 128 GB system memory.
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