Skip to main content
. 2022 Feb 2;23:58. doi: 10.1186/s12859-021-04540-7

Table 2.

Results on the RNAStrAlign dataset (sequence-wise CV)

Precision Recall F1 Prec (S) Recall (S) F1 (S) Weighted F1
Mfold [6] 0.450 0.398 0.420 0.463 0.409 0.433 0.366
RNAfold [8] 0.516 0.568 0.540 0.533 0.587 0.558 0.444
RNAstructure [7] 0.537 0.568 0.550 0.559 0.592 0.573 0.471
LinearFold [24] 0.620 0.606 0.609 0.635 0.622 0.624 0.509
CDPfold [12] 0.633 0.597 0.614 0.720 0.677 0.697 0.691
CONTRAfold [11] 0.608 0.663 0.633 0.624 0.681 0.650 0.542
E2Efold [13] 0.866 0.788 0.821 0.880 0.798 0.833 0.720
MXfold2 [16] 0.864 0.873 0.868 0.876 0.884 0.879 0.694
CNNFold + Argmax 0.955 0.861 0.900 0.955 0.872 0.902 0.812
CNNFold-mix + Argmax 0.956 0.912 0.932 0.958 0.915 0.934 0.863
CNNFold-mix + Blossom 0.975 0.907 0.936 0.978 0.909 0.938 0.872

Bold values are the best result in each column

“(S)” indicates the results when one-position shifts are allowed, that is for a base pair (ij), the following predictions are also considered correct: (i+1,j), (i-1,j), (i,j+1), (i,j-1). The numbers for the comparison methods are from [13]. All trainable models have been trained on RSA-tr