Table 2.
Precision | Recall | F1 | Prec (S) | Recall (S) | F1 (S) | Weighted F1 | |
---|---|---|---|---|---|---|---|
Mfold [6] | 0.450 | 0.398 | 0.420 | 0.463 | 0.409 | 0.433 | 0.366 |
RNAfold [8] | 0.516 | 0.568 | 0.540 | 0.533 | 0.587 | 0.558 | 0.444 |
RNAstructure [7] | 0.537 | 0.568 | 0.550 | 0.559 | 0.592 | 0.573 | 0.471 |
LinearFold [24] | 0.620 | 0.606 | 0.609 | 0.635 | 0.622 | 0.624 | 0.509 |
CDPfold [12] | 0.633 | 0.597 | 0.614 | 0.720 | 0.677 | 0.697 | 0.691 |
CONTRAfold [11] | 0.608 | 0.663 | 0.633 | 0.624 | 0.681 | 0.650 | 0.542 |
E2Efold [13] | 0.866 | 0.788 | 0.821 | 0.880 | 0.798 | 0.833 | 0.720 |
MXfold2 [16] | 0.864 | 0.873 | 0.868 | 0.876 | 0.884 | 0.879 | 0.694 |
CNNFold + Argmax | 0.955 | 0.861 | 0.900 | 0.955 | 0.872 | 0.902 | 0.812 |
CNNFold-mix + Argmax | 0.956 | 0.912 | 0.932 | 0.958 | 0.915 | 0.934 | 0.863 |
CNNFold-mix + Blossom | 0.975 | 0.907 | 0.936 | 0.978 | 0.909 | 0.938 | 0.872 |
Bold values are the best result in each column
“(S)” indicates the results when one-position shifts are allowed, that is for a base pair (i, j), the following predictions are also considered correct: , , , . The numbers for the comparison methods are from [13]. All trainable models have been trained on RSA-tr