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Abstract

The tumor microenvironment (TME) is a complex neighborhood that consists of immune cells, 

fibroblasts, pericytes, adipocytes, endothelial and neuronal cells, and the extracellular matrix 

proteins. TME also consists of physical factors, such as oxygen availability, changing pH, 

interstitial fluid pressure, and tissue stiffness. As cancer progresses, the physical properties and 

the cells in the TME change significantly, impacting the efficacy of the therapies and modulating 

drug resistance. This has led to the development of several new treatments targeting the TME. This 

review focuses on recent advances on the role of TME in drug resistance, with a particular focus 

on the ongoing clinical trials aiming at disrupting the TME-and the extracellular matrix-mediated 

protection against therapies.
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Cell types of the tumor microenvironment

In addition to the tumor cells themselves, the cell types that contribute to the changing 

tumor microenvironment (TME) (see Glossary) are the cancer-associated fibroblasts 
(CAFs), adipocytes, pericytes, neurons, endothelial and immune cells. Under non-

pathological conditions these non-oncogenic cells are required for normal homeostasis. In 

cancer, although still genetically normal, their functions and behavior change significantly 

due to the effect of the tumor cells and the changing matrix and cytokine environment 

(Figure 1). Below we will describe some recent findings on how these cell types impact drug 

resistance.
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CAFs:

CAFs, in addition to secreting extracellular matrix (ECM) proteins and cytokines, have 

recently been shown to secrete small metabolites that increase tumor fitness and promote 

drug resistance. For instance, in pancreatic cancer, the pancreatic stellate cells (PSCs) that 

produce the majority of the ECM and cytokines, recently were also shown to secrete 

alanine [1] and lipids that are taken up by the tumor cells to support the synthesis of 

phosphatidylcholines and lysophosphatic acid (LPA), thus favoring the proliferation and 

migration of the tumor cells [2]. Stellate cells were also shown to induce drug resistance 

by secretion of nucleosides that competed with Gemcitabine chemotherapy [3] [4]. It is also 

becoming evident that not all CAFs are tumor-promoting. Different populations of CAFs 

can have tumor-restricting effects, and targeting different CAF populations might have very 

different outcomes [5]. Tumor cells themselves can induce the CAFs to differentiate into 

these different populations with very distinct functions (e.g. inflammatory vs. myofibroblast-

like CAFs), that in turn influence tumor and immune cell behavior [6, 7]. Furthermore, 

these different CAF subtypes and the ECM they secrete shape tumor cell heterogeneity, 

and are linked to differential drug responses and clinical outcomes in pancreatic [8] and 

breast cancer [9, 10]. CAFs have also been shown to secrete high amounts of cytokines 

such as Interleukine-6 and -8 (IL-6, IL-8), Transforming Growth Factor beta (TGF-β), and 

Leukemia Inhibitory Factor (LIF) [11] [12], most known for increasing stress tolerance 

and drug resistance [13–15], leading to efforts to target CAFs and CAF-secreted factors in 

cancer.

Adipocytes in the TME:

Obesity is a known risk factor for several cancers, and has been shown to be associated with 

therapy resistance [16–19]. Obesity can alter the TME by inducing chronic inflammation 

that has profound effects on all the cell types in the TME. In addition, adipocytes secrete 

lipids uptaken by the tumor cells. For instance, in hypoxia, tumor cells switch from glucose 

to lipid utilization, and adipocytes going through lipolysis ‘donate’ their lipids to the cancer 

cells, fueling their growth either at the primary site or during metastasis [20–22]. Obesity is 

also linked with increased IL-6 secretion, known to induce drug resistance [23].

Endothelial cells:

The stiff, expanded tumor stroma compresses the endothelial cell vasculature, contributing 

to intratumoral hypoxia. While still functional, the tumor vasculature is often leaky, with 

plasma proteins leaking out, and poor waste removal leading to the build-up of waste 

products and acidic pH. This greatly influences the tumor cells, their metabolism and 

energy utilization. Low pH, hypoxia and the ECM and cytokine environment also impact 

endothelial cell functions. Cytokines and pro- and anti-angiogenic signals embedded in the 

ECM guide endothelial cells to proliferate and to create new vasculature. This abnormal 

vasculature and endothelial cell behavior is considered to aid tumor cells, and to suppress the 

immune system [24].
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Pericytes:

These are present in the microcapillaries and wrap the endothelial cells. They have a role 

in blood vessel formation and maintenance, stabilizing small blood vessels [25]. Recently 

it was shown that targeting the glioma stem-cell derived pericytes could disrupt the blood-

tumor barrier and improve delivery of chemotherapy to the tumors [26].

Neural cells and perineural invasion:

Neurons are part of the TME, and newly formed neurons can infiltrate and proliferate 

in solid tumors. For instance, in prostate cancer tumors expressing neurotrophic factors 

attract neurons, causing neural progenitor cells to infiltrate and initiate neurogenesis [27]. 

The depletion of these progenitor cells could inhibit the early stages of tumor growth and 

metastasis [28]. Another aspect of the tumor-neuron crosstalk is the perineural invasion, 

where the tumor cells are attracted and invade the perineural space further driving cancer 

progression [29].

Immune cells and the TME:

Given that cross-talk between the TME and immune cells has been covered in recent reviews 

[30], we will briefly highlight some of the recent studies that pertain to the ongoing clinical 

trials.

In order for the tumor to form, it needs to escape the immune system, which normally would 

eliminate abnormal cells. The immune TME is composed of dendritic cells, Cytotoxic T 

cells (CTLs), Regulatory T cells (Tregs), tumor-associated macrophages (TAMs), Natural 

killer (NK) cells, neutrophils and myeloid-derived suppressor cells (MDSCs) [31]. We have 

briefly described the functions of these cell types in Box 1, to help the reader follow the 

rationale for eliminating or attracting these various immune cells into the TME.

Dense fibrotic stroma is considered immunosuppressive partially because of the 

high levels of TGFβ that can exclude CTLs [32] and attract immunosuppressive 

TAMs. Immunosuppressive TAM formation is also stimulated by stiffness, hypoxia 

and the common ECM component, Hyaluronic acid (HA) [33][34]. In addition to 

immunosuppression, TAMs can also support metastasis via secretion of the ECM 

remodeling enzymes, such as matrix metalloproteinases (MMPs) [35] in response to the 

cancer cells cytokine secretion. Another factor inducing the immunosuppressive state in 

the TME is the Colony stimulating factor 1 (CSF1), which is secreted by the tumor 

cells and the CAFs, leading to more immunosuppressive TME through the recruitment of 

TAMs [36]. TAMs are recruited and regulated by CSF1-ligand receptor pair (CSF1/R), 

and its expression in tumors is associated with worse outcome and worse response to 

chemotherapy [37]. Another chemokine that can attract TAMs is the cytokine C-X-C 
motif chemokine 12 (CXCL12) that is secreted by CAFs and endothelial cells. CXCL12 

receptor CXCR4 is frequently expressed in tumors and immune cells, and its expression 

is up-regulated by hypoxia, inflammation and fibrosis. CXCL12 secretion attracts Tregs, 

MDSCs and immunosuppressive TAMs that express the CXCR4 receptor, thus increasing 

immune-suppression in hypoxic tumors [38].
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Overall, intra-TME crosstalk, between the immune cells, ECM and the other cell types, 

poses a complex area of biology, and understanding this is of paramount importance for the 

development of successful immunotherapies in stroma-rich cancers.

The changing physical landscape of the TME in cancer progression

The physical and biochemical properties of the TME play a significant role in tumor 

progression and metastasis [40]. The TME is often referred to as a ‘wound that does not 

heal’, and is based on the tumors invoking programs closely resembling wound healing 

response in its recruitment and activation of the stroma to induce desmoplasia, with 

similarity to scar tissue [39]. This aberrant and fibrotic stroma influences the physical 

properties of the TME, and is very different from the normal stroma (Box 2).

Matrix proteins themselves can increase tumor fitness and drug resistance through multiple 

mechanisms (Box 3). For example, the proteoglycan perlecan, secreted by the tumor-

educated CAFs, can induce resistance to chemotherapy [41], and similarly, fibronectin 

can induce therapy resistance in breast cancer, contributing both to endocrine- [42] and 

chemotherapy resistance [43]. Recent data also showed that collagen remodeling contributes 

to melanoma metastasis, particularly during aging, where more aligned collagen increased 

metastases [44]. This is in line with the body of work from Patricia Keely’s group who 

showed that tumor-associated collagen signatures (TACS) are important predictors of tumor 

progression and therapy resistance (Box 4).

ECM proteins also induce survival signaling in the tumor cells through integrin engagement 

leading to the downstream activation of tyrosine kinases (c-Src and Focal adhesion kinase 

[FAK]) known to promote cell survival and drug resistance [14, 45–47]. These integrin-

ECM adhesions and signaling also contribute to increased invasion, migration and metastasis 

in nutrient poor conditions [48]. Another less conventional role for ECM in increasing 

tumor cell fitness is to use it as a nutrient source [49]. Particularly Kirsten rat sarcoma 

viral-oncogene homolog (KRAS)-mutant cancers can use macropinocytosis to ingest any 

proteins in close proximity to increase their nutrient supplies under nutrient limiting and 

hypoxic conditions [50, 51]. Since ECM proteins are present in abundance in the TME, the 

cancer cells take advantage of this unconventional nutrient supply [52]. Therefore, the ECM 

environment regulates several aspects of the tumor cell behavior and is an attractive target 

for improving the efficacy of more traditional cancer therapies.

Interestingly, the source of the matrix also seems to play a role in tumor progression; 

the pancreatic cancer matrix proteome (matrisome) was recently characterized [53] and 

although the stromal fibroblasts secreted >90% of the tumor ECM mass, it was the tumor 

cell-secreted matrix proteins presence that correlated with the poorest patient survival. These 

data suggest that perhaps targeting the tumor-secreted ECM proteins might benefit patients 

more rather than targeting the stroma-secreted ones.

A less traditional cause for drug resistance are the extra-cellular vesicles secreted by 

multiple cell types in the TME; they carry a multitude of information (e.g. proteins, RNA, 

non-coding RNAs, and metabolites) that can provide protection against drugs as well as 
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prepare pre-metastatic niches and modify the TME. These aspects of the TME have been 

recently reviewed so we will not cover this topic here further [54, 55].

Changes in the composition of the ECM proteins modify the physical properties of the TME. 

It is well known that tumor elastic modulus (stiffness) is several times higher than normal 

tissue counterparts. This leads to more aggressive and migratory tumors, and, for example, 

stiffer breast tissue correlates with increased cancer risk, suggesting that mechano-sensing 

also drives cancer progression [56]. Interestingly, there appears to be a threshold after which 

the stiffness becomes tumor suppressive again, suggesting a bell-shaped effect on cancer 

growth and invasion [57]. Stiffer TME also impacts intracellular signaling triggered by 

integrins, FAK and c-Src kinases. Secretion of matrix crosslinking enzymes, like collagen 

prolyl hydroxylases, lysyl hydroxylases, lysyl oxidases (LOXs), and weaker ECM linkers, 

such as Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1), by the tumor cells and 

the CAFs can significantly increase tissue stiffness [58]. These enzymes fold and align the 

collagen fibers and crosslink them with elastin molecules, making the ECM mechanically 

durable and stiff, and increase cancer progression and metastasis [58].

Another physical feature of the TME is the high interstitial fluid pressure (IFP). One of the 

molecules that increases this is HA, a predominant glycosaminoglycan in the TME, highly 

expressed in pancreatic, breast, lung and colorectal cancer [59]. HA increases the IFP by 

trapping water molecules. A by-product of this increased pressure is collapsing vasculature. 

The collapsed vasculature further increases IFP, creating a vicious cycle leading to 

intratumoral hypoxia, known to contribute to cancer progression and resistance to therapies 

by a variety of mechanisms, including direct regulation of ECM homeostasis through 

the activity of Hypoxia inducible factors (HIFs) [60]. Hypoxia can dramatically increase 

the synthesis rate of ECM proteins [61], as well as other non-structural matricellular 

proteins like thrombospondins, osteonectins, tenascins, osteopontin, periostin, and fibulins 

[62]. HIF-1α was shown to upregulate the expression of several hydroxylases [63] and 

LOX’s under hypoxic conditions [64], contributing to ECM remodeling and stiffening TME. 

Furthermore, hypoxia also influences the remodeling of ECM via enhanced expression of 

proteolytic enzymes like MMPs, and the components of the plasminogen activation system 

[65]. These dynamic changes in the ECM lead to a more effective uptake of cytokines, 

growth factors and adipokines secreted by different cell types residing in the TME.

Targeting TME in cancer

Over the years several approaches have been used to target the TME. These approaches 

include targeting cancer cell-ECM adhesions, matrix proteins, cytokines, and stromal cells 

directly (Figure 2). Given the sometimes tumor-promoting sometimes tumor-restricting role 

of the ECM and other TME components in cancer, the preclinical and clinical trials targeting 

the TME have had mixed results. Yet, the number of clinical trials targeting the TME has 

been growing (Table 1), and the biomarkers known to be indicative of clinical outcomes 

have steadily grown as well [66]. The mixed results from the stroma targeting are likely to 

be explained by its ability to form a physical barrier around the tumor, trapping the tumor 

cells and preventing metastatic spread, but at the same time providing tumor cells with 
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nutrients and protecting them from drug treatments. In the next chapters we will discuss the 

current ongoing trials that are targeting different aspects of the TME.

Targeting tumor cell adhesions

Targeting integrin-ECM interactions has been an attractive target for cancer therapy given 

that integrins are involved in cancer progression, invasion, metastasis and drug resistance 

[67] [68]. Integrins are heterodimeric adhesion receptors that bind ECM proteins, adhesion 

molecules and TGFβ. They regulate signals from the outside of the cells to the inside [69] 

and signal to c-Src and FAK. Therefore, small molecules and blocking antibodies have been 

developed to target integrins and their downstream pathways. Integrin heterodimers αV/β3 

and αV/β5 are increased in melanoma and glioblastoma, and associated with invasion and 

poor survival, and inhibitors for these heterodimers have been developed and tested in pre-

clinical and clinical trials [67]. However, despite showing promise in early preclinical trials, 

the larger trials have failed [68]. Targeting integrin αV/β6 has also shown mixed results, 

showing tumor shrinkage in some models and increasing tumor growth in others [67]. 

However, it was recently shown in preclinical models that targeting β1 integrin prevented 

the disseminated tumor cells from adhering to the perivascular niche and sensitized them to 

chemotherapy [70]. Thus, the rationale to target integrins in cancer remains. Unfortunately, 

so far, the clinical trials have not met their primary endpoints. This might be due to the 

large amount and overlapping functions of integrins, and also the overlapping downstream 

pathways that integrin heterodimers regulate. Therefore, many current clinical trials are 

targeting the kinases downstream from integrins, c-Src and FAK.

Targeting FAK

FAK is activated by the stiff and abundant ECM in several cell types in the TME 

[71]. It has a role in cell motility, adhesion, survival and drug resistance, and its 

differential activation status in the stromal cells vs. the tumor cells might play a role in 

its therapeutic efficacy [72]. Of note, FAK targeting in the endothelial cells can sensitize 

tumor cells to chemotherapy [73]. Several FAK inhibitors have shown encouraging clinical 

efficacy when used in combinations with other therapies. In a mouse model of pancreatic 

ductal adenocarcinoma (PDAC), FAK inhibitor, defactinib, decreased the number of tumor-

infiltrating immunosuppressive cells, tumor fibrosis, and the formation of liver metastases 

[74]. Defactinib is currently in phase I/II clinical trials for advanced PDAC in combination 

with Pembrolizumab (PD-1) and Gemcitabine (Clinical Trial Numberi: NCT02546531), 

and in ovarian cancer with carboplatin and paclitaxel (NCT02546531). A Phase II study 

is ongoing in PDAC to combine Defactinib with Pemrolizumab in patients with resectable 

PDAC (Clinical Trial Number: NCT03727880), so as several other trials listed in Table 1.

RESOURCES:

i. https://clinicaltrials.gov/

ii. https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.4_suppl.TPS465

iii. https://www.x4pharma.com/news/x4-pharmaceuticals-announces-new-data-lead-candidate-x4p-001-renal-cell-
carcinoma-eortc-nci-aacr-molecular-targets-cancer-therapeutics-symposium/

iv. https://www.halozyme.com/investors/news-releases/news-release-details/2019/Halozyme-Announces-HALO-301-
Phase-3-Study-Fails-To-Meet-Primary-Endpoint/default.aspx
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Targeting c-Src

Src-family kinases (SFK) are non-receptor tyrosine kinases that transduce mitogenic, 

survival, angiogenic and migratory signals from receptor tyrosine kinases, G-protein coupled 

receptors, steroid hormone receptors, and ECM receptors [75]. There are 11 members of 

SFK among which Src, Fyn and Yes are ubiquitously expressed. Activation of SFK leads to 

the induction of several downstream signaling survival pathways, and increased activation 

of SFKs is associated with cancer progression. Therefore, several inhibitors have been 

developed to target this pathway. Dasatinib is an FDA-approved inhibitor of SFK for the 

treatment of chronic myeloid leukemia (CML) or Philadelphia chromosome-positive acute 

lymphocytic leukemia (ALL), and there are several ongoing clinical trials of dasatinib in 

solid malignancies (Table 1). In addition, AZD0530 (saracatinib), bosutinib and imatinib 

have been used in solid tumor therapies. Dasatinib and imatinib target CSF-1 signaling in 

tumor-associated macrophages [76, 77], suggesting a possible role of c-Src inhibition in 

the modulation of TME. Further supporting this option are the studies demonstrating that 

pharmacological or genetic (shRNA) inhibition of c-Src decreases survival of breast cancer 

cells that have metastasized to the bone marrow but not to the brain or liver [78]. The bone 

marrow environment provided CXCL12 to support c-Src-dependent survival of the cancer 

cells. These data indicate a critical role for TME in shaping cancer cell responses to SFK 

inhibitors. Therefore, understanding the mechanisms of TME-mediated SFK activation in 

cancer cells and in the other cell types in the TME will provide critical information on how 

to normalize TME-mediated activation of oncogenic signaling in cancer cells.

Targeting Vascular Endothelial Growth Factor (VEGF)

Aberrant secretion of pro-angiogenic signals such as VEGF in the TME often leads to 

abnormal vasculature aiding tumor cells and suppressing the immune system [24]. VEGF 

blocking therapies have been used to try to normalize the tumor vasculature and to improve 

therapy responses [79]. However, as a monotherapy, VEGF inhibitors have not been able to 

result in tumor shrinkage, but they show great promise used as combination therapies, and 

FDA recently approved a combination of Programmed Death-Ligand 1 (PD-L1) and VEGF1 

blockade for the treatment of metastatic nonsquamous non-small cell lung carcinoma 

(Clinical Trial Number: NCT02366143), and numerous other trials are ongoing (Table 1). 

Another approach for normalizing vasculature could be the use of lysyl oxidase (LOX) 

inhibitors that prevent collagen cross-linking. However, LOX function blocking antibodies, 

although showing promise in preclinical trials, failed in the clinical trials for pancreatic 

and colorectal cancer. It is likely that success of the approaches involving stroma targeting 

strongly relies on both the timing, and the combination of the drugs used.

Targeting stromal cytokines and chemokines

Several cell types in the TME secrete CSF1 and CXCL12. This secretion attracts 

immunosuppressive cells making immunotherapy approaches less successful. Data indicate 

that high presence of the CSF1R positive MDSCs in the TME is associated with poor 

clinical responses to chemotherapy and reduced overall survival, and that CSF1R blockade 

can promote an immuno-stimulatory TME [80]. More recently it was shown that targeting 

TAMs by blocking CSF1R in breast cancer models led to an increase in interferon 
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signaling in the tumors, enhancing chemotherapy efficacy and targeting immunosuppressive 

neutrophils in this model [81]. CSF1R antagonists including cabiralizumab are in clinical 

trials in pancreatic cancer combined with immune checkpoint blockade ii (also see Clinical 

Trial Number: NCT03599362, NCT03697564, NCT03336216, NCT02526017). It is thought 

that depleting TAMs may increase cytotoxic T-cell responses and sensitize tumors to 

anti PD-1 treatments. However, recent data also indicate that inhibition of CSF1R can 

change CAF secretome and result in accumulation of tumor-promoting MDSCs and that 

combination treatments are needed for the CSF1R inhibitors to be most effective [82].

Blocking the CXCL12 receptor, CXCR4, has been shown to reduce desmoplasia, increase 

CTL infiltration and improve immunotherapy efficacy in metastatic breast cancer models 

that are normally resistant to immunotherapies [83]. Interestingly, the immunosuppressive 

effects in this model were dependent on the CXCR4 signaling in CAFs and pericytes. 

In immuno-competent ovarian cancer mouse model, CXCR4 blockade led to increased 

apoptosis and necrosis in tumor cells, reduction of intraperitoneal dissemination, and 

increased antitumor immune response [84]. These preclinical data led to the initiation 

of several clinical trials testing CXCR4 blockade in pancreatic cancer (Table 1), 

and also to the development of newer CXCR4 inhibitors, such as BL8040 which is 

currently in clinical trials for PDAC in combination with Pembrolizumab (Clinical Trial 

Number: NCT02826486) and 5FU/nalirinotecan (Clinical Trial Number: NCT02907099, 

NCT02826486), and as a basket study (Clinical Trial Number: NCT03193190). Similar 

approaches are used in renal cell carcinoma, squamous cell carcinoma, and melanoma, 

where several trials are combining CSF1R or CXCR4 inhibitors with Axitinib (VEGFR 

inhibitor) or with Pembrolizumab (Clinical Trial Number: NCT04058145) and have showed 

encouraging early results iii). Another approach to increase anti-tumor immunity by 

targeting stroma is by anchoring intratumorally administered cytokines (IL-2 and IL-12) 

to collagen binding lumican. This was shown to potentiate systemic immunotherapy and 

reduce toxicity [85].

Targeting ECM

High MMP expression has been linked to poor prognosis given that MMPs can 

modulate the ECM, enabling tumor cell migration and metastasis. Several small molecule 

inhibitors targeting MMPs have been developed that have been tested in clinical trials 

(Clinical Trial Number: NCT00004147, NCT00003721, NCT00001683, NCT00020683). 

Disappointingly, these trials failed for lack of efficacy, poor oral bioavailability and 

toxicity, prompting the development of safer and more specific biologics, such as function-

blocking antibodies, currently in clinical trials (Clinical Trial Number: NCT02864381, 

NCT02545504, NCT03486730, NCT03631836) [86].

Other targets

Epidemiological studies suggest that vitamin D supplementation can reduce cancer risk, 

but this might be due to its effect on the TME rather than on cancer cells. Recent reports 

have described a role for the vitamin D receptor in the TME in pancreatic stellate cells, 

where treatment with the vitamin D analog calcipotriol resulted in a normalization of the 

stroma, reduced fibrosis and increased drug penetration, it also suppressed PDAC metastasis 
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by inhibiting secretion of cytokines from the pancreatic stellate cells [87]. Vitamin D 

has a protective effect also in colorectal carcinoma through its high receptor expression 

in the CAFs [88] as well as by suppressing the secretion of tumorigenic microRNAs 

from the CAFs [89]. These pre-clinical studies prompted numerous clinical trials that are 

investigating whether addition of Vitamin D or its analogs would result in better disease 

outcomes in cancer (Table 1). However, even the preclinical data have been somewhat mixed 

in their outcomes, some studies showing positive outcomes, yet others finding no correlation 

with improved patient outcome [90]. Recently the largest-ever clinical trial that investigated 

vitamin D’s effect in cancer prevention, failed to find any link [91]. Perhaps one reason 

for this outcome is the different effects of the vitamin D in tumor cells vs. stromal cells. 

A synthetic lethal screen found that vitamin D receptor knock-down sensitized tumor cells 

to gemcitabine treatment [92]. This is likely because vitamin D supplementation has been 

shown to activate the anti-oxidant responses and DNA repair pathways [93], thus promoting 

resistance to chemotherapies. Therefore, successful Vitamin D receptor targeting in the 

CAFs vs the tumor cells might increase Vitamin D therapeutic efficacy.

Targeting Hyaluronic acid (HA) has delivered some successes in preclinical trials and led to 

phase 3 trial in pancreatic cancer. HA rich tumors are correlated with poorer prognosis, have 

extremely high interstitial fluid pressure (IFP), poor perfusion and poor drug accumulation 

[94]. Therefore, HA has posed an attractive target in cancer therapy. The ablation of stromal 

HA normalizes IFP and re-expands the vasculature. In combination with gemcitabine, 

the treatment resulted in a near doubling of overall survival in mouse models of PDAC 

[95–98]. These data led to a phase 2 trial of PEGPH20 hyalurodinase with gemcitabine/

nab-paclitaxel in untreated metastatic PDAC. This trial showed improved progression free 

survival in patients with high HA content in their tumors [99]. A phase 1b/II trial was 

initiated combining PEGPH20 with FOLFIRINOX (FOLinic acid-Fluorouracil-IRINotecan-

OXaliplatin) [100] but was closed early when it showed poorer survival in the PEGPH20 

group. The unexpected results from this trial could be due to the fact that the patients in 

the combination group had experienced more treatment-related toxicities, which resulted 

in lower drug doses, dose delays and reduced exposure. The next phase III trial used 

gemcitabine nab-paclitaxel as the chemotherapy backbone, and included patients with HA 

high tumors. Unfortunately, this Phase 3 trial was also recently stopped early as it did 

not meet the primary end-point, increasing survival iv. One might speculate that perhaps 

some of these disappointing results can be explained by a recent study that showed that 

Hyaluronidase treatment was linked to increased tumor metabolism and led to a robust 

increase in tumor cell glycolysis through degradation of Thioredoxin-Interacting Protein 

(TXNIP) RNA required for glucose transporter internalization. This resulted in upregulation 

of the glucose transporter 1 (GLUT1) at the plasma membrane, increased glucose uptake, 

and increased migration and metastasis of the tumor cells [101]. These data might suggest 

that breaking down HA with hyaluronidase might have unwanted consequences, leading to 

increased metastasis.

Anti-fibrotics and TGFβ

Anti-fibrotics and TGF-β inhibitors work partially by reducing fibrosis and are being tested 

in several clinical trials (Table 1). TGFβ induces fibrosis through stimulating ECM secretion 
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and its own secretion in a feed-forward fashion [102]. It is deposited to ECM in its latent 

form and needs to be processed to obtain its activated form. Integrins can help activate the 

latent TGFβ [103] and the efforts to target integrins were in part aimed at inhibiting TGFβ 
signaling [67]. Through reducing fibrosis the anti-fibrotics and TGF-β inhibitors are thought 

to allow other cancer drugs to penetrate the tumors more effectively [104].

Ajulemic acid is a synthetic cannabinoid derivative that was shown to have anti-fibrotic and 

anti-inflammatory effects, and is being tested in phase III clinical trials as an anti-fibrotic 

agent in several diseases under the trade name Lenabasum. In pancreatitis it can normalize 

the activated stellate cells [105]. Its mechanism of action has been shown to be through 

activation of the cannabinoid receptor 2 that leads to production of eicosanoids, decreasing 

inflammatory cytokines, and inhibiting TGFβ production. Thus, there is some interest to test 

this compound in combination with chemotherapy in stroma-rich cancers.

Recently halofuginone, an antifibrotic agent, was used to normalize the tumor stroma in 

a mouse model of PDAC. This treatment increased drug delivery by decreasing fibroblast 

activation and reducing ECM elements. Treatment also altered the immune landscape in 

PDAC, with increased number and distribution of activated inflammatory macrophages and 

cytotoxic T cells. This led to a widespread intra-tumoral necrosis and reduced tumor volume 

[106]. However, no clinical trials are currently using this compound.

Targeting TGFβ-expressing CAFs with pirfenidone, an anti-fibrotic agent and a TGF-β 
antagonist, in a triple-negative breast cancer mouse model inhibited tumor fibrosis and 

TGFβ-signaling and in combination with doxorubicin prevented metastasis [107] suggesting 

that the stroma-targeting agents are most effective when used in combination with other 

cancer therapies. Pirfenidone is currently in a phase 1 clinical trial in advanced stage 

non-small cell lung cancer in combination with chemotherapy (Clinical Trial Number: 

NCT03177291).

Angiotensin II receptor agonists, such as Losartan, are normally used to treat high blood 

pressure, but they also inhibit TGFβ signaling, resulting in reduced desmoplasia through 

reduced collagen I and HA deposition, and increasing vascular integrity and improved drug 

delivery to tumors [108–110]. Losartan has also been implicated in reduced mortality in 

certain cancers [109, 111], and is being evaluated in clinical trials in locally advanced 

PDAC in combination with FOLFIRINOX, nivolumab and radiotherapy (Clinical Trial 

Number: NCT03563248). The results from a previous similar trial (Clinical Trial Number: 

NCT01821729) were encouraging, showing a surgical resection rate of 61% in the treated 

patients (surgical removal of the tumor is critical to cure PDAC), with overall median 

progression-free survival of 17.5 months, and median overall survival of 31.4 months [112]. 

In ovarian cancer, tumor fibrosis and angiotensin-driven fibrogenic signaling are inversely 

correlated with survival, and Losartan treatment enhanced chemotherapy efficacy in ovarian 

cancer xenograft models by normalizing the tumor stroma. The authors also found in 

a retrospective analysis that patients receiving angiotensin system inhibitors concurrently 

with standard treatment for ovarian cancer exhibited longer overall survival compared with 

patients on other anti-hypertensives [113].
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Concluding remarks and Future perspectives

In conclusion, the efforts to target stroma in cancer are still not as successful as hoped 

for, with very mixed results coming from the clinical trials. This is likely because the 

TME-cancer crosstalk is still inadequately understood and perhaps normalizing the stroma, 

targeting the stroma-induced pathways in tumor cells, or the tumor-secreted ECM, rather 

than completely ablating the stroma, might be a better strategy for improved outcomes. 

Furthermore, different cancers have very different stromal and matrix environment that 

likely impact therapeutic efficacies (see Outstanding Questions). On one hand, the stroma 

would need to be more penetrable for better drug delivery, but on the other hand, not 

ablate its ability to restrict metastasis. The results coming from the clinical trials using 

anti-fibrotics could do this by allowing other tumor targeting agents and immune cells to 

penetrate and reach the cancer cells that have been previously protected.

Stroma targeting has also the potential to increase immune cell infiltration and activation, 

particularly in traditionally immune cold cancers such as breast and pancreatic cancer, and 

this is an exciting avenue of research, with several clinical trials testing checkpoint inhibitors 

with stroma targeting drugs. There are still many hurdles to be crossed, particularly with 

patient stratification and biomarker identification, and understanding which parts of the 

tumor stroma should be targeted and which aspects are more helpful at restricting tumor 

cells in their original location. Also, a more thorough understanding of the underlying 

biology is necessary to optimize the use of stroma-targeting agents. Lastly, it is important to 

understand how the current therapies change the TME, to evaluate whether therapies evoke 

pro-, or anti-tumorigenic behavior in TME, or both, and which cell types are affected. This 

might allow us to identify cell type specific vulnerabilities that could be used to target tumor 

cells more efficiently.
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GLOSSARY

Cancer-associated fibroblasts (CAFs)
cancer-associated fibroblasts, a cell type within the tumor microenvironment that promotes 

tumorigenic features by remodeling the extracellular matrix or by secreting cytokines.

CSF1
The colony-stimulating factor 1, also known as macrophage colony-stimulating factor, a 

secreted cytokine regulating the survival, proliferation and differentiation of macrophages 

and monocytes.

CXCL12
Stromal cell-derived factor 1 (also called SDF1a), active on T-lymphocytes and monocytes 

but not neutrophils via activation of the C-X-C chemokine receptor CXCR4 to induce a 

rapid and transient rise in the level of intracellular calcium ions and chemotaxis.
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Desmoplasia
Excessive deposition of ECM proteins causing dense fibrosis around tumors or other 

affected organs.

Extracellular matrix (ECM)
consists of proteins that form the 3D like-meshwork of proteoglycans and fibrous proteins, 

such as laminins, collagens and fibronectin. It provides structural and biochemical support to 

the tissues it is in contact with and also acts a storage and sequester of growth factors that 

the cells in the TME secrete.

Fibrosis
the formation of an excessive ECM deposition occurring as a consequence of inflammation, 

activation of the stromal cells or other injury.

Hyaluronic acid (HA)
a predominant glycosaminoglycan in the TME, highly expressed in pancreas, breast, lung 

and colorectal cancers.

Neurogenesis
A process by which cells of the nervous system are generated from stem cells.

PEGPH20
pegvorhyaluronidase alfa, the name of a drug degrading hyaluronan, potentially increasing 

drug delivery in stroma-rich cancers.

Pericytes
Fibroblast-like cells present in intervals in the capillaries and venules and wrap around the 

endothelial cells of the microvessels. They are important for blood vessel formation and 

maintenance, and they also maintain the blood-brain barrier and regulate immune cell entry 

into the central nervous system.

Perineural invasion
Invasion of cancer cells to the area surrounding the nerve. Can make the resection of the 

lesions more difficult, frequently seen in head and neck, prostate and colorectal cancer.

Stiffness
mechanical property of tumors defining the rigidity of the TME and the extent of tumors’ 

resistance to deformation, depending on the composition and organization of the ECM 

strands and other structural components of the TME.

TME
tumor microenvironment consisting of the cancer, immune cells, fibroblasts, endothelial 

cells, adipocytes and the extracellular matrix (ECM) proteins.
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Box 1.

Immune cell types in the TME

Dendritic cells:

present antigens to T cells either in the tumor or at lymph nodes to activate T cells.

Cytotoxic T cells (CTLs):

Activated by dendritic antigen presenting cells. Recognize the (neo) antigens of tumor 

cells that are not present in normal cells. Also involved in auto-immune diseases, which 

is why Tregs evolved to dampen the T cells activity. CD8+ T cells give rise to CTLs 

that kill cancer cells, CTLs can be generated by priming naïve T cells or reprogramming 

memory T cells. CTLs must overcome intrinsic checkpoints (e.g. PD-L1, CTLA-4), 

extrinsic checkpoints (Tregs and myeloid cells), inflamed TME (immunosuppressive 

environment), immune-evasion by tumor cells, and physical blocks such as desmoplasia 

or fibrotic TME.

Memory T cells:

Provide long-term protection, can differentiate into CTLs.

Natural killer cells (subset of T cells):

Release cytotoxic cytokines to kill tumor cells.

Regulatory T cells (Tregs):

Critical for the development of adaptive immune system and for immune tolerance, these 

often maturate into TAMs, function by dampening CTL activity.

Macrophages:

Engulf and digest debris, microbes, cancer cells that are recognized as foreign. Recruit 

other cell types such as lymphocytes through antigen presentation to T and B cells. Can 

have inflammatory (M1) and anti-inflammatory (M2) roles through differential cytokine 

secretion, and this polarization is regulated by the microenvironment and cytokine milieu.

Tumor-associated macrophages (TAMs):

recruited to tumors through cytokine secretion (e.g. CSF1, IL-34 and CCL2), which have 

been shown to induce the tumor-promoting phenotype. Are often in the tumor-promoting 

M2 polarization state that is regulated by cytokines in the TME (e.g. TGFβ).

Myeloid-derived suppressor cells (MDSC):

Induced by chronic inflammation, they protect tumor cells and help form 

immunosuppressive TME. Their presence predicts higher stage and worse survival. They 

also predict resistance to immunotherapies, and give rise to TAMs, and suppress T cell 

functions. Tumor cells can recruit them and alter their activity and proliferation by 

secreting cytokines (e.g. IL-6 and GM-CSF).

Neutrophils:
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Develop subtypes that can either promote or suppress tumor growth. G-CSF leads to 

neutrophil expansion and polarization towards T-cell suppressive phenotypes.

Chronic inflammation:

Induces infiltration of cytokine-activated myeloid cells and immune suppressive B, T and 

myeloid cells, suppresses cytotoxic T cells and modulate the TME to promote tumor 

growth.

Kozlova et al. Page 22

Trends Pharmacol Sci. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2.

Basement membrane vs. stromal/interstitial matrix

In normal tissues ECM comes in two varieties: 1) as stromal (or interstitial) ECM, or 2) 

as basement membrane. The stromal/interstitial ECM, that surrounds the mesenchymal 

cells and fills the space between organs, is secreted by mesenchymal fibroblasts 

and is composed mostly of collagens, fibronectin, elastin, glycosaminoglycans and 

proteoglycans. The basement membranes are a layer of deposited matrix proteins 

and consist mostly of laminins, collagen IV, nidogen, heparan sulphate proteoglycans 

perlecan and agrin. The basement membranes form the basal surface onto which 

polarized epithelial and endothelial cells adhere to. Basement membrane is required for 

normal epithelial cell polarity and function, but also restricts cell proliferation in the 

presence of oncogenic mutations, functioning as a barrier to carcinoma progression.
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Box 3.

ECM induced drug resistance

ECM has been acknowledged for more than 20 years as a driver of drug resistance. 

Several groups showed that tumor drug responses differ between 2D and 3D cultures, 

and tumor cells cultured on different matrices (basement membrane vs. interstitial 

matrix) respond to drugs differently, some matrices inducing drug resistance while others 

sensitizing tumor cells to drug treatments [114, 115]. These insights have prompted 

efforts to generate better in vitro models, combining 3D cell culture models with different 

oxygen levels and different matrix components and adding different cell types from 

the TME to mimic more complex environments that could better predict tumor drug 

responses [116].
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Box 4.

Tumor-associated collagen signatures (TACS) in cancer and therapy 
resistance

The composition and the organization (e.g. alignment) of matrix proteins (collagen most 

prominently) in the TME differs significantly from their normal tissue counterparts [117]. 

In particular in breast cancer it has been shown that patients with dense breast tissue have 

higher risk of developing breast cancer [118], and in animal models collagen density and 

organization can promote breast cancer initiation and progression. TACS have provided 

a useful marker to characterize survival and tumor invasiveness in breast cancer [119]. 

Furthermore, studies in melanoma have shown that treatment resistance correlates with 

the presence of bundled collagen [120] and stiffer ECM [121].
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Outstanding questions

• How to effectively normalize the stroma?

• Several trials are targeting stroma (e.g. VEGF, PEGPH20, Losartan) in 

combination with immune checkpoint inhibitors, particularly in cancers that 

have been traditionally considered immune cold. Will these approaches 

change the current treatment strategies for these extremely hard-to-treat, drug 

resistant cancers?

• How to translate measurement of stromal density and composition 

(biomarkers) into clinical applications? What are the best ways to stratify 

patients for clinical trials targeting stroma?

• How do chemotherapy and targeted therapy shape different components of the 

TME?
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Highlights

• Tumor microenvironment is a habitat for cancer cells, immune cells, 

fibroblasts, endothelial cells, pericytes, neural cells, adipocytes and the 

extracellular matrix (ECM) proteins, significantly influencing the efficacy of 

the modern cancer therapeutic agents, in some cases inducing resistance, in 

others sensitizing the tumors to therapy.

• Stiff and abundant stroma is able to restrict and promote cancer cell 

dissemination both at the same time, due to the dynamic remodeling of the 

ECM. Anti-cancer drugs aiming at complete depletion of the stroma have 

led to enhanced rate of metastases, but too abundant stroma blocks drug 

penetrance and leads to tumor growth, therefore efforts to normalize the 

tumor stroma are tested increasingly in the clinic.

• Current treatment approaches of the stroma-rich cancers include targeting 

proteins and cytokines secreted and expressed by the stromal cells, targeting 

cancer cell–stroma signaling interactions, and targeting stroma-immune cell 

crosstalk increasing anti-tumor immunity.
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Figure 1: Components of the tumor microenvironment (TME)
Cancer cells are surrounded by various cell types: fibroblasts, adipocytes, endothelial cells, 

pericytes, neurons and immune cells. The dense ECM that the tumors adhere to serves as a 

storage for growth factors, cytokines, lipids, proteases and metabolites, secreted by the cells 

of the TME. As tumor grows, the physical properties in the tumor core like oxygen and 

nutrient levels, pH, stiffness, and pressure become different from those on the edge of the 

tumor. These changes, so as the differences in matrix composition and alignment, influence 

the properties and behavior of other cell types in the TME, thus influencing drug penetrance, 

drug resistance and disease outcome.
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Figure 2: Current strategies to target tumor stroma in clinical trials
Different strategies currently used in the clinic or in clinical trials to target stroma in cancer 

include A) increasing anti-tumor immunity by targeting secreted factors (e.g. CXCL12, 

CSF1) that decrease the presence of TAMs and increase the infiltration of cytotoxic T 

lymphocytes; B) targeting ECM-cell adhesion molecules such as integrins, Src and FAK 

kinases (often in combination with other drugs) to reduce tumor cell fitness and tumor 

drug resistance to other therapies; C) targeting matrix proteins such as Hyaluronic acid and 

connective tissue growth factor (CTGF) to normalize tumor stroma and interstitial pressure 

and to normalize vasculature and reduce hypoxia, and to increase delivery of chemotherapies 
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and increase the access of immune cells; D) use of anti-fibrotics and TGFβ inhibitors to 

reduce fibrosis, increase drug delivery, normalize vasculature, reverse hypoxia and increase 

immune cell infiltration; E) use of VEGF inhibitors, to normalize vasculature and increase 

cytotoxic T lymphocyte and immune cell infiltration.
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Table 1.

Clinical trials targeting stroma in cancer; all trials vs. trials that are active, recruiting patients and not yet 

recruiting were included in this table.

Clinical Trials
Cancer Only Trials

Target Compound # of all Trials: # of Active, Recruiting and Not yet recruiting trials:

Vitamin D Vitamin D, not specified 396 114

Paricalcitol 43 12

Cholecalciferol 141 40

Hyaluronan PEGPH20 22 13

Integrins Integrin targeting trials 146 53

Src Src targeting, other 117 37

Saracatinib 26 1

FAK FAK targeting, not specified 41 12

Defactinib/VS-6063 14 6

TGFβ TGFβ targeting trials, not specified 168 77

Losartan 12 6

Galunisertib 21 12

AVID200 2 2

Fresolimumab 7 1

LY3200882 3 3

Vactosertib 8 7

Anti-PD-L1/TGFβRII Fusion Protein M7824 17 16

CXCR4 CXCR4 61 27

CXCL12/SDF1a CXCL12/SDF1a 45 14

CSF1 All CSF1 targeting trials 256 95

CSF1R All CSF1R targeting trials 42 30

VEGF Sevacizumab 3 1

Avastin/Bevacizumab 1912 488

Vanucizumab (angiopoetin) 4 2

Cabozantinib (c-MET, VEGFR2, AXL, RET) 145 108

Axitinib 131 51

Regorafenib 171 89

Apatinib 287 194

IBI305 38 35

Ramucirumab 112 63

Cediranib 103 30

CTGF Pamrevlumab 1 1
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