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A B S T R A C T   

Deep learning models demonstrate superior performance in image classification problems. COVID-19 image 
classification is developed using single deep learning models. In this paper, an efficient hardware architecture 
based on an ensemble deep learning model is built to identify the COVID-19 using chest X-ray (CXR) records. Five 
deep learning models namely ResNet, fitness, IRCNN (Inception Recurrent Convolutional Neural Network), 
effectiveness, and Fitnet are ensembled for fine-tuning and enhancing the performance of the COVID-19 iden-
tification; these models are chosen as they individually perform better in other applications. Experimental 
analysis shows that the accuracy, precision, recall, and F1 for COVID-19 detection are 0.99,0.98,0.98, and 0.98 
respectively. An application-specific hardware architecture incorporates the pipeline, parallel processing, reus-
ability of computational resources by carefully exploiting the data flow and resource availability. The processing 
element (PE) and the CNN architecture are modeled using Verilog, simulated, and synthesized using cadence 
with Taiwan Semiconductor Manufacturing Co Ltd (TSMC) 90 nm tech file. The simulated results show a 40% 
reduction in the latency and number of clock cycles. The computations and power consumptions are minimized 
by designing the PE as a data-aware unit. Thus, the proposed architecture is best suited for Covid-19 prediction 
and diagnosis.   

1. Introduction 

Developing low power consumping, high throughput, fast computing 
solutions with high memory density and reliability, by incorporating the 
human intellengence and by balancing the social, economic and envi-
ronmental sustainability is the need of this hour in building sustainable 
smart cities. The World Health Organization (WHO) professed that 
COVID-19 viral infection as an ongoing pandemic (Ahmad et al., 2021). 
The disease has affected more than 214 million people globally and over 
4 million life losses around the world till August 2021. The illnesses 
usually affect the respiratory system such as the lungs and also result in 
symptoms similar to Pneumonia (Rubin et al., 2020). Reverse 
Transcription-Polymerase Chain Reaction (RT-PCR) study is the highest 
quality level to confirm the disease. Current RT-PCR test kits are mini-
mal in number, the results of the test are obtained after long time, and 

there is a high probability of health care personnel becoming infected 
with the disease during the test, demands the use of other diagnostic 
approaches as an alternative to these test kits. The proposed work is a 
fast detection method using X-ray image analysis that would be a 
contribution to the society. 

In under developed and developing countries where the doctor to 
patient ratio is very weak there is a need to provide a fair and equal 
healthcare facilities for everyone in this world. A modern technology 
based innovative solution which could cater the need of early predic-
tion, isolation and treatment of an individual from the pandemic is the 
need of an hour. The prediction of COVID-19 using the proposed model 
can be helpful for medical experts to prioritize the resources correctly 
for COVID-19 prediction. In addition, if this prediction model is 
deployed in various cities, there will be minimal disruption of global 
supply chains with negligible job losses and impact on livelihood. 
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A few investigations deployed Deep Learning (DL) algorithms such as 
Convolutional Neural Network (CNN) models for distinguishing, 
restricting, or estimating the development of COVID-19 Virus in utiliz-
ing CXRs and Computed Tomography (CTs) (Rajaraman & Antani, 2020; 
Rajaraman et al., 2020). However, the Computer Aided Diagnosis 
(CADx) resolutions that utilize DL techniques for infection recognition 
including COVID-19 are huge confinements in the current methodolo-
gies based on the dataset type, model architecture, assessment, size. 
Thus, these concerns suggest new investigations to fulfill the crucial 
need for COVID-19 identification using CXRs.Ensemble deep learning 
classifiers are preferred for health care (Zhou et al., 2021) because the 
overall classification result increases in comparison to the individual 
classifiers. The ensemble accuracy can be higher and other evaluation 
parameters like sensitivity and specificity also increase therefore it is can 
be effective for the detection of COVID-19 rapidly. CNN’s have proved to 
be an integral part of Machine Learning in recent times. With the un-
abated influence of Artificial Intelligence on every sphere of life, re-
searchers have had the motivation to devise novel algorithms and 
architect Very Large Scale Integration (VLSI) implementations for the 
efficient and fast undertaking of those algorithms. One such revolu-
tionary algorithm being the convolutional neural networks. CNN’s have 
shown exemplary performance in the field of computer vision for seg-
mentation, classification, detection, and retrieval-related tasks. Most of 
the companies like Intel, Google, and Facebook, etc. started exploring 
and using the AI algorithms and hardware architectures to the great 
extent (Chen, Krishna, Emer, & Sze, 2016). 

The best feature of CNN architecture is its ability to extract details 
regarding the spatial and time domain. The computational complexity 
level of the CNN network is very high which pushes the hardware de-
velopers (Han et al., 2015) to come up with reconfigurable Field Pro-
grammable Gate Array (FPGA) architecture or ASIC-based architecture 
which could reduce the power, latency, and computational times of 
DotNetNuke (DNN). Numerous research works have been published in 
the area of efficient hardware development for PE design, Nonlinear 
activation function design, etc. The majority of the computational load 
in the CNNs is due to the convolutions whereas the majority of network 
parameters are from Fully connected layers. So to say, Fully Connected 
(FC) layers are easy to implement in hardware, but they require high 
power consumption due to frequent memory accesses (Han et al., 2016). 

As the epidemic continues progressing, it negatively affects the 
flexibility of the global society from every aspect of daily life, environ-
ment, economy, and others, and thus it raises serious attention from 
health planners and policymakers internationally to attain the Sustain-
able Development Goals. In order to address the exceptional challenge, 
the scientific evidence can be obtained from the deep investigation of 
the dynamic progress of COVID-19 transmission. Accordingly, potential 
strategies and interventions can be formulated at an early stage for 
controlling or even blocking the sustained propagation, contributing to 
minimize the infectious and mortality rates. This work tries to develop a 
hardware software co design based feasible solution for a smart health 
care system. 

The contribution of this study are,  

• Analyze the single deep learner performance for choosing the 
appropriate models in the ensemble.  

• Develop a deep learning ensemble model for predicting the COVID- 
19 effectively in terms of accuracy and other performance measures.  

• Optimize the deep learning computations using a Reconfigurable/ 
ASIC hardware design for minimizing latency and power 
consumption. 

The rest of the paper is structured as follows: the literature of various 
deep ensemble learning models is discussed in section 2. The proposed 
model is explained in section 3. The experimental analysis and setups 
are discussed in 4. Results and discussion of the results are done in 
section 5 The conclusion is given in section 6. 

2. Literature survey 

In this section, the literatures of various deep learning models for 
COVID-19 are analyzed. The COVID-19 is a dangerous disease as it 
spreads fast in comparison to other viruses. Ensemble-based Deep 
learning is widely used for predicting it. Three important deep learning 
models GoogleNet, AlexNet, and ResNet are integrated by majority 
voting for COVID prediction. This approach detects COVID better than 
other classifiers (Otoom, Otoum, Alzubaidi, Etoom, & Banihani, 2020). 
Various ensemble of deep learning models are deployed for better 
COVID-19 prediction (Chowdhury, Kabir, Rahman, & Rezoana, 2020; 
Elgendi, Fletcher, Howard, Menon, & Ward, 2020; Ghoshal & Tucker, 
2020; Haghanifar, Majdabadi, Choi, Deivalakshmi, & Ko, 2020; Hussain 
et al., 2021; Karim et al., 2020; Melin, Monica, Sanchez, & Castillo, 
2020; Polsinelli, Cinque, & Placidi, 2020; Shoeibi et al., 2020; Toraman, 
Alakus, & Turkoglu, 2020). 

Vantaggiato et al. (2021) created two databases to identify 
COVID-19 lung diseases. In the first database, they have considered 
three classes to distinguish COVID-19, Health and Pneumonia and in the 
second database, they have considered five classes to distinguish 
COVID-19, Lung Opacity No Pneumonia, Healthy, Viral Pneumonia, and 
Bacterial Pneumonia. They evaluated three CNN architectures like 
ResNet-50, Inception-v3, and DenseNet-161 to distinguish between 
different lung diseases and proposed an Ensemble-CNN approach. The 
results show high performance resulting in 98.1% accuracy in 
three-class and five-class scenarios respectively for identifying 
COVID-19 infection. 

Shalbaf and Vafaeezadeh (2021) improved the recognition perfor-
mance by using 15 pre-trained convolutional neural network architec-
tures. Deep transfer learning architecture like EfficientNetB3, Xception, 
EfficientNetB5, Inception_resnet_v2, and EfficientNetB0 achieved better 
results in identifying COVID or any other lung diseases. CNN models like 
DenseNet201, Resnet50V2, and Inceptionv3 have been adopted in this 
proposed work (Das et al., 2021). They have trained the models indi-
vidually for independent prediction and combined it using the weighted 
average ensemble technique and achieved the classification accuracy of 
91.62%. They have developed a GUI interface that will be useful for 
doctors to detect COVID patients. 

During the past few years, it has been a trend to increase the number 
of layers of convolution to improve the Miss-classification Rates (MCR) 
(Lane & Georgiev, 2015). This trend has led the CNNs to become 
extremely bulky and high-demanding on memory and energy con-
sumption hence limiting their implementation on resource-constrained 
and battery-operated devices (Ardakani, Condo, & Gross, 2016). Also, 
all-purpose CPUs and GPUs have shown to be unbearably un-optimized 
for latency and energy constraints. 

The limitation of the related works is that prediction of a single deep 
learner model cannot be trusted due to the minimum number of data 
samples. In addition, the computing power is not sufficient to use deep 
learning models for COVID-19 prediction. Few deep learning models 
result in generalization metric issues (Shorten, Khoshgoftaar, & Furht, 
2021). The diagnosis of COVID19 is based on the assessment and eval-
uation of the radiologist’s CT image. However, this work is tedious, and 
there is often a high degree of inter-server variability which leads to 
uncertainty. Therefore, to overcome the stated limitations, an auto-
mated, reliable, and repeatable approach using advanced deep learning 
is required. This system can overcome these limitations and can be used 
anywhere without the need for highly trained radiologists (Ali et al., 
2020). The dataset is still insufficient for a practical and accurate deep 
learning solution that can be accepted as a standard for identifying 
COVID19 infection in patients from radiographic images. Many kinds of 
literature have focused on reducing the memory access time using sto-
chastic computing (Smithson, Boga, Ardakani, Meyer, & Gross, 2016). 
Researchers have concentrated on developing hardware for efficient 
computation, less latency, etc. Thus, in the proposed deep learning 
ensemble, an efficient parallel and pipelined fully connected 
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architecture for COVID- 19 prediction is built that could provide lower 
latency, lower power consumption, and less computational complexity 
thereby resulting in best performance for classification and recognition 
(Shin, Lee, Lee, & Yoo, 2017; Wang, Zhou, Han, & Yoshimura, 2017). 

Data privacy, epidemic pattern unpredictability, regulation and 
clarity, and the differentiation between COVID-19 and non-COVID-19 
symptoms are among the obstacles and issues raised by existing in-
vestigations (Bhattacharya et al., 2021). Single Shot Multibox Detector 
is used for face detector and MobilenetV2 architecture used as classifier 
framework (Nagrath et al., 2021).The proposed method provides higher 
accuracy and F1 score for COVID face mask detection 

2.1. Ensemble models 

In the proposed model, different CNN like ResNet, FitNet, IRCNN, 
MobileNet and Efficientnet are integrated to form ensemble. A simpli-
fied ResNet (Li, Jiao, Han, & Weissman, 2016) is built in the proposed 
model by calculating a minimum distance among all the data points and 
labels. In the training process of a zero-initialized deep residual network, 
the weights are near the initial point. The network is optimized by 
gradient descent when the condition number is small. An intelligent 
teacher model is incorporated into the FitNet. Lopez-Paez et al. 
(Lopez-Paz, Bottou, Schölkopf, & Vapnik, 2015) developed the process 
of generalized distillation and presented that generalized distillation 
minimizes the knowledge distillation if xi*=xi for all ‘i’ with few con-
straints and reduces to Vapnik and Izmailov (2015) learning if xi* is a 
privileged description of xi with few constraints.  

• Learn teacher ftϵFt utilizing the input-output pairs (xi*,yi)ni=1 and 
Equation(1).  

• Determine teacher soft labels {σ(ft(xi*)/T)}nt=1, using temperature 
parameter T>0  

• Learn student fsϵ FS using the input output pairs ((xi *, yi)ni 
= 1, {(xi *, si)ni= 1} and imitation parameter 

ft = argmin
f∈Ft

1
n
∑n

i=1
L

(
yi,σ(f (xi))

)
+ Ω(||f ||) (1)   

IRCNN network is one of the latest advancements in deep learning 
models, such as Inception Nets (Chen & Su, 2018) and RCNNs. The tasks 
of each Recurrent Convolution Layer (RCL) in the IRCNN block is 
observed as a pixel ordered at (i,j) for a specific information test in the 
RCL on the kth include map. This is the yield y1ijk(t1)at time step t1 which 
is written in Eq. (2) below: 

y1ijk(t1) = (w1fk ) T1 x(i,j)1f (t1) +
(

wr
1k

)
T1 x(i,j)1f (t1 − 1) + b1k (2) 

Here x(i,j)
1f (t1) and x(i,j)

1f (t1 − 1)) denotes the inputs for RCL and a 
standard convolutional layer correspondingly. w1k

r,w1k
f and b1k repre-

sent the weights for RCL, standard convolutional layer and the bias.The 
final output at time step t is given in Eq. (3): 

z1ijk(t1) = f1(y(t1)) = max(0, y1ijk(t1)) (3)  

Where,f1 denotes the Rectified Linear Unit (ReLU) activation function 
(Ahmad, Farooq, & Ghani, 2021). 

MobileNet is a smoothed-out engineering to build lightweight deep 
convolutional neural networks and results in a productive model for 
installed and portable vision applications (Li et al., 2016). Further 
processing of convolution parameters are described in the Appendix A 
section. 

EfficientNet has the advantages of providing high accuracy, reducing 
the variables, and FLOPS (Floating Point Operations per Second). The 
component scaling method is implemented in the width, depth, and 
resolution of the network dimension. This model has high supremacy in 
providing high performance. Hence, the model uses the component 
coefficient to control component scaling equally in all dimensions. 

2.2. Sequential least-squares programming method (SLSQP) 

SLSQP is utilized to assign weight to each classification learner and 
the prediction of each classifier is integrated using the soft voting 
approach. In the ensemble model, SLSQP and the voting approach are 
used for enhancing prediction accuracy. This approach is used in 
mathematical problems for which objective function and constraints are 
twofold continuously differentiable (Melchiorre et al., 2013). 

Fig. 1. General architecture of the proposed model.  
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3. Model 

3.1. Motivation 

The proposed model aims to build efficient hardware-based deep 
learning ensemble model for predicting the COVID-19. Five deep 
learning models namely ResNet, FitNet, IRCNN, EffectiveNet, and 
MobileNet are fine-tuned to improve the class-specific performance of 
individual models and parallel processing to minimize the fully- 
connected neural network computations. The hardware architecture 
acts as a CNN accelerator for massive computing which yields the best 
results for COVID-19 prediction. Thus, better accuracy is obtained with 
low latency and less computational power. The five deep learning 
models are chosen as they have outperformed existing deep learning 
models in performance as given in the literature for COVID-19 predic-
tion. In general, the EfficientNet and FitNet models (Tan & Le, 2019) 
provide higher accuracy and better efficiency over existing CNNs.Yan 
et al. (2021) have demonstrated that in comparison to other models in 
their proposed work, ResNet-18 has the highest accuracy with few pa-
rameters. In addition, ResNet minimizes the training complexity and 
result in performance improvements in terms of both training and 
generalization error. It was very closely followed by Akbarian, 
Seyyed-Kalantari, Khalvati, and Dolatabadi (2020) have demonstrated 
that FitNet model which is a knowledge transfer learning framework has 
performed better in classifying medical images by reducing overfitting. 
IRCNN is one of the effective deep CNN denoiser for image restoration 
(Zhang, Zuo, Gu, & Zhang, 2017) and has been widely used for denoising 
of COVID-19 CXR images. Each of the models is chosen in the ensemble 
due to their advantage over other models in performance. 

The flowchart containing the various components is given in Fig. 1. 
Initially, all the images are fed to five deep learning models which are 
implemented in a hardware-based architecture. The Convolutional 
computations are optimized in each of the learners and the results are 
fed to various ensemble models like majority voting, simple averaging, 
and weighted averaging. The performance of every ensemble is analyzed 
and the best results are obtained in the weighted averaging approach as 
it deploys a dynamic approach for calculating the weights based on the 
previous classifier results. The fine-tuned CNNs on ensemble models 
prove to be superior in COVID-19 prediction. 

3.2. Recurrent cxr pre-training and fine-tuning 

The images are pre-processed using reconstruction techniques such 
as fuzzy color (Ahmad et al., 2021) and image stacking. In the proposed 
method, a stepwise training approach is performed. Pre-trained models 
like ImageNet and custom CNN are arranged for retraining a large 

collection of images. The features of normal and infected lung images 
help to train the model (Shastri, Singh, Kumar, Kour, & Mansotra, 2021). 
Here 90% of datasets are divided for training and 10% for testing during 
the training phase. From the training dataset, 10% is randomly allocated 
for validation. 

In the initial phase of pre-training as shown in Fig. 2, CNNs are 
assigned with the pre-trained ImageNet weights and then fine-tuned at 
middle layers to efficiently study the main feature of dataset images and 
advance the classification accuracy. The trimmed models are added with 
padding with zero. Then, classified with a convolutional layer of 3 × 3 
which has 1024 feature maps. A drop-out layer with a 0.5 drop-out ratio, 
the model is added with the Global Average Pooling (GAP) layer. The 
final dense layer uses a softmax activation function where the prediction 
probability is calculated at the last. This model classifies images as 
normal or infected lungs. The initial stage of the recurrent CXR-precise 
pre-training is shown in Fig. 2 with the detailed architecture of the pre- 
trained CNNs. 

The information learned from the initial stage pre-trained model is 
obtained and performed again to classify images as normal lungs or 
COVID affected lungs which are shown in the second stage of the CXR- 
specific pre-training model. Fig. 3 shows the second stage pre-training of 
the CXRs which are pooled in a precise manner. During the training 
phase, the training data is split into a ratio of 80% for training and 20% 
for testing. For the validation purpose, a random allocation of 10% of the 
training data is used. 

For computer vision, Image Net pre-trained CNNs have been 
deployed. These models learn varied feature representations containing 
varying depth levels. Deeper models may not be best for medical images 
that are limited in quantity as there may be overfitting and generaliza-
tion loss. 

Thus, performance and generalizability can be improved in recurrent 
CXR-precise pre-training and fine-tuning phases. The minority classes 
are rewarded by the class weights which prevent biasing error and re-
duces overfitting. In the proposed work, five deep learning models such 
as MobileNET, EfficientNET, FITNET, IRCNN, and ResNet are deployed 
and integrated by majority voting, simple averaging and weighted 
averaging ensemble which are discussed in the results section. 

A hybrid relevance vector machine and logistic regression (RVM-L) 
model is proposed (Zhu, Ding, Yu, Wang, & Ma, 2021) and experimental 
details show that in comparison with existing approaches, RVM-L based 
early warning technique can achieve the prediction accuracy upto 96%. 
This model can be used to improve the public’s awareness of preventive 
measures, helping society organizing management efforts, and effec-
tively guiding the development of public opinion. 

A hybridized algorithm is proposed inZivkovic et al. (2021) between 
Cauchy exploration strategy beetle antennae search(CESBAS) and 

Fig. 2. First Stage Pre Training of CNN models in the proposed approach.  

Fig. 3. Second stage pre-training of CNN models in the proposed approach.  
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adaptive neuro-fuzzy inference system (ANFIS) to improve the current 
time-series prediction. A maximum R2 score of 0.9793 is achieved and 
conclude that their proposed hybrid model would be beneficial to limit 
the number of infected people, therefore the health organization does 
not get overwhelmed by the COVID patients who would need intensive 
care in hospitals. 

3.3. Fully connected network 

An FC neural network is a multi-layered network where each layer is 
composed of ‘N’ neurons. In Feed-forward FC layers every neuron is 
connected to the next layer’s subsequent neurons. Each connection is 
given a weight that quantifies the strength of the connection. FC net-
works can learn non-linear abstractions of the data. 

Further processing of FC layer parameters are described in the ap-
pendix section. 

The main computation of an FC layer involves lots of vector multi-
plications which increase the area power timing. A practical convolu-
tional computation may look like the computation in Fig. 4. (a) fully 

connected network and Fig. 4 (b) shows a Semi Parallel Implementation 
for an FC layer with each neuron having its weights stored in the 
registers 

3.4. Convolutional layer 

The convolutional layers consist of neurons enumerated in 3 di-
mensions: height H, width W, and channel C. Each convolutional layer 
transforms 3D input pixels (a set of Cin 2D maps) to 3D output activation 
maps (a set of Cout activation maps). This transformation is carried out 
by a 4D filter (a set of Cout 3D filters). Each set of 3D filters convolves 
with the 3D input pixels to give out a single 2D Hout × Wout plane of the 
output computed pixels. In the end, a 1D bias is added to the 3D output 
pixels. As illustrated in the appendix B the simple 2D convolution is 
performed. 

The existing hardware architecture that is needed for computing the 
X1….X25 pixels requires 25 clock cycles and the output layer requires 9 
neurons. For each cycle, it needs 25 multiplication operations excluding 
the addition and bias weight operation which is computationally 

Fig. 4. (a) An FC layer (b) A Semi Parallel Implementation for an FC layer with each neuron.  
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intensive. So the need for computation less, low latency with less 
computation power with better accuracy is the demand for image 
recognition and classification with the least Misclassification Rate 
(MSR). This work strives for implementing a hardware architecture that 
could act as a CNN accelerator for massive computing which best suits 
COVID-19 diagnosis. The higher accuracy of prediction with less hard-
ware complexity makes this system most sutable for sustainable smart 
city building. 

3.5. Proposed hardware implementation for covid-19 diagnosis 

In this section, different ensemble methods are deployed which can 
aid to identify COVID using various deep learning models. First, the 
Chest X-Ray (CRX) images are preprocessed by restructuring the images 
using fuzzy color techniques, and then images are stacked to structure it 
with the original images. The structured images are classified using 
various deep learning methods such as MobileNET, EfficientNET, FIT-
NET, IRCNN, and ResNet. The output of these classifiers is ensembled 
using majority voting, simple averaging, and weighted averaging 
method to detect COVID abnormal cases from X-ray images. The general 
design of the proposed model is shown in Fig. 1. 

3.6. Proposed data flow for convolutional computations 

The proposed hardware implementation focus on developing an 
efficient computatational processing element that could exploit the 
data/signal statics and correlation among them and thereby reduce the 
computations. The ideas of pipelining and parallel processing which 
could explore the hardware resource utilization are also being consid-
ered to reduce the power consumption for complex computation and the 
latency of the FC neural network, which is being the basic requirement 
of COVID-19 diagnosis. 

Convolutions by the same hardware as the FC layer can be computed 
by assigning one neuron to one output pixel in the output vector. As with 
the case of semi-parallel FC layer implementation, the number of par-
allel neurons is equal to the number of output pixels (Hout ×Wout = 9).
Also, the input pixels are broadcasted to all the neurons while weights 
are stacked in by each neuron register. Each input pixel is processed in a 

way similar to the computation performed in the FC layer. Figure shown 
in Appendix B represents the basic 2D CNN computations required for 
generating a 3 × 3 output matrix. It is observed that a set of 9 neurons 
has been used to compute all of the output pixels. The convolution of the 
first row of the filter(i.e. W1, W2, and W3) with the first row of the input 
pixels (i.e. X1, X2, X3, X4, and X5) requires 5 clock cycles when N = 3 and 
Wf =3. Therefore, Hf × (N+Wf − 1) clock cycles are required for a 
convolution of a row of the filter with its corresponding inputs. This 
clearly shows the requirement of 25 clock cycles to compute the output 
vector. It is also possible to increase the Utilization Factor (UF) and 
thereby a considerable increase in the latency of computation. 

It has been arrived at till now that using a fully parallel imple-
mentation of the proposed data flow yields unacceptably low UF as 
neurons for the large proportion of clock cycles are idle. The fully par-
allel implementation also takes up a lot of silicon area and power con-
sumption. Hence, the data flow diagram for CNN is analyzed carefully in 
the view of optimizing it for low latency, less computation, and less 
clock cycle. In this view the whole computation can be done using 9 
neurons in the output layers with 15 clock cycles, this could be done by 
placing the input pixels on an ON–CHIP memory and the weights are 
generated using an Linear Feedback Shift Register (LFSR). The compu-
tations are rescheduled such that X21 to X25 are computed in the 1to 5 
clock cycle with neurons 7 to 9 because they perform ’0′computations 
during this period. Similarly, X16 to X20 has also been rescheduled to 
neuron 4 to 6 and input X16 to X20 has also been rescheduled to neuron 7 
to 9 in clock cycles 6 to 10. This data rescheduling operation can be done 
because the data are uncorrelated and thereby a parallel architecture is 
designed in the hardware. This rescheduling has reduced the clock cycle 
by 40%. In general, the total latency of this approach is calculated using 
Hf × (N + Wf − 1) × Cin × Cout× Hout× Wout /N. The detailed data 
flow representation is shown in Tables 1 and 2. 

Further deep investigating of the data flow table shown in Table C.1 
of Appendix-C indicates that there is much worthless computation that 
could be optimized which is shown in green and blue shades. Reusing of 
neurons in the computation window will further optimize the clock 
cycle better so with this the CNN computation are rescheduled as shown 
in Table 1. This requires only a 9 clock cycle, provided the input is to be 
stored in on-chip memory. 

Table 1 
Optimized computation by resource utilization for Convolutional Computations.  

The first row of the output The second row of the output The third row of the output 

Clock cycles Neuron #1 Neuron #2 Neuron #3 Neuron#4 Neuron#5 Neuron#6 Neuron#7 Neuron#8 Neuron#9 

1 X1 × W1 X2 × W1 X3 × W1 X16 × W7 X17 × W7 X18 × W7 X21 × W7 X22 × W7 X23 × W7 

2 X2 × W2 X3 × W2 X4 × W2 X17 × W8 X18 × W8 X19 × W8 X22 × W8 X23 × W8 X24 × W8 

3 X3 × W3 X4 × W3 X5 × W3 X18 × W9 X19 × W9 X20 × W9 X23 × W9 X24 × W9 X25 × W9 

4 X6 × W4 X7 × W4 X8 × W4 X6 × W1 X7 × W1 X8 × W1 X16 × W4 X17 × W4 X18 × W4 

5 X7 × W5 X8 × W5 X9 × W5 X7 × W2 X8 × W2 X9 × W2 X17 × W5 X18 × W5 X19 × W5 

6 X8 × W6 X9 × W6 X10 × W6 X8 × W3 X9 × W3 X10 × W3 X18 × W6 X19 × W6 X20 × W6 

7 X11 × W7 X12 × W7 X13 × W7 X11 × W4 X12 × W4 X13 × W4 X11 × W1 X12 × W1 X13 × W1 

8 X12 × W8 X13 × W8 X14 × W8 X12 × W5 X13 × W5 X14 × W5 X12 × W2 X13 × W2 X14 × W2 

9 X13 × W9 X14 × W9 X15 × W9 X13 × W6 X14 × W6 X15 × W6 X13 × W3 X14 × W3 X15 × W3  

Table 2 
Performance Metrics of Fine-tuned second-stage pre-trained models for COVID-19 detection.  

Models Technique Acc S SP P F1 MCC K DOR AUC 

IRCNN Baseline 0.847 0.833 0.867 0.842 0.847 0.694 0.694 30.79 0.928 (0.886, 0.970)  
Fine-tuned 0.854 0.902 0.888 0.884 0.865 0.736 0.736 44.4 0.917 (0.872, 0.962) 

Mobile Net Baseline 0.854 0.902 0.875 0.839 0.855 0.698 0.666 35.31 0.932 (0.891, 0.95  
Fine-tuned 0.875 0.902 0.819 0.833 0.866 0.724 0.7222 42.17 0.904 (0.856, 0.952) 

FITNET Baseline 0.868 0.847 0.888 0.847 0.844 0.736 0.736 44.4 0.921 (0.877, 0.965)  
Fine-tuned 0.875 0.902 0.902 0.895 0.863 0.737 0.736 46.47 0.930 (0.888, 0.971) 

ResNet-18 Baseline 0.833 0.916 0.847 0.884 0.865 0.714 0.708 41.83 0.930 (0.888, 0.971)  
Fine-tuned 0.895 0.861 0.902 0.897 0.878 0.751 0.752 51.54 0.981 (0.864, 0.957) 

Efficient Net Baseline 0.847 0.847 0.791 0.814 0.862 0.673 0.694 30.06 0.915 (0.868, 0.960)  
Fine-tuned 0.868 0.847 0.930 0.930 0.892 0.793 0.791 83.2 0.947 (0.913, 0.985)  
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Weights are generated by the weighted LFSR to reduce memory ac-
cesses, in the case of convolutional implementations. It is passed on to all 
neurons as shown in Fig. 5. Passing weights from a neuron output vector 
pixel of one row to a neuron output that of another row requires (S −

1) x Hin x Hf delay elements which is being implemented using the D 
Flipflop. 

3.7. Generalizing the proposed data flow 

The utilization factor may be precalculated for the setup by the 
expression 

UF = (Hf ×Wf )/(Hin×Win) × 100 (4) 

UF can be improved by reusing a subset of neurons populating in the 
same row of the output neuron (N <= Wout) to process for all the output 
activation pixels. This set of neurons is referred to as a 1-D tile. As can be 
seen from Table 1 a convolving row of a filter map with its corre-
sponding input pixels requires N + Wf − − 1 clock cycles. Now, the 
enhanced UF is expressed as given in Eq. (5) in comparison with Eq. (4), 

UF = Wf /(N +Wf − 1) × 100. (5)  

Where N indicates several re-useable neurons in the same output 
computation row. Despite the increase in UF and the use of a fewer 
number of neurons, the number of memory accesses of filter weights 
increases considerably. These issues can be compensated by using ‘p’ 
parallel 1D tiles to compute ‘p’ out of the Cout vector in parallel. Such 
parallelism allows for a reduction of latency and memory accesses by a 
factor of p. The input pixels are broadcasted to all the ‘p’ 1D tiles thus 
improving the latency ‘p’ times and also easing out the bandwidth 
requirement of the data buses through broadcasting. The number of 
clock cycles to compute the convolutional layer can be expressed as 
given in Eq. (6):The number of 

CCs = 3 × (N + 2) × Cin × Cout × (Wout×Win)/(N × p). (6)  

where P is the total number of output pixels to be computed. 
As can be seen in Table 2, an input pixel is read at each clock cycle 

while 3 filter weights are read every (N + 2) clock cycle. Therefore, the 
number of memory accesses (frequency of access) needed for input and 
filter weights are as follows: 

MA input pixels = 3 × (N + 2) × Cin × Cout × (Wout×Win)
/

N. (7)  

MAfilter weights = 3 × 3 × Cin × Cout × (Wout×Win)/(N × p). (8) 

Looking at the expressions (7) and (8), it is inferred that altering N 
does not alter MAimaps but MAfilters increase as N is decreased. 

Proposed processing Element architecture receives a broadcasted 
input pixel and a filter weight from the weight generator and performs 
their multiplication and then accumulates it with the corresponding 
value in the registers holding the psum and this process repeats till the 
end as shown in Fig. 6. After the computations for each pixel, ReLU is 
applied and the output pixels are stored in the off-chip memory. The 
weight generator is responsible to provide each neuron the appropriate 
weight is shown in Fig. 5. The proposed CNN architecture makes the 
computation as data aware and thereby it incorporates the smartness in 
the computation and thereby reduces the power consumption and with 
increased frequency of operation. This feature helps to design the smart 
city by preserving the green environment 

Fig. 5. Overall architecture for proposed CNN computations.  

Fig. 6. Proposed Processing Element architecture.  
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4. Experimental analysis 

The experiments are performed on the windows system with Intel 
Xeon CPU E3–1275, v6 3.80 GHz processor, and NVIDIA GeForce 1050 
Ti all experiments are performed. Tensorflow backend uses Keras DL 
framework. To accelerate the performance of GPU CUDA and CUDNN 
libraries were used. Numerous stages of learning is performed in the 
proposed CNN-based deep learning models and were trained in this 
study: (i) ResNet-18 ii) Mobile Net-V2 iii) FitNet iv) IRCNN and v) 
EfficientNet. In ensemble learning, the models are chosen with a 
knowledge of growing the representation power, architectural diversity, 
when integrated and used. 

An application-specific hardware architecture which incorporates 
the pipeline, parallel processing, reusability of computational resources 
by carefully exploiting the data flow and resource availability. The 
processing element (PE) and the CNN architecture are modeled using 
Verilog, simulated, and synthesized using 90 nm tech file. The simulated 
results show a 40% reduction in the latency and number of clock cycles. 
The computations and power consumptions are minimized by designing 
the PE as a data-aware unit. 

4.1. Dataset 

The images are collected from the COVID-19 Radiography Database 
(Melchiorre et al., 2013). A research team from various countries has 
created a database of chest X-ray images for COVID-19 positive cases 
along with images of Normal and Viral Pneumonia. This COVID-19, 
normal, and other lung infection dataset is released in various phases. 
In the first phase, 219 COVID-19, 1341 normal, and 1345 viral pneu-
monia chest x-ray images are released. In the second phase, the 
COVID-19 class images are increased to 1200. In the third phase, there 
are 3616 COVID-19 positive cases along with 10,192 normal images. In 
addition, there are 1345 viral Pneumonia images. All images are in 
Portable Network Graphics (PNG) file format with a resolution of 
299×299 pixels. A stepwise training approach is initially performed. 
Pre-trained models like ImageNet and custom CNN are retrained with a 
large collection of images. The features of normal and infected lung 
images help to train the model (Togacar, Ergen, & Comert, 2020). Here 
90% of datasets are divided for training and 10% for testing during the 
training phase. From the training dataset, 10% is randomly allocated for 
validation. A stratified K-fold cross-validation with K = 5 is performed. 

4.2. Deep learning models parameter settings 

Table C.2 of Appendix-C shows the optimization of hyperparameters 
for the single and ensemble deep learners. Adam optimizer is chosen for 
all deep learners. The batch size, max. epoch, global learning rate, 
validation frequency, drop out rate and learn rate factor is initialized 
after an optimal 5-fold cross-validation accuracy is obtained for the 
models. The classification layer weight vector for the input, hidden and 
output layers are also obtained based on the optimal cross-validation 
accuracy. 

It is important to evaluate the performance of the classifiers using 

various metrics (Zhou et al., 2021) such as accuracy(Acc), sensitivity (S), 
specificity (SP), precision (P), F-score, Matthews correlation coefficient 
(MCC), Diagnostic Odds Ratio (DOR), Kappa (K), and Area under curve 
(AUC). 

5. Results and discussion 

The performance of the different models are analyzed individually in 
ther first stage and second stage of CXR specific training. It is observed 
that only IRCNN and MobileNet perform better without fine-tuning. 
Therefore, all pre-trained models are fine tuned iteratively with their 
model parameters for increasing the performance as shown in the 
results. 

The performance of the single learner models is improved by fine- 
tuning the models deployed in the ensemble approaches for COVID-19 
identification: (i) Majority Voting; (ii) weighted and (iii) Simple aver-
aging. The results are shown in Table 3. There is no considerable dif-
ference statistically in the AUC results (P > 0.05) of the ensemble model. 
The top-1 weighted averaging method performs better than Top-2 and 
Top-4 methods based on DOR, AUC, accuracy, F1 score, MCC, speci-
ficity, precision, and Kappa when compared to other models. SLSQP 

Table 3 
Top-1, top-2, and top-4 fine-tuned Ensemble models performance for COVID-19 identification.  

Ensemble method Top-N models Accuracy Sensitivity Specificity Precision F1 MCC Kappa DOR AUC 

Majority voting 1 0.932 0.961 0.926 0.945 0.958 0.938 0.955 102.22 0.949 (0.962, 0.956) 
2 0.941 0.9612 0.945 0.9586 0.979 0.764 0.763 57.63 0.961 (0.829, 0.934) 
4 0.948 0.955 0.932 0.94 0.967 0.928 0.977 65.02 0.958 (0.837, 0.940) 

Simple averaging 1 0.955 0.968 0.972 0.951 0.945 0.937 0.971 74.32 0.938 (0.972, 0.984) 
2 0.931 0.961 0.952 0.948 0.979 0.964 0.963 57.63 0.946 (0.967,9831) 
4 0.961 0.975 0.968 0.977 0.981 0.964 0.963 56.01 0.955 (0.908, 0.982) 

Weighted averaging 1 0.999 0.992 0.984 0.989 0.989 0.989 0.989 105.6 0.987 (0.981, 0.984) 
2 0.972 0.975 0.980 0.976 0.9 0.906 0.985 93.87 0.949 (0.953, 0.985) 
4 0.988 0.988 0.988 0.988 0.988 0.977 0.977 64.02 0.945 (0.958, 0.982)  

Table 4 
Ensemble model classification results on chest x-rays.  

Dataset Normal Pneumonia COVID-19 

Balanced dataset Precision 0.982 0.976 0.984 
Recall 0.977 0.988 0.975 
F1 0.965 0.972 0.985 

Imbalanced dataset Precision 0.906 0.864 0.877 
Recall 0.897 0.853 0.881 
F1 0.902 0.858 0.879  

Table 5 
Fine-tuned ensemble model on mean squared error (MSE) cross-validation 
replicates.  

Model R2 R.S.S d.f F-Value P-Value 

MMSE1 0.3535 7.9759 2147 41.73 4.442×10− 15 

MMSE2 0.1904 9.8519 4145 9.759 5.107×10− 7 

M MSE3 0.5564 5.3238 6143 32.14 2.2 × 10− 6 

M MSE4 0.9931 0.0778 14,135 1540 2.2 × 10− 6 

*R2= Percentage of variation in a response variable, *R.S.S= Residual Sum of 
Squares, *d.f=degrees of freedom. The table shows the individual model ANOVA 
on Mean Squared Error (MSE) cross-validation replicates. The first model MMSE1 
(Majority voting model) contains highly significant evidence for the variance in 
MSE influenced by the choice of the learning approach. The second model MMSE2 
(Simple Averaging model) contains evidence for significant contribution to the 
variance in MSE by choice of attribute mapping approach. The third model 
contains both learning techniques and mapping approaches, but without in-
teractions between techniques and attributes M MSE3 (Weighted Averaging 
model), contained a significantly better fit to either MR1 or MR2 model that 
contained only learning approaches or mapping methods. Finally, the model 
MR4, which contained interaction terms between techniques and methods, had a 
marginally significantly better fit than the model MR3. 
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technique is used to iterate the minimization and the optimal weights 
are converged for model predictions. 

Table 4 shows the classification results of various infection types like 
Normal, Pneumonia, and COVID-19. Performance measures like preci-
sion, recall, and F1-score are compared among the balanced and 
Imbalanced datasets. The dataset initially had a huge imbalance with 
10,192 normal images, 3616 COVID-19 images and 1345 Pneumonia 
images. The models trained on imbalanced data can cause wrong pre-
dictions during inference time due to overfitting which are evident in 
Table 6 results. Imbalance Ratio (IR) is a statistical metric calculated 
which is the ratio of majority to minority samples. A low IR specifies the 
minimum difference between the class labels and those samples will be 
undersampled. 

A random undersampling is done on the majority class label in the 
preprocessing phase to overcome the imbalance in class distribution. In 
addition, a class weighting mechanism is implemented to penalize the 
model whenever a positive sample is misclassified. 

Anova test is performed on top-1, top-2 and top-4 fine-tuned 
ensemble models of our proposed model along with the CNN model 
FitNet which has resulted in better performance in existing models. The 
results are shown in Table 5. 

Fig. 7 shows that the latency depends on the N (reused Neurons in the 
same row) and P (output neuron). 

All the values of latency and Memory access are for a parallelism 
factor p = 1. Table C.3 shown in appendix-c shows the variation of la-
tency and memory access with the variation of N. This work developed a 
novel dataflow to accelerate deep convolutional neural networks which 
have better performance compared to the devised architectures in the 
recent 5–6 years. The techniques exploit inherent data reuse and repe-
titions in the processing of convolutions and FC layers. Also, algorithms 
such as deep compression can be deployed in conjunction with any 
accelerator to further expedite the processing. With the increasing use of 
Artificial Intelligence in recent times, it is necessary to devise energy- 
efficient and robust ASIC implementations that allow deploying such 
robust systems in battery-operated and real-time applications. These 
features best suit the hardware developed for the COVID-19 prediction 
chipset. 

There are few perceptions to be analyzed in the studies such as (i) the 
information size and variation used in training; (ii) different deep 
learning designs learning capacity notifying their determination; (iii) 
modifying the models for improved execution, and the (iv) advantages 
of learning in a group. Ensemble models enhanced qualitative and 
quantitative performance in the identification of COVID-19 samples. 
Also, the predictions of the majority models are combined to ignore the 
mislabeling of individual models and reducing the training data pre-
diction variance. It is evident from the results that the top-1 fine-tuned 
weighted averaging ensemble model increased the performance in 

comparison to other models. The results show that the detection is 
enhanced because of the ensemble of CXR-specific repeated pre-training 
for fine-tuning the models. 

The proposed model is compared with prior deep learning models in 
Table 6 for COVID-19 prediction. CNN models like one block VGG, two- 
block VGG, three-block VGG, four-block VGG, LetNet-5, AlexNet, and 
Resnet-50 for identifying the COVID and SARS_MERS (Zhu et al., 2021). 
As per their results, LSTM approach achieved better results of 99% ac-
curacy. MobileNet and InceptionV3 architectures were used in this 
proposed work and it produces better classification results with an ac-
curacy of 96.49% respectively (Yamac et al., 2021). Based on LSTM, 
authors designed a nested ensemble model using deep learning methods 
and they proposed the Deep-LSTM ensemble model and achieved an 

Fig. 7. Latency dependency on N and p.  

Table 6 
Comparison of proposed model with state-of-the-art deep learning models.  

Models Accuracy(in 
%) 

Precision(in 
%) 

Recall(in 
%) 

F1(in 
%) 

Alexnet (Younis, 2021) 76 75 60 67 
ResNet-50 (Younis, 2021) 88 71 86 77 
VGG-2 (Younis, 2021) 89 88 87 87 
LeNet-5 (Younis, 2021) 88 88 87 86 
VGG-1 (Younis, 2021) 84 83 83 83 
VGG-3 (Younis, 2021) 81 80 81 80 
Inception V3 (Younis, 2021) 94 91 91 95 
IRCNN 85 87 84 87 
MobileNet 87 89 88 87 
FitNet 87 88 90 86 
ResNet-18 89 89 93 84 
Deep-LSTM (Akbarian et al., 

2020) ensemble 
94 97.59 95 96.78 

CSEN (Yamac et al., 2021) 95 90 93 89 
RVM-L (Zhu et al., 2021) 96 95 96 96 
SSDMNV2[31] 92.64 93 93 93 
Proposed Model 99 98 98 98  

Table 7 
Computation time of the ensemble models.  

Ensemble Method Top-N models Computation Time (in Seconds) 

Majority Voting 1 5.64 
2 8.4 
4 9.7 

Simple Averaging 1 4.54 
2 4.94 
4 6.75 

Weighted Averaging 1 3.72 
2 5.62 
4 8.78  
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accuracy of 97.59% (Bhattacharya et al., 2021). Convolution Support 
Estimation Network (CSEN) based classification has been proposed in 
this work for feature extraction with the deep NN solution for X-ray 
images and achieved accuracy of 92.64% and precision, recall and F1 
score of 93% respectively (Nagrath et al., 2021). 

Table 7 shows the computation time of the various ensemble models 
in the optimized CNN models. The weighted averaging ensemble results 
in minimum computational time. The limitations of this analysis are: (i) 
the freely accessible COVID-19 information dataset is insignificant and 
may not envelop a wide scope of sickness design fluctuation. (i) reduced 
the number of dataset samples. To overcome this problem, joint datasets 
can be used for the integration; (ii) better generalization capabilities of 
the deep learner ensemble have not been analyzed due to the limitation 
in the samples. (ii) regular convolutional parts are deployed for the 
examination, however, unique convolutional bits can minimize feature 
dimensionality resulting in improved execution, decreased memory, and 
prerequisites for computation; finally, (iv) Ensemble models involve 
notably high time, computational resources, and memory for effective 
implementation. Conversely, recent developments in registering pro-
visions, storage, and cloud innovation will prove to be worthy in the 
future. The memory access and latency of the CNN hardware architec-
ture have been reduced by 45%, this immensely supports the hardware 
building for COVID-19 prediction and diagnosis. 

The proposed architecture has been coded using Verilog HDL, 
simulated using Modelsim, and synthesized used RTL synthesizer in 
Cadence with 45 nm technology node. The synthesized results are 
updated in Table 8. These results clearly show that there is around a 40% 
reduction in computation time in terms of clock cycles and the power 
consumption has been reduced by 17% 

Therefore, our proposed model is a feasible solution and has shown 

its advantages of battling against the pandemic. Our approach produces 
promising results with the superiority of adaptive learning, contributing 
to fully understanding the current situations and predicting future 
trends about COVID-19.It is worth noting that the ensemble learning 
based model has shown outstanding performance in determining the 
positive number of COVID-19 cases. The reduced latency and memory 
access builts a robust system with high speed and low power con-
sumption which helps the green environment thereby upholding the 
SDG internationally. The higher accuracy and precision of the simulated 
results shows a robust reliable, highly tracable system building which 
could be a great support for a smart health care development. 

6. Conclusion 

COVID-19 identification is very crucial in the era of the pandemic. 
This work tries to come up with a novel framework using five deep 

Table 8 
Hardware resources required for CNN architecture implementation.  

Sl. 
No 

Parameters Existing 
Architecture 

Proposed 
Architecture 

AlexNet VGG- 
16 

VGG-16 

1 Technology 45nm 45nm 45nm 
2 Gate Count (NAND-2) 1852k 565k 485K 
3 #MAC 168 192 178 
4 Supply voltage (Volts) 1v 1v 1v 
5 Power(mW) 278 236 196 
6 Total Latency(ms) 115.3 4309.5 2678.3 
7 Throughput(fps) 34.7 26.8 43.2 
8 No. of clock cycles 

required 
25 15 9 

9 Performance (Gops) 46.1 21.4 70.3 
10 Performance Efficiency 55% 26% 93%  

Table C.1 
Initial stage of proposed dataflow for convolutional computations.  

The first row of the output The second row of the output A third row of the output 

Clock cycle Neuron #1 Neuron #2 Neuron #3 Neuron#4 Neuron#5 Neuron#6 Neuron#7 Neuron#8 Neuron#9 

1 X1 × W1 X1 × 0 X1 × 0 X16 × W7 X16 × 0 X16 × 0 X21 × W7 X21 × 0 X21 × 0 
2 X2 × W2 X2 × W1 X2 × 0 X17 × W8 X17 × W7 X17 × 0 X22 × W8 X22 × W7 X22 × 0 
3 X3 × W3 X3 × W2 X3 × W1 X18 × W9 X18 × W8 X18 × W7 X23 × W9 X23 × W8 X23 × W7 

4 X4 × 0 X4 × W3 X4 × W2 X19 × 0 X19 × W9 X19 × W8 X24 × 0 X24 × W9 X24 × W8 

5 X5 × 0 X5 × 0 X5 × W3 X20 × 0 X20 × 0 X20 × W9 X25 × 0 X25 × 0 X25 × W9 

6 X6 × W4 X6 × 0 X6 × 0 X6 × W1 X6 × 0 X6 × 0 X16 × W4 X16 × 0 X16 × 0 
7 X7 × W5 X7 × W4 X7 × 0 X7 × W2 X7 × W1 X7 × 0 X17 × W5 X17 × W4 X17 × 0 
8 X8 × W6 X8 × W5 X8 × W4 X8 × W3 X8 × W2 X8 × W1 X18 × W6 X18 × W5 X18 × W4 

9 X9 × 0 X9 × W6 X9 × W5 X9 × 0 X9 × W3 X9 × W2 X19 × 0 X19 × W6 X19 × W5 

10 X10 × 0 X10 × 0 X10 × W6 X10 × 0 X10 × 0 X10 × W3 X20 × 0 X20 × 0 X20 × W6 

11 X11 × W7 X11 × 0 X11 × 0 X11 × W4 X11 × 0 X11 × 0 X11 × W1 X11 × 0 X11 × 0 
12 X12 × W8 X12 × W7 X12 × 0 X12 × W5 X12 × W4 X12 × 0 X12 × W2 X12 × W1 X12 × 0 
13 X13 × W9 X13 × W8 X13 × W7 X13 × W6 X13 × W5 X13 × W4 X13 × W3 X13 × W2 X13 × W1 

14 X14 × 0 X14 × W9 X14 × W8 X14 × 0 X14 × W6 X14 × W5 X14 × 0 X14 × W3 X14 × W2 

15 X15 × 0 X15 × 0 X15 × W9 X15 × 0 X15 × 0 X15 × W6 X15 × 0 X15 × 0 X15 × W3  

Table C.2 
Optimization of hyper-parameters.  

HYPERPARAMETER Setting Data 
augmentation  

ResNet, FitNet, 
IRCNN, 
EffectiveNet, 
and FitNet 

Majority Voting 
Ensemble, Simple 
Averaging 
Ensemble, and 
Weighted 
Averaging 
Ensemble  

Optimizer ADAM ADAM Both axis side 
random 
reflection 
Rescaling 
randomly b/w 
[0. 5 to 1.50] 
Rotating 
randomly b/w 
[− 40◦ 40◦] 

Batch Size 10 10 
Max Epoch 200 100 
Global Learning Rate 4 4 
Dropout rate 0.5 0.8 
Validation Frequency 68 68 
Learn Rate Factor 10 10 
classification layer 

weight vector 
[0.75 0.15 1.18] [0.75 0.15 1.18]  

Table C.3 
Dependence on N for latency and memory accesses.  

Value of N Processing Latency (ms) MAfilters MB) MAinput pixelMB) 

7 16,334.6 4384.7 13,154 
14 14,615.8 2192.2 11,692.6 
28 13,784.7 1096.1 11,027.8 
56 13,507.1 548.2 10,805.8 
112 13,436.9 273.9 10,749.5 
224 13,422.6 138.8 10,738  
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learning models namely ResNet, FitNet, IRCNN, EffectiveNet, and Fit-
net. They are pretrained individually using a recurrent CXR specific 
approach. The models are fine-tuned with the initialization parameters. 
Each of these models are integrated using various ensemble approaches 
like majority voting, simple averaging and weighted averaging. It is 
observed that weighted averaging ensemble results in maximum accu-
racy, precision, recall and F1-score of 0.99, 0.98,0.98 and 0.98 respec-
tively with 64% reduction in clock cycles. The hardware architecture 
developed is made as a dedicated chipset which minimizes the compu-
tation time, energy, latency and improves the performance efficiency by 
93% in comparison to state-of-the-art techniques. As future work, the 
data collected from different public automated health centres can be 
stored in a secured cloud environment which helps in extracting infor-
mation in the national and international level. The individual identified 
as COVID positive can be tracked, guided, treated using IOT/mobile 

network solution.  The noticeable progress of healthcare services and 
technologies, named Smart Healthcare, have a direct contribution with 
the improvement of smart cities in general. Thus, the proposed model 
can scientifically reduce the infection rate in a smart sustainable healthy 
city environment. 
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Appendix:A: Ensemble Models 

Let N1 be the number of output channels, D1K × D1K be the convolution kernel size K1, and M1 specifies the input channels. The parameters of a 
depthwise convolution are given in equation (A.1): 

D1K.D1 K(αM1.δ) (A.1)  

and the parameters of a pointwise convolution is given in equation (A.2): 

(αM1.δ) ⋅αN1 (A.2) 

Fully Connected Network 
The computation of an FC layer can be done as follows in equation (A.3): 

Y = ReLU(w < ce:inf > m < /ce:inf > × n × x < ce:inf > n < /ce:inf > × 1 + bm × 1), (A.3)  

where x represents the inputs, y the output,w the weights, and b the biases, while ReLU is the non-linear activation function given in equation (A.4): 

ReLU(x) = max(0, x) (A.4) 

Appendix:B 

Fig. B.1. Basic Convolutional Operation.  
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Fig. B.1 illustrates a simple example of a 2D convolution. Each layer performs the operations as represented in the equations (B.1), (B.2), and (B.3). 

Y(z, t, q) = B(q) +
∑Cin

k=1

∑Hf

j=1

∑Wf

i=1
X(zS+ j, tS+ i, k) × W(j, i, k, q) (B.1)  

Hout = (H < ce:inf > in < /ce:inf > − H < ce:inf > f < /ce:inf > + S)/S, (B.2)  

W < ce:inf > out < /ce:inf > = (W < ce:inf > in < /ce:inf > − W < ce:inf > f < /ce:inf > + S)/S (B.3)  

Where B, W, Y, and X denote the bias, the weight matrix, the output map, and the input map respectively. Also, 1 ≤ z ≤ Hout, 1 ≤ t ≤ Wout and 1 ≤ q ≤
Cout. Stride S is the number of pixels of the input activation maps by which the filter hops after each convolution. 

Appendix:C 
Appendix:D   

Abbreviations Descriptions 
AI Artificial Intelligence 
AUC Area Under Curve 
BCNN Bayesian Convolutional Neural Networks 
CNN Convolutional Neural Network 
CSEN Convolution Support Estimation Network 
CRM Class-specific Relevance Mapping 
CT Computed Tomography 
CXRs Chest X-rays 
CADx Computer-Aided Diagnostic devices 
DL Deep Learning 
DM Diabetes Mellitus 
DOR Diagnostic Odds Ratio 
FITNET Function fitting Neural Network 
FC Fully Connected Network 
HDs Heart Disorders 
HTN Hyper Tension 
HCLS Hypercholesterolemia 
IRCNN Inception Recurrent Convolutional Neural Network 
IoT Internet of Things 
K-NN K-Nearest Neighbor 
LSTM Long Short-Term Memory 
LRP Layer-wise Relevance Propagation 
LFSR Linear Feedback Shift Register 
MCR Miss-Classification Rates 
MCC Matthews Correlation Coefficient 
PE Processing Element 
ROI Region-Of-Interest 
RT-PCR Reverse Transcription-Polymerase Chain Reaction 
RCL Recurrent Convolution Layer 
ReLU Rectified Linear Unit 
SVM Support Vector Machine 
SLSQP Sequential Least- Squares Programming Method 
TESM Truth Estimate from Self Distances Method 
TESD Truth Estimate from Self Distances 
UF Utilization Factor  
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