Skip to main content
. 2022 Feb 3;80:103713. doi: 10.1016/j.scs.2022.103713

Table C.2.

Optimization of hyper-parameters.

HYPERPARAMETER Setting Data augmentation
ResNet, FitNet, IRCNN, EffectiveNet, and FitNet Majority Voting Ensemble, Simple Averaging Ensemble, and Weighted Averaging Ensemble
Optimizer ADAM ADAM Both axis side random reflection
Rescaling randomly b/w[0. 5 to 1.50]
Rotating randomly b/w [−40° 40°]
Batch Size 10 10
Max Epoch 200 100
Global Learning Rate 4 4
Dropout rate 0.5 0.8
Validation Frequency 68 68
Learn Rate Factor 10 10
classification layer weight vector [0.75 0.15 1.18] [0.75 0.15 1.18]