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Evaluating the performance of temporal 
pattern discovery: new application using statins 
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Abstract 

Background:  Temporal pattern discovery (TPD) is a method of signal detection using electronic healthcare data-
bases, serving as an alternative to spontaneous reporting of adverse drug events. Here, we aimed to replicate and 
optimise a TPD approach previously used to assess temporal signals of statins with rhabdomyolysis (in The Health 
Improvement Network (THIN) database) by using the OHDSI tools designed for OMOP data sources.

Methods:  We used data from the Truven MarketScan US Commercial Claims and the Commercial Claims and 
Encounters (CCAE). Using an extension of the OHDSI ICTemporalPatternDiscovery package, we ran positive and 
negative controls through four analytical settings and calculated sensitivity, specificity, bias and AUC to assess 
performance.

Results:  Similar to previous findings, we noted an increase in the Information Component (IC) for simvastatin and 
rhabdomyolysis following initial exposure and throughout the surveillance window. For example, the change in IC 
was 0.266 for the surveillance period of 1–30 days as compared to the control period of − 180 to − 1 days. Our modifi-
cation of the existing OHDSI software allowed for faster queries and more efficient generation of chronographs.

Conclusion:  Our OMOP replication matched the we can account forwe can account for of the original THIN study, 
only simvastatin had a signal. The TPD method is a useful signal detection tool that provides a single statistic on 
temporal association and a graphical depiction of the temporal pattern of the drug outcome combination. It remains 
unclear if the method works well for rare adverse events, but it has been shown to be a useful risk identification tool 
for longitudinal observational databases. Future work should compare the performance of TPD with other pharma-
coepidemiology methods and mining techniques of signal detection. In addition, it would be worth investigating the 
relative TPD performance characteristics using a variety of observational data sources.
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Background
The use of healthcare databases as complementary data 
sources for drug safety signal detection has increasingly 
been explored as an alternative to spontaneous report-
ing [1]. This alternative strategy is based on the active 

collection of information on all adverse events in a cohort 
exposed to a drug of interest [2]. Hence, information is 
collected on all patients in the cohort, not just those with 
suspected adverse drug events. Moreover, all adverse 
events are recorded and there is a possibility to assess 
information on adverse events prior to the drug exposure 
(i.e. a control window for comparison) [2, 3].

The use of prescription-event data in a real-world 
setting therefore allows for improved spontaneous 
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reports-type analyses because the number of exposed 
patients is known, more information is available of 
potential risk factors and confounders, and it may even 
be possible to retrospectively assess missing information. 
It also allows the assessment of adverse event profiles by 
making comparisons with other drugs and across various 
time periods [2, 3]. Nevertheless, all these potential ben-
efits in terms of data collection strategies also result in 
complexities of the underlying analytical models.

Signal detection methods to enable identification 
of risks of medical products in observational health-
care data have hence become more apparent. Leverag-
ing healthcare databases for drug safety signal detection 
requires evaluation of performance of existing meth-
ods to determine which is most appropriate for mining 
adverse drug reactions. One such method is temporal 
pattern discovery (TPD), which was originally proposed 
by Noren et al. in 2010 [4]. The TPD method is appealing 
because it allows for an open-ended approach to signal 
detection, applies a shrinkage to prevent spurious signals 
and uses a self-controlled contrast to identify true tem-
poral associations. It is therefore of interest to also assess 
whether the TPD method can be used for detecting rare 
adverse drug events.

Hauben et al. investigated the use of TPD in the context 
of rare adverse drug events by assessing signals between 
statin use (simvastatin, atorvastatin, rosuvastatin, flu-
vastatin, and pravastatin) and development of rhabdo-
myolysis in the UK primary care database, The Health 
Improvement Network (THIN) [5]. This TPD application 
was conducted using the CVW Longitudinal software 
from Commonwealth Informatics [6], a reimplementa-
tion and extension of the vigiTrace software designed for 
TPD by the Uppsala Monitoring Centre, which is not an 
open source software. The application of TPD on statins 
in the THIN database did not detect temporal patterns 
for statins and rhabdomyolysis, but did detect temporal 
patterns for Simvastatin and Cerivastatin when the out-
come was generalised to “Myalgia and myositis unspeci-
fied” [5].

Here, we aimed to replicate the statins study conducted 
in the THIN database using open-source software from 
Observational Health Data sciences and Informatics 
(OHDSI— ICTemporalPatternDiscovery [7]) on data 
mapped to the OMOP common data model [8]. In addi-
tion to ensuring transparency of our TPD statins replica-
tion using open source software, conducting the analysis 
using OMOP data ensures that we can account for dif-
ferences in results due to database heterogeneity [9] and 
through consideration of different analytical param-
eterisations [10]. Our method was also designed so that 
we can evaluate the operating characteristic of the TPD 
method. Hence, our study aimed to further develop TPD 

software as to promote its usefulness for future adverse 
event reporting studies.

Methods
Data source
To replicate and expand the TPD analysis conducted with 
the THIN data [5], we used data from the Truven Health 
MarketScan Research Databases capturing private and 
public claims data in the United States to assess signals 
between statin use (simvastatin, atorvastatin, rosuvas-
tatin, fluvastatin, and pravastatin) and development of 
rhabdomyolysis [11]. We used the Commercial Claims 
and Encounters (CCAE) dataset (n = 138.5 million) and 
the Medicare Supplemental (MDCR) dataset (n = 9.8 
million). These Truven MarketScan datasets allow for 
real-time analysis of real-world data with clinical details 
along the complete longitudinal patient record of health-
care encounters and payments. They hence cover the full 
continuum of healthcare in the US from an administra-
tive claims standpoint. The CCAE and MDCR data were 
mapped to the OMOP common data model, providing 
a standardized representation of clinical concepts in a 
healthcare database [8]. Using OMOP data ensures that 
the TPD method can be implemented consistently across 
multiple databases.

Statistical methods
Our methods are an adaption of the framework for open-
ended pattern discovery in large patient record reposi-
tories as described by Noren et  al. in 2010 [4]. Further 
details of the underlying statistical code can be found 
here: https://​github.​com/​OHDSI/​TpdCh​ronog​raph.

Noren framework
Temporal pattern discovery (TPD) is an exploratory sig-
nal detection framework for longitudinal observational 
databases. The basis of the method is a graphical statis-
tical approach to highlight and visualise temporal asso-
ciations between the onset of a prescription drug and the 
subsequent occurrence of a medical event [4]. The TPD 
method utilises a calibrated self-controlled cohort design, 
creating a within cohort adjustment for time-invariant 
confounders and external cohort contrast to adjust for 
systematic differences between time periods [2]. Central 
to the TPD method is the Information Component (IC) 
measure of disproportionality, which is a transformed 
ratio of the observed number of events for a drug-out-
come combination to the expected number of events, 
found by the marginal counts. The IC value includes a 
log base 2 transformation to improve interpretability and 
a shrinkage of 0.5 to the numerator and denominator to 
control for volatility of rare events. The IC value is the 
log posterior mean of the rate of incidence for the drug 

https://github.com/OHDSI/TpdChronograph
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outcome combination, so that it is possible to construct 
Bayesian 95% credibility intervals for inference [4].

A graphical tool called the chronograph can then be 
used as a visualisation for open-ended temporal signal 
detection. The chronograph is a two-tier chart where 
the top tier is the IC value and credible intervals plot-
ted temporally indicating variation in the observed-to-
expected ratio of events. The bottom tier is a bar chart of 
the observed number of events overlaid by the line graph 
of expected events highlighting absolute differences 
between the observed and expected number of events 
over time [4].

A summary statistic of the measure of temporal asso-
ciation (ICΔ) is calculated by dividing the IC value of a 
surveillance period (a time window following drug expo-
sure) by the IC value a control period (a time window 
before drug exposure). The time at risk of both the sur-
veillance window and control window must be specified 
before calculating the ICΔ, thus different parameteri-
sation of the analytical windows will lead to different 
results. The Bayesian 95% credibility interval may also 
be calculated for ICΔ. Typically, if the lower bound of 
the credibility interval is greater than 0, ICΔ025 > 0 this 
is considered to be the threshold to identify a tempo-
ral association using TPD [2]. The measure of temporal 
association can be calculated using the OHDSI R package 
ICTemporalPatternDiscovery.

Parameterisation of TPD framework
A flaw in most observational studies is that they do not 
provide operating characteristics for the system gener-
ating evidence. Observational study results are intrin-
sically impacted by confounding and systematic bias, 
threatening study validity. A solution to mitigate and 
visualise issues of systematic bias in observational stud-
ies is to evaluate the performance of TPD using positive 
and negative controls. Emulating an evaluation of drug 
safety signal detection methods, we ran 60 positive and 
negative controls through four analytical settings (i.e. dif-
ferent analysis parametrisations) and calculated sensitiv-
ity, specificity, bias and area under the curve (AUC) as 
metrics to assess performance [12]. Positive controls are 
drug-outcome combinations that have known associa-
tion, such as statins in this context. Negative controls are 
drug-outcome combinations with no association known, 
meaning we would expect the ICΔ measure for each neg-
ative control to be around 0 in a TPD analysis.

Following this evaluation, we selected the analytical 
setting for determining a temporal association between 
statin-rhabdomyolysis that exhibited the highest AUC 
and lowest false positive rate, meaning the setting with 
the best capability of distinguishing between true positive 
and true negative temporal drug outcome combinations 

without committing too many errors. This empirical 
evaluation enabled us to determine if the TPD method 
was suitable for detecting rare temporal adverse drug 
reaction between statins and rhabdomyolysis.

Since we are unsure what the optimal design choices 
are for studying statins and rhabdomyolysis using TPD, 
we evaluated four different settings. It has been previ-
ously shown that effect estimates from observational 
studies are heterogeneous based on the type of database 
and study design [9, 10], which hence indicates a limi-
tation of the study by Hauben et  al. as it only used one 
study setting [5]. The current study used four timeframes 
to allow clarity of the rather complex methodology—
however future studies can potentially investigate more 
timeframe options. Nevertheless, these timeframes were 
chosen as to reflect clinical relevance and ensure general-
isability in other settings. The four analytical settings we 
selected were defined as follows:

•	 Setting 1: − 180 to − 1  days control period and 1 to 
30  days surveillance period (replication of the Hau-
ben study [5])

•	 Setting 2: − 180 to − 1  days control period and 1 to 
360 days surveillance period

•	 Setting 3: Simultaneous control period (− 180 to − 1 
& − 30 to − 1) and 1 to 30 days surveillance period

•	 Setting 4: Simultaneous control period (− 180 to − 1 
& − 30 to − 1) and 1 to 360 days surveillance period

The simultaneous control period allowed for calculations 
of the ICΔ of multiple candidate windows and picked 
the lowest because there may be variation in the rate of 
outcome over the unexposed patient time. This method 
resulted in an increase in specificity at the expense of a 
decrease of the sensitivity—as already outlined by Noren 
et al. [2]. Following this sensitivity analysis, we could then 
ensure that the best analytical settings were chosen for 
detecting rare temporal adverse drug reaction between 
statins and rhabdomyolysis.

Development of our LTS software
Our improvement in terms of software development for 
the calculation of TDPs as compared to the work by Hau-
ben et al. using the THIN database [5] are based on the 
following. Firstly, we adapted the open-source OHDSI 
ICTemporalPatternDiscovery package to fasten the 
chronograph code and extended it to allow for pre-allo-
cation of all by all counts to run faster queries of drug-
outcome combinations. The use of open-source software 
that is applicable to the OMOP common data model also 
allows for flexibility across different data sources.

Secondly, as the original OHDSI R package was una-
ble to handle the volume of data in CCAE (320 million 
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drug records and 690 million condition records), we 
developed an SQL optimisation of this R package 
(Fig.  1). More specifically, to optimise performance 
time, our R package extracted and stored required and 
calculated fields from the condition, drug, and obser-
vation time tables. It calculated the baseline count 
(C) using the smaller tables (Step 1). The subsequent 
calculation steps for the other counts (CX, CY, CXY) 
could then use these tables. This eliminated multiple 
joins and calculations within the queries. All counts 
were stored counts table (Step 2). The stored counts 
were used to subsequently create multiple chrono-
graphs (Step 3). Since the baseline count remained the 
same regardless of exposure-outcome combinations, 
a flag was added to skip this calculation saving more 
time.

Thirdly, we improved the efficiency in generating the 
chronographs by pre-aggregating all by all counts of 
drugs and conditions as a reference point for the data-
base. This process ensured that a chronograph from a 
specific drug-outcome combination can be produced 
faster. In essence, this creates a reference bank that 
can be shared with other clinicians and investigators 
for domain expertise on potential adverse drug events. 
Our optimisation approach of pre-calculating aggre-
gated data into reference data tables may potentially be 
useful in optimizing other analytical methods for mas-
sive healthcare databases.

Results
Figure 2 shows the chronographs for the five statins stud-
ied in relation to rhabdomyolysis using the CCAE and 
MDCR data. The results replicated the findings in the 
THIN study [5] as only simvastatin showed a signal with 
rhabdomyolysis in analytical setting 1. In analytical set-
ting 2, there was a signal for four out of five statins (not 
for pravastatin), yielding the highest AUC but with a high 
false positive rate.

Figure 3 shows the assessment of systematic bias using 
the negative controls in both the CCAE and MDCR 
data. There was less of a spread in bias in CCAE than in 
MDCR. Analyses for Setting 1 and Setting 3 were shifted 
to the left while analyses for Setting 2 and Setting 4 were 
shifted to the right.

The improvements of our LTS software package as 
compared to the existing OHDSI ICTemporalPattern-
Discovery are illustrated in Fig.  1. As can been seen in 
the table of Fig.  1, the computational time decreased 
substantially, and it became possible to calculate TPDs 
for various situations simultaneously. For example, the 
OHDSI package took 36 h to run using just one combina-
tion of drug and adverse event. We tested two versions 
of the LTS package: All versus Distinct. The first version 
counted all patients for each control period, while the 
Distinct version only counted exposure date-drug com-
binations for each control period. An initial test of 10 
combinations using the All version took 31  min to run. 
Subsequent tests used 120 combinations and we found 
that the Distinct version took four times longer to run 

Fig. 1  SQL optimisation of R package to calculate TPD with chronographs
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compared to the All version. Once the baseline counts 
were created, both packages were tested again skipping 
the baseline counts calculations and execution time was 
reduced to 27  min for the All version and 1.1  h for the 
Distinct version.

Discussion
We were successfully able to replicate the results of the 
Hauben et al. [5] study of statins and rhabdomyolysis in 
the US claims dataset mapped to the OMOP common 
data model. When configuring the TPD analysis to look 
at statins and rhabdomyolysis in a surveillance window of 
1 to 30 days and a control window of 180 to 1 day prior 
to exposure, only simvastatin had a significant temporal 
relationship with rhabdomyolysis. Further to the rep-
lication of the Hauben study [5], we found the optimal 
analytical setting for this clinical question to be using a 
surveillance period of 1 to 360 days and a control period 
of 180 days to 1 day prior to exposure. Under this setting, 
four out of the five statins were highlighted with having a 
temporal association with rhabdomyolysis. It was inter-
esting to note that the lack of a signal for paravastatin is 

in line with what has been previously observed for the 
mechanisms of statin intolerance [14, 15].

From a performance perspective, the analytical setting 
with a surveillance period of 1 to 360 days and a control 
period of 180  days to 1  day prior to exposure had the 
highest AUC (0.666) and smallest bias (0.0724), but at 
the cost of a very high false positive rate (0.5). Following 
this evaluation, it remains unclear whether TPD is good 
at detecting rare adverse events. Rhabdomyolysis is a rare 
condition  [16]. This made it a good example to assess 
the TPD method’s ability to detect rare temporal asso-
ciations. However, across the four analytical settings and 
in the two claims databases, it does not seem that TPD 
is consistent in detecting temporal association of rare 
events. This reiterates research done of temporal asso-
ciation rules that shows TPD does not show great perfor-
mance in detecting rare events [17]. Reps suggests that 
due to the shrinkage applied to TPD, it takes longer for 
rare ADRs to be signalled, explaining why a longer sur-
veillance window performed better [17]. Further, Arnaud 
et  al. also discuss the limitations of TPD compared to 
other signal detection methods in longitudinal observa-
tional databases [1]. One major limitation is that it does 

Fig. 2  Four analytical settings to detect signal between statins (simvastatin, atorvastatin, rosuvastatin, fluvastatin, pravastatin) and rhabdomyolysis 
using the CCAE database and MDCR data. Model performance statistics for the different analytical settings are shown for the signal between 
simvastatin and rhabdomyolysis
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not provide risk estimates; only flagging if a temporal 
association exists. Second, the TPD method does a poor 
job of controlling for time-varying confounding despite 
leveraging an external cohort in its design. Typically, the 
external cohort is left open-ended to include all avail-
able drugs to improve computational efficiency for the 
purpose of conducting an initial database scan. However, 
one should include drugs of similar indication as a con-
trast to control for time-varying confounding; this comes 
at the cost of poor computational efficiency [2]. Perhaps 
our ability to detect more signal, at a higher false posi-
tive rate, in a longer surveillance window could have been 
impacted by this limitation in the method.

A limitation of our analysis was the selection of posi-
tive controls. Only the five statins were used as positive 
controls, since it was difficult to identify drugs that had 
a known (or suspected) positive association with rhab-
domyolysis. A potential solution to this issue would be 
to use the OHDSI R Package MethodEvaluation which 
contains a function to create synthetic positive controls 

to help calculate operating characteristics. However, 
this function requires risk estimates to synthetically cre-
ate positive controls and one would need to tailor this to 
work with IC values generated from the TPD method. A 
future enhancement to our method would be to include 
synthetic positive controls for TPD. While our perfor-
mance evaluation may have been limited, it is vital that 
one evaluates the operating characteristics of these signal 
detection methods on longitudinal observational data-
bases. Following the suggestions outlined by the book 
of OHDSI are important for conducting signal detection 
[13].

Through this project we also added a technical 
enhancement to query marginal counts for drugs and 
outcomes needed to build chronographs for the TPD 
method. An advantage for using TPD is the graphi-
cal component of the chronograph, allowing domain 
experts to validate potential temporal signals. The open 
source ICTemporalPatternDiscovery R package from the 
OHDSI community can create a chronograph, but que-
ries take a very long time. Our enhancement was to pre-
allocate marginal drug and outcome counts, reserving 
them in our database management system to accelerate 
chronograph queries. While this enhancement is helpful 
for TPD, the concept of pre-allocation may prove useful 
for other database methods in pharmacoepidemiology 
allowing for rapid queries to scan for potential ADRs.

Conclusions
The TPD method is a useful signal detection tool that 
provides a single statistic on temporal association and a 
graphical depiction of the temporal pattern of the drug 
outcome combination. It remains unclear if the method 
works well for rare adverse events, but it has been shown 
to be a useful risk identification tool for longitudinal 
observational databases. Future work should compare 
the performance of TPD with other pharmacoepidemiol-
ogy methods and mining techniques of signal detection. 
In addition, it would be worth investigating the rela-
tive TPD performance characteristics using a variety of 
observational data sources.

Abbreviations
AUC​: Area under the curve; CCAE: Commercial Claims and Encounters; IC: 
Information Component; MDCR: Medicare Supplemental; ODHSI: Observa-
tional Health Data Sciences and Informatics; OMOP: Observational Medical 
Outcomes Partnership; SQL: Structured Query Language; THIN: The Health 
Improvement Network; TPD: Temporal pattern discovery.

Acknowledgements
Not applicable.

Authors’ contributions
ML implemented the TPD project in OMOP data, created R package and 
presented results from which this paper is based on at the OHDSI Symposium 
2018. TY developed the technical enhancement of rapid queries in SQL. 

Fig. 3  Bias plot using the distribution of the ICΔ for negative controls 
in the four analytical settings to detect signal between statins 
(simvastatin, atorvastatin, rosuvastatin, fluvastatin, pravastatin) and 
rhabdomyolysis



Page 7 of 7Lavallee et al. BMC Medical Informatics and Decision Making           (2022) 22:31 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

MVH and CB drafted the manuscript. ML, TY, LE, MVH, CB, AG, and AA read 
and approved the final manuscript. All authors read and approved the final 
manuscript.

Funding
Bayer AG funded this project.

Availability of data and materials
R package is made publicly available on the OHDSI github.

Declarations

Ethics approval and consent to participate
Data used is publicly available and conforms with patient consent.

Consent for publication
Not applicable.

Competing interests
Martin Lavallee worked on this project as a contractor for Bayer from January 
to July 2018. Martin is now a PhD student in Biostatistics at Virginia Com-
monwealth University and an intern for LTS Computing LLC. Lee Evans and 
Theresa Yu are employees of LTS Computing LLC. LTS manages the real-world 
evidence platform (OHDSI/OMOP common data model) for Bayer.

Author details
1 Former Bayer Healthcare Pharmaceutical Inc, Whippany, NJ, USA. 2 Virginia 
Commonwealth University, Richmond, VA, USA. 3 LTS Computing LLC, West 
Chester, PA, USA. 4 Translational Oncology & Urology Research (TOUR), King’s 
College London, London, UK. 5 Bayer AG, Berlin, Germany. 

Received: 15 December 2019   Accepted: 20 January 2022

References
	1.	 Arnaud M, Begaud B, Thurin N, Moore N, Pariente A, Salvo F. Methods for 

safety signal detection in healthcare databases: a literature review. Expert 
Opin Drug Saf. 2017;16(6):721–32.

	2.	 Noren GN, Bergvall T, Ryan PB, Juhlin K, Schuemie MJ, Madigan D. Empiri-
cal performance of the calibrated self-controlled cohort analysis within 
temporal pattern discovery: lessons for developing a risk identification 
and analysis system. Drug Saf. 2013;36(Suppl 1):S107–21.

	3.	 Star K, Watson S, Sandberg L, Johansson J, Edwards IR. Longitudinal 
medical records as a complement to routine drug safety signal analysis. 
Pharmacoepidemiol Drug Saf. 2015;24(5):486–94.

	4.	 Noren G, Hopstadius J, Bate A, Star K, Edwards I. Temporal pattern 
discovery in longitudinal electronic patient records. Data Min Knowl Disc. 
2010;20:361–87.

	5.	 Hauben N, Liu K, Hung E, Blackwell W, Fram D, Bate A. Signal detection 
using temporal pattern discovery in electronich health records—les-
sons from statins and rhabdomyolysis. In: 32nd ICPE; 25–28 Aug; Dublin, 
Ireland; 2016.

	6.	 Commonwealth Informatics. Detect & refine safety signals faster with 
CVW Longitudinal 2019; Available from https://​www.​commo​ninf.​com/​
produ​cts/​commo​nweal​th-​vigil​ance-​workb​ench-​cvw/​cvw-​longi​tudin​al/.

	7.	 Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, Suchard 
MA, Park RW, Wong IC, Rijnbeek PR, van der Lei J, Pratt N, Noren GN, Li YC, 
Stang PE, Madigan D, Ryan PB. Observational Health Data Sciences and 
Informatics (OHDSI): opportunities for observational researchers. Stud 
Health Technol Inform. 2015;216:574–8.

	8.	 Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Validation of a 
common data model for active safety surveillance research. J Am Med 
Inform Assoc. 2012;19(1):54–60.

	9.	 Madigan D, Ryan PB, Schuemie M, Stang PE, Overhage JM, Hartzema 
AG, Suchard MA, DuMouchel W, Berlin JA. Evaluating the impact of 
database heterogeneity on observational study results. Am J Epidemiol. 
2013;178(4):645–51.

	10.	 Madigan D, Ryan PB, Schuemie M. Does design matter? Systematic 
evaluation of the impact of analytical choices on effect estimates in 
observational studies. Ther Adv Drug Saf. 2013;4(2):53–62.

	11.	 IBM. BM MarketScan® Explorys® Claims-EMR Data Set 2019; Available 
from https://​marke​tscan.​truve​nheal​th.​com/​marke​tscan​portal/.

	12.	 Ryan PB, Stang PE, Overhage JM, Suchard MA, Hartzema AG, DuMouchel 
W, Reich CG, Schuemie MJ, Madigan D. A comparison of the empiri-
cal performance of methods for a risk identification system. Drug Saf. 
2013;36(Suppl 1):S143–58.

	13.	 The ODHSI Community. The book of OHDSI 2019 [cited 2019 15 Dec]. 
Available from https://​ohdsi.​github.​io/​TheBo​okOfO​hdsi/.

	14.	 Azemawah V, Movahed MR, Centuori P, Penaflor R, Riel PL, Situ S, Shad-
mehr M, Hashemzadeh M. State of the art comprehensive review of 
individual statins their differences pharmacology and clinical implica-
tions. Cardiovasc Drugs Ther. 2019;33(5):625-639. https://​doi.​org/​10.​1007/​
s10557-​019-​06904-x.

	15.	 Bitzur R, Cohen H, Kamari Y, Harats D. Intolerance to statins: mechanisms 
and management. Diabetes Care. 2013;36(Supplement_2):S325-S330. 
https://​doi.​org/​10.​2337/​dcS13-​2038.

	16.	 Zimmerman LJ, Shen MC. Rhabdomyolysis. Chest. 2013;144(3):1058–
1065. https://​doi.​org/​10.​1378/​chest.​12-​2016.

	17.	 Reps JM, Garibaldi JM, Aickelin U, Soria D, Gibson JE, Hubbard RB. A novel 
semisupervised algorithm for rare prescription side effect discovery. IEEE 
J Biomed Health Inform. 2014;18(2):537–47.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.commoninf.com/products/commonwealth-vigilance-workbench-cvw/cvw-longitudinal/
https://www.commoninf.com/products/commonwealth-vigilance-workbench-cvw/cvw-longitudinal/
https://marketscan.truvenhealth.com/marketscanportal/
https://ohdsi.github.io/TheBookOfOhdsi/
https://doi.org/10.1007/s10557-019-06904-x
https://doi.org/10.1007/s10557-019-06904-x
https://doi.org/10.2337/dcS13-2038
https://doi.org/10.1378/chest.12-2016

	Evaluating the performance of temporal pattern discovery: new application using statins and rhabdomyolysis in OMOP databases
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Data source
	Statistical methods
	Noren framework
	Parameterisation of TPD framework
	Development of our LTS software


	Results
	Discussion
	Conclusions
	Acknowledgements
	References


