Table 3.
Hyper-Parameters | |||||||
---|---|---|---|---|---|---|---|
Method | Input Size | Epochs | Batch Size | Post-Processing | Confidence Threshold | ||
EfficientDet-d0 | 300 | 48 | 200, 250 | Soft-NMS | |||
EfficientDet-d5 | 300 | 12 | 200, 250 | Soft-NMS | |||
Faster R-CNN | 300 | 8 | 243 | NMS | |||
Mask R-CNN | 300 | 8 | 243 | NMS | |||
RetinaNet | 300 | 8 | 243 | NMS | |||
YOLO-v5x | 100 | 12 | – | NMS | |||
YOLO-v5s | 100 | 12 | – | NMS |
1https://github.com/google/automl/tree/master/efficientdet (accessed on 2 July 2021). 2 https://github.com/facebookresearch/detectron2 (accessed on 2 July 2021). 3 https://github.com/ultralytics/yolov5 (accessed on 2 July 2021). Lr—learning rate. Lrdecay—epochs in which the learning rate is decayed.