Skip to main content
. 2022 Jan 11;22(2):548. doi: 10.3390/s22020548

Table 3.

Training protocol values.

Hyper-Parameters
Method Input Size Lr Epochs Batch Size Lrdecay Post-Processing Confidence Threshold
EfficientDet-d0 1 512×512 0.08 300 48 200, 250 Soft-NMS 0.4
EfficientDet-d5 1 1280×1280 0.08 300 12 200, 250 Soft-NMS 0.4
Faster R-CNN 2 800×800 0.0001 300 8 243 NMS 0.5
Mask R-CNN 2 800×800 0.0001 300 8 243 NMS 0.5
RetinaNet 2 800×800 0.0001 300 8 243 NMS 0.5
YOLO-v5x 3 640×640 0.0032 100 12 NMS 0.001
YOLO-v5s 3 640×640 0.0032 100 12 NMS 0.001

1https://github.com/google/automl/tree/master/efficientdet (accessed on 2 July 2021). 2 https://github.com/facebookresearch/detectron2 (accessed on 2 July 2021). 3 https://github.com/ultralytics/yolov5 (accessed on 2 July 2021). Lr—learning rate. Lrdecay—epochs in which the learning rate is decayed.