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abstract

PURPOSE Small-cell lung cancer (SCLC) is the deadliest form of lung cancer, partly because of its short doubling
time. Delays in imaging identification and diagnosis of nodules create a risk for stage migration. The purpose of
our study was to determine if a machine learning radiomics model can detect SCLC on computed tomography
(CT) among all nodules at least 1 cm in size.

MATERIALS AND METHODS Computed tomography scans from a single institution were selected and resampled
to 1 × 1 × 1 mm. Studies were divided into SCLC and other scans comprising benign, adenocarcinoma, and
squamous cell carcinoma that were segregated into group A (noncontrast scans) and group B (contrast-
enhanced scans). Four machine learning classification models, support vector classifier, random forest (RF),
XGBoost, and logistic regression, were used to generate radiomic models using 59 quantitative first-order and
texture Imaging Biomarker Standardization Initiative compliant PyRadiomics features, which were found to be
robust between two segmenters with minimum Redundancy Maximum Relevance feature selection within each
leave-one-out-cross-validation to avoid overfitting. The performance was evaluated using a receiver operating
characteristic curve. A final model was created using the RF classifier and aggregate minimum Redundancy
Maximum Relevance to determine feature importance.

RESULTS A total of 103 studies were included in the analysis. The area under the receiver operating char-
acteristic curve for RF, support vector classifier, XGBoost, and logistic regression was 0.81, 0.77, 0.84, and 0.84
in group A, and 0.88, 0.87, 0.85, and 0.81 in group B, respectively. Nine radiomic features in group A and 14
radiomic features in group Bwere predictive of SCLC. Six radiomic features overlapped between groups A and B.

CONCLUSION A machine learning radiomics model may help differentiate SCLC from other lung lesions.

JCO Clin Cancer Inform 5:746-757. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Lung cancer is the second most commonly diagnosed
cancer among men and women and the most com-
mon cause of cancer-related deaths in the United
States, with over 140,000 estimated deaths to occur in
2020 alone.1 The subtype with the worst prognosis is
small-cell lung cancer (SCLC), which represents 13%
of all lung cancers.2 The 5-year overall survival for
SCLC is 6.5% compared with 20.5% for non–small-
cell lung cancer (NSCLC).3 SCLC is typically divided
into limited stage (LS) versus extensive stage (ES)
disease, with ES representing disease that cannot be
encompassed into a tolerable radiation field. Two
thirds of patients present with ES-SCLC.4 Notably,
survival in SCLC varies markedly for LS versus ES, with
5-year survival at 27.2% for LS-SCLC and 2.9% for ES-
SCLC.3 SCLC has an aggressive doubling time as short
as 25-54 days.5 Therefore, early detection of SCLC is
critical to expedite diagnosis and treatment. A delay of
1-2 months between initial imaging and diagnosis

could be within the doubling time of the tumor and is
not uncommon.6 In a National Cancer Database study,
28% of patients with SCLC underwent treatment ini-
tiation more than 28 days after diagnosis.7 Presum-
ably, the time to treatment from initial imaging was
significantly longer. These longer delays could result in
stage migration whereby a patient with initially local-
ized disease can develop metastatic disease, ad-
versely affecting overall prognosis and survival.

Currently, apart from surgical or needle biopsy, no
clear method exists to distinguish SCLC from other
subtypes of lung cancers or from benign nodules when
identified incidentally or on screening computed to-
mography (CT) examinations. A possible method to
allow early distinction is through the use of radiomics,
which uses combinations of quantitative imaging
features for diagnostic or predictive purposes.8,9

Radiomic feature analysis has been used to distin-
guish benign from malignant nodules, to determine
tumor phenotypes and patient prognosis, and to
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determine response to treatment.10-15 Most existing studies
have aimed to categorize nodules as benign or malignant or
to classify the subtype of malignancy. For radiomics to
potentially allow appropriate triage of patients with SCLC, it
will need to correctly identify SCLC among all types of
nodules, benign andmalignant. The purpose of this study is
to determine if a radiomics model can adequately distin-
guish SCLC among histology of other nodules for lesions
that are 1 cm or larger within the lung, specifically those
that are benign, adenocarcinoma, and squamous cell
carcinoma (SCC), for both contrast and noncontrast (NC)
CT scans. Our subject population comes from the Veterans
Health Administration (VA), the largest integrated health
care system in the United States with 170 medical centers
and over 1,000 outpatient care sites. As the incidence of
smoking, a known risk factor for lung cancer, is high within
VA patients,16-18 it provides an opportunity to study radio-
mics in a population at great risk of lung cancer.

MATERIALS AND METHODS

Patient Selection

This retrospective study was approved by the Institutional
Review Board overseeing research at both the VA Palo Alto
Health Care System and Stanford University. All images
were obtained from a single VA medical center. We ob-
tained chest CT studies exhibiting two types: cancerous
and benign nodules. Figure 1 displays a flow diagram
comparing the study groups. Studies from December 2015
to 2018 were included in the analysis and were obtained
from the local tumor registry and from a review of radiology
reports for benign nodules. For the cancer studies, the
inclusion criteria were presence of SCLC, adenocarcinoma,
or SCC. Exclusion criteria included (1) no CT chest scan
available prior to diagnosis; (2) tumor indistinct from at-
electasis, mediastinum, or consolidation; (3) tumor, 1 cm
in greatest diameter; (4) tumor predominantly ground glass
or cystic; or (5) no standard kernel CT series available. For
benign studies, inclusion criteria were presence of a solid
nodule 1 cm or larger in greatest diameter and confirmation

of benign lesion. We considered a lesion benign if the
patient had (1) a biopsy with adequate tissue confirming
the lesion was noncancerous, (2) follow-up imaging
demonstrating resolution of the lesion within 2 years of the
initial study, (3) serial follow-up chest CT imaging for at least
2 years confirming no change in the lesion, or (4) prior
imaging from a minimum of 2 years earlier showing no
change. For benign lesions, we considered exclusion cri-
teria as (1) low-dose technique that we defined as a dose
length product , 200 mGy-cm, (2) series reconstruction
without a standard soft-tissue kernel with contiguous axial
images 2.5 mm or less in thickness, (3) ground glass
nodules, and (4) known active metastatic cancer. In both
cases, lesions were limited to 1 cm or larger in greatest
diameter for both technical and clinical concerns. Clini-
cally, the risk of cancer for a nodule 1-1.5 cm (12.2% at
baseline and 13.8% at 2 years) is over twice that for
nodules 8-10 mm in size (5.8% at baseline and 6.4% at 2
years) with the risk increasing substantially with size.19 In
addition, only 13% of SCLC is found at , 1 cm in size in a
screening population because of its aggressive nature, and
we could not identify any in our lung cancer registry.20 From
a technical standpoint, a prior study has shown a minimum
volume, typically . 1,000 mm3, which is recommended to
calculate some radiomic features.21

After final study selection, the available series for each
study were reviewed, and series with contiguous axial
1.25 mm thickness slices with a standard soft-tissue kernel
were chosen for all studies. The 1.25 mm thickness slices
were used as this was consistently present in all studies. We
selected only scans performed before any initial diagnosis
or treatment intervention and collected age, sex, smoking,
and lesion centrality data for all patients. A lesion was
considered central if it directly communicated with the
hilum or mediastinum. Finally, the data were divided into
two groups: group A was composed of all NC scans within
the data set and group B was composed of all contrast-
enhanced (CE) scans within the data set. Within each
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group, studies were either classified as SCLC or other—with
other composed of adenocarcinoma, SCC, or benign
nodules.

Computational Analysis

A board-certified radiologist with 10 years of experience
segmented all scans using the software program ITK-
SNAP22 using either autosegmentation or adaptive brush
tools with manual adjustments in axial, coronal, and sagittal
planes using both lung and abdomen viewing windows as
needed. Eighteen scans, eight contrast and 10 NC, were
randomly selected by an individual not performing seg-
mentations and without viewing the scans. A second board-
certified radiologist with 5 years of experience segmented
these 18 scans using the same technique to measure
interobserver agreement. We used the following rules for
segmentation: (1) all solid areas of the tumor were included
in the segmentation, (2) areas of tumor that were cystic
were excluded from the segmentation, (3) on CE scans,
lobar blood vessels were excluded from the segmentation,
and (4) dense ground glass or nodularity contiguous with
the lesion as visualized on lung windows were included in
the segmentation. For image processing, resampling was
performed to correct for voxel differences to a size of
1 × 1 × 1 mm. We used PyRadiomics version 3.023 with

default settings for feature extraction. Among the 120
features available, we selected only 105 features meeting
the standards of the Image Biomarkers Standardization
Initiative (IBSI).24 Intraclass correlation coefficients (ICCs)
were generated for the features using the segmentations for
the 18 scans performed by two different radiologists. For
feature reduction, only features with an excellent25

ICC ≥ 0.75 were chosen for inclusion. Z-score normali-
zation was performed across the features in the training set
to generate a heatmap. Features from the following PyR-
adiomics classes were included: (1) first-order features, (2)
shape features, (3) gray-level co-occurrence matrix, (4)
gray-level run matrix, (5) neighboring gray-tone difference
matrix, and (6) gray-level dependence matrix. The clinical
characteristics in Table 1 were also included. Each clas-
sifier was trained using a leave-one-out-cross-validation
(LOOCV). For each LOOCV, we applied (1) synthetic mi-
nority oversampling technique to overcome the class
imbalance,26-28 (2) Z-score normalization for scaling, and
(3) minimum Redundancy Maximum Relevance for top-
performing feature selection (n = 5).29 The following four
machine learning classifiers were used with the hyper-
parameters listed in Appendix Table A1: random forest
(RF), support vector classifier (SVC), XGBoost (XGB), and
logistic regression (LR). We applied the same method for
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FIG 1. Patient selection flowchart for
both cancer and benign nodules. CT
chest scan reports were reviewed for
presence of a nodule and then imaging
selected on the basis of the listed ex-
clusion criteria. CT, computed tomog-
raphy; SCC, squamous cell cancer;
SCLC, small-cell lung cancer.
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group A and group B. In addition, we created a clinical
model using each classifier with sex, age, smoking, and
lesion location features. Given prior work showing RF to
have a high prognostic performance with high stability,30 we
created a final RF model using the intersection of all the top
five features in the LOOCV. Feature importance was then
determined from this final RF model.

Statistical Analysis

One-versus-rest modeling with a LOOCV was performed for
SCLC versus other using each machine learning classifier
for each group. Interobserver agreement was assessed for
all 105 IBSI compliant features using ICC with a two-way
random average measure. For each classifier, we calcu-
lated the mean area under the receiver operating char-
acteristic curve (AUROC) and plotted the receiver operating
characteristic (ROC) curve of the RF classifier with its 95%
CI, calculated using 2,000 stratified bootstrap samples for
each group. We used a two-sided DeLong’s test31 to
compare the AUROC of the RF, SVC, XGB, and LR clas-
sification models and to compare clinical, radiomic, and
clinical with radiomic models. We compared the clinical
and scanning characteristics between the SCLC and other
(benign and NSCLC) groups using an unpaired t-test for
continuous variables and Fisher’s exact test for categorical

variables (Table 1). A P value , .05 was considered sta-
tistically significant for all comparisons. The final RF model
was used to generate Shapley Additive Explanation (SHAP)
plots demonstrating feature importance.32 SHAP plots allow
representation of the average contribution of a feature,
either negative or positive, to the prediction when taking all
possible combinations of features into account. Machine
learning models were executed using Python 3.9 (Python
Software Foundation, Beaverton, OR), and all statistical
analyses were performed using R 4.0.2 (The R Foundation
for Statistical Computing, Vienna, Austria).

RESULTS

For the studies with cancerous nodules, a total of 28 pa-
tients with SCLC, 18 patients with adenocarcinoma, and 12
patients with SCC met the inclusion and exclusion criteria
while a total of 48 patients met the inclusion and exclusion
criteria for benign nodules (Fig 1). A total of 103 unique
studies were included in the analysis with demographics
and scanning data detailed in Table 1. Group A contained
eight SCLC and 54 other NC scans, whereas group B
contained 18 SCLC and 23 other CE scans. Using an ROC
power test, group A had a power of 0.8 to detect an AUROC
of 0.79 and group B had a power of 0.8 to detect an AUROC
of 0.74.

TABLE 1. Patient Demographics and Scanning Data of Included Studies
Clinical and Scanning Features Benign Adenocarcinoma Squamous Cell Benign plus NSCLC Small Cell P

Total 48 17 12 77 26

Sex 1

Female 1 1 0 2 0

Male 47 16 12 75 26

Mean age (6 SD), years 71.1 (9.9) 72.6 (10.5) 75.6 (6.9) 72.1 (9.7) 75.6 (7.9) .062

Smoking history .062

Yes 38 17 12 67 26

No 10 0 0 10 0

Central lesion , .05

Yes 2 6 4 12 18

No 46 11 8 65 8

GE scanner model .01

Discovery CT750 HD 48 17 12 77 23

LightSpeed VCT 0 0 0 0 2

Optima CT660 0 0 0 0 1

CE .0004

Yes 12 8 3 23 18

No 36 9 9 54 8

kVp .559

100 1 0 0 1 0

120 47 17 12 76 26

Abbreviations: CE, contrast-enhanced; kVp, kilovolt peak; NSCLC, non–small-cell lung cancer; SD, standard deviation.
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A total of 59 IBSI-compliant radiomic features had an
ICC ≥ 0.75 (Appendix Table A2) and were included in the
classifier training. Figure 2 illustrates the heatmap gener-
ated after Z-score normalization before training. We trained
the machine learning classifiers with and without inclusion
of the clinical features; however, including them did not
demonstrate a significant performance improvement
(P . .1 for all classifiers in both groups; Appendix Table
A3), and the results are reported without incorporation of
these. The average AUROC for each classifier in group A
and group B is listed in Table 2 for both the radiomics and
clinical models. No classifier performed statistically better
in either group (P . .2), except for LR, which performed
better than SVC in group A (P = .04). In addition, the clinical
model, despite having a lower AUROC across the board for
all classifiers, did not have statistically lower performance
except for LR and XGB classifiers in group A. Figure 3
shows the ROC curves for the RF classifier.

There were nine features that formed the union across all
LOOCVs for group A and 14 features for group B. These
features were used to generate a RFmodel, and the SHAP
values for each feature are shown in Figure 4. The fol-
lowing six features overlapped between group A and B:
firstorder_Range, firstorder_Skewness, glszm_Large-
AreaLowGrayLevelEmphasis, glszm_SmallAreaEmphasis,
glcm_Imc1, and glrlm_GrayLevelNonUniformityNormalized.

DISCUSSION

Our results demonstrate the possibility of using radiomics
for distinguishing SCLC from other lung lesion histology.
Lung cancer screening to date has demonstrated little
impact in improving survival for patients with SCLC. The
National Lung Screening Trial (NLST) found a significant
benefit for low-dose screening CT in patients diagnosed
with NSCLC, but no benefit was seen in patients diagnosed
with SCLC, as the yearly time frame between screening
examinations could allow for the growth and progression of
tumor.4,33 In the NLST trial, the 3-year survival was only 8%
in those patients with ES-SCLC compared with 83% in
those patients with LS-SCLC. Therefore, methods to detect
SCLC earlier are needed, which is where radiomics may
provide a solution.

Our study separated both contrast and NC studies into
different cohorts. A prior study demonstrated a distinct
difference in feature selection and feature importance be-
tween CE and NC scans.34 Interestingly, the heatmap il-
lustrated in Figure 2 shows a radiomic signature that appears
similar in both CE and NC cases for SCLC, yet different from
the other group suggesting that a single model may be able
to predict SCLC, regardless of contrast administration. CE,
however, is a confounding factor in our study as 18 of 26
SCLC were CE. Separate radiomic NC (group A) and CE
(group B) models were therefore developed.
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FIG 2. Heatmap demonstrating radiomic feature Z-score values for benign, SCLC, adenocarcinoma, and SCC across 59 features with a high intraclass
correlation between two segmenters. Each column represents a unique patient. Contrast usage shows a different Z-score distribution for malignant tumors
compared with benign lesions and NC scans. Therefore, separate models were generated for the use of contrast versus NC studies. AD, Adenocarcinoma;
F, female; M, male; N, no; NC, noncontrast; SCC, squamous cell cancer; SCLC, small-cell lung cancer; Y, yes.

Shah et al

750 © 2021 by American Society of Clinical Oncology



When comparing the clinical model with the radiomics
model, it is not clear whether radiomics performs better
than clinical features alone. The results for the clinical
model for group A were underpowered, whereas the results
for the clinical and radiomic models for group B were
similar to one another. Lesion centrality is likely a driving
factor on the clinical model, as SCLC is known to be more
central in location,35 and was the only statistically signifi-
cant clinical factor between the SCLC and other cohorts.
Regarding the combined model, a prior study showed no
improvement in performance when clinical and radiomic
features were combined, and our study had similar
findings.36 A larger sample size will likely help to determine
the impact of clinical features on radiomics and is an area
that our group is actively working on.

Six features were seen to overlap between the group A and
group B RF models in predicting SCLC, and these may be
feasible to use in creating a combined model. Given that the
features were predominantly texture features, this may re-
flect the tumor heterogeneity of SCLC, as previously
described.34,37 Determining direct correlation between

radiomic features and histologic features such as prolifer-
ation, necrosis, and vascularity is difficult with our small and
heterogeneous data set but may be feasible if these features
are found to be consistent in larger independent data sets.

Although this is the first published study demonstrating the
efficacy of radiomics in distinguishing SCLC from other lung
histology including benign lesions, other studies have found
radiomics or deep learning to be effective in distinguish SCLC
from other lung cancer histologies.12,34,38,39 Similar to our
experience, studies that have looked at SCLC versus NSCLC
have generally performed well using a variety of classifiers,
including deep learning, least absolute shrinkage and se-
lection operator, support vector machine, and RF, but have
struggled to separate SCLC from SCC.12,34,38,39 Our findings
add to the body of evidence that theremay a unique radiomic
signature for SCLC that can be used for earlier identification.

Clinically, if validated, this study could result in earlier de-
tection of SCLC which may allow for earlier treatment as-
suming that barriers, including time and expertise for tumor
segmentation, can be overcome. Reproduction of this study is
critical to independent confirmation of the results. Therefore,

TABLE 2. AUROC (95% CI) for Different Machine Learning Classifiers
Classifier Group A: Radiomic Group A: Clinical P Group B: Radiomic Group B: Clinical P

RF 0.81 (0.59 to 0.99) 0.67 (0.46 to 0.86) .14 0.88 (0.76 to 0.98) 0.82 (0.67 to 0.93) .5

SVC 0.77 (0.5 to 0.98) 0.54 (0.29 to 0.78) .2 0.87 (0.74 to 0.97) 0.73 (0.53 to 0.91) .2

XGB 0.84 (0.66 to 0.99) 0.53 (0.24 to 0.82) .02 0.85 (0.70 to 0.97) 0.82 (0.66 to 0.94) .8

LR 0.84 (0.57 to 1.0) 0.47 (0.22 to 0.71) .03 0.81 (0.64 to 0.95) 0.85 (0.71 to 0.96) .7

Abbreviations: AUROC, area under the receiver operating characteristic curve; LR, logistic regression; RF, random forest; SVC, support vector classifier;
XGB, XGBoost.
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the TRIPOD multivariable prediction model reporting
guidelines were used.40 On the basis of these guidelines, the
current study is a TRIPOD 1b analysis type. Future studies
should incorporate an independent test set to strengthen the
model. Finally, the radiomic quality score (RQS)41 for the

study is a 5 (positive points for criteria 1, 2, 5, 6, 9, and 14;
negative points for criteria 12). A recent literature review of 75
radiomics studies in NSCLC found the median RQS was 6
(interquartile range 2-12.25).42 This study therefore has an
RQS score in line with many existing studies.
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There are several limitations to the existing study. The size
of the existing study cohort is a major limitation, particularly
because it prevented holding out some of the data for an
independent validation. In addition, the imaging studies
were from a single center, so no external validation was
performed. Given the known challenges in reproducing
radiomic results between institutions,43 the existing results
require further investigation with a multi-institutional cohort
using correction algorithms to help mitigate differences
between scanners and techniques.44 This is particularly
important since the data set used for this study did not have
wide variations in scanning techniques aside from the use
of contrast. Although this helps to minimize variables

impacting a radiomics model creation, it may not be ap-
plicable to scans from other institutions. A final limitation is
the gender imbalance of our existing data set. Given that the
data were obtained from a VA hospital, the proportion of
male patients is markedly larger than the proportion of
female patients. As a result, it is uncertain whether the
results will be applicable across genders.

In conclusion, radiomics may be an effective method to
distinguish SCLC from other malignant and nonmalignant
histology on both NC and CE CT. Further evaluation with a
larger and multi-institutional data set is required to confirm
the findings.
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APPENDIX

TABLE A1. Hyperparameter Selections for Each Machine Learning
Classifier
Classifier Hyperparameter Value

SVC C 1

kernel rbf

RF n_estimators 10

XGB booster gbtrees

learning_rate 0.3

max_depth 6

LR C 1

penalty l2

solver lbfgs

Abbreviations: LR, logistic regression; RF, random forest; SVC,
support vector classifier; XGB, XGBoost.
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TABLE A2. Radiomic Features With an ICC ≥ 0.75
Feature ICC 95% CI Lower Bound 95% CI Upper Bound

gldm_GrayLevelNonUniformity 0.999188742 0.998189735 0.999640426

glrlm_GrayLevelNonUniformity 0.998901332 0.997548832 0.999512997

firstorder_Energy 0.997293215 0.993967043 0.998799636

firstorder_TotalEnergy 0.99727419 0.993924709 0.998791193

shape_VoxelVolume 0.996601313 0.992428136 0.998492511

shape_MeshVolume 0.996598377 0.992421607 0.998491208

gldm_DependenceNonUniformity 0.995026989 0.988931446 0.997793251

shape_LeastAxisLength 0.994650069 0.988067409 0.997627892

glrlm_RunLengthNonUniformity 0.992732598 0.983847532 0.996773062

shape_Maximum2DDiameterColumn 0.991856351 0.98187693 0.996385629

shape_Maximum3DDiameter 0.988741408 0.9607486 0.995698627

glszm_GrayLevelNonUniformity 0.987466836 0.972233582 0.994426724

shape_Maximum2DDiameterRow 0.98686546 0.968561226 0.994328378

firstorder_90Percentile 0.984809538 0.86643516 0.995296782

shape_Maximum2DDiameterSlice 0.984416614 0.964259625 0.993161479

shape_MajorAxisLength 0.984381713 0.945137698 0.994047568

glszm_LargeAreaHighGrayLevelEmphasis 0.984225302 0.965121302 0.992978913

glszm_ZoneVariance 0.983973617 0.964499133 0.992871906

glszm_LargeAreaEmphasis 0.983936615 0.964418471 0.992855336

shape_MinorAxisLength 0.978243512 0.952070185 0.990300283

shape_SurfaceArea 0.977783174 0.951069749 0.990093773

glrlm_RunVariance 0.973735635 0.93238815 0.988950275

gldm_DependenceVariance 0.968065751 0.856747199 0.988630447

glrlm_LongRunEmphasis 0.960296924 0.900484194 0.983132391

shape_SurfaceVolumeRatio 0.959631869 0.637591807 0.987766254

gldm_LargeDependenceEmphasis 0.956473304 0.882500884 0.981988319

glszm_SizeZoneNonUniformity 0.954711069 0.901634893 0.97967486

ngtdm_Busyness 0.951793208 0.893325519 0.978521396

shape_Flatness 0.945318466 0.881899236 0.975394441

glrlm_RunPercentage 0.931808876 0.794752485 0.972820744

shape_Sphericity 0.928589451 0.847131163 0.967725723

glrlm_ShortRunEmphasis 0.916234097 0.77184861 0.965459957

glszm_SizeZoneNonUniformityNormalized 0.914024147 0.772784852 0.964162242

gldm_LargeDependenceHighGrayLevelEmphasis 0.913149763 0.815992153 0.960556215

glcm_MaximumProbability 0.911769291 0.712251687 0.965797929

glcm_Imc1 0.911426413 0.812539825 0.959752632

glszm_SmallAreaEmphasis 0.911182117 0.756510721 0.963465694

glrlm_RunLengthNonUniformityNormalized 0.906733497 0.718597442 0.962906643

glszm_LargeAreaLowGrayLevelEmphasis 0.904975992 0.798328312 0.95685351

ngtdm_Coarseness 0.901086031 0.763748166 0.957164926

firstorder_Kurtosis 0.892812127 0.775108075 0.951071872

glcm_JointEnergy 0.887567802 0.712427132 0.95257282

glcm_Idn 0.881480003 0.494935113 0.958089597

firstorder_Maximum 0.873315746 0.732526423 0.94226883

(Continued on following page)
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TABLE A2. Radiomic Features With an ICC ≥ 0.75 (Continued)
Feature ICC 95% CI Lower Bound 95% CI Upper Bound

glcm_Idmn 0.868286316 0.532345805 0.950674106

glszm_ZonePercentage 0.860478781 0.496005678 0.948149893

gldm_SmallDependenceEmphasis 0.856666675 0.497941244 0.946197705

glrlm_LongRunHighGrayLevelEmphasis 0.85445992 0.701792256 0.932785582

glcm_Idm 0.833055777 0.452270108 0.936129385

firstorder_Uniformity 0.82233652 0.554715165 0.924548289

shape_Elongation 0.821788585 0.641984304 0.916843846

firstorder_Skewness 0.819010799 0.583842287 0.920325396

glcm_Id 0.814893846 0.397330529 0.929253066

ngtdm_Strength 0.807968207 0.61526936 0.910201657

gldm_DependenceNonUniformityNormalized 0.805001214 0.305793779 0.928358904

glcm_InverseVariance 0.78754023 0.319286769 0.918852083

glrlm_GrayLevelNonUniformityNormalized 0.769461679 0.487740609 0.896963895

firstorder_Range 0.760137096 0.533343185 0.886116171

glcm_DifferenceEntropy 0.756938648 0.315450897 0.902442008

Abbreviation: ICC, intraclass correlation coefficient.

TABLE A3. AUROC of the Model Using Clinical and Radiomic Features Versus Radiomic Only Features

Classifier

Clinical and Radiomic Features Radiomic Features Only
P Value Group

A P Value Group B

Group A: AUROC (95% CI) Group B: AUROC (95% CI) Group A: AUROC (95% CI) Group B: AUROC (95% CI)

RF 0.82 (0.597 to 0.994) 0.93 (0.851 to 0.988) 0.81 (0.594 to 0.987) 0.88 (0.755 to 0.982) 0.368 0.224

SVC 0.77 (0.499 to 0.979) 0.88 (0.758 to 0.966) 0.77 (0.499 to 0.979) 0.87 (0.74 to 0.966) 1 0.832

XGB 0.84 (0.659 to 0.986) 0.87 (0.749 to 0.968) 0.84 (0.659 to 0.986) 0.85 (0.698 to 0.971) 1 0.699

LR 0.83 (0.554 to 0.991) 0.88 (0.751 to 0.978) 0.84 (0.565 to 1.0) 0.81 (0.64 to 0.954) 0.368 0.103

Abbreviations: AUROC, area under the receiver operating characteristic curve; LR, logistic regression; RF, random forest; SVC, support vector classifier;
XGB, XGBoost.
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