
Systematic Review and Meta-Analysis Medicine®

OPEN
Visualizing the features o
f inflection point shown
on a temporal bar graph using the data of
COVID-19 pandemic
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Abstract
Background: Exponential-like infection growth leading to peaks (denoted by inflection points [IP] or turning points) is usually the
hallmark of infectious disease outbreaks, including coronaviruses. To determine the IPs of the novel coronavirus (COVID-19), we
applied the item response theory model to detect phase transitions for each country/region and characterize the IP feature on the
temporal bar graph (TBG).

Methods:The IP (using the item difficulty parameter to locate) was verified by the differential equation in calculus and interpreted by
the TBGwith 2 virtual and real empirical data (i.e., fromCollatz conjecture and COVID-19 pandemic in 2020). Comparisons of IPs, R2,
and burst strength [BS= ln(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nip � a

p
) denoted by the infection number at IP(Nip) and the item slope parameter(a) in item response

theory were made for countries/regions and continents on the choropleth map and the forest plot.

Results:We found that the evolution of COVID-19 on the TBGmakes the data clear and easy to understand, the shorter IP (=53.9)
was in China and the longest (=247.3) was in Europe, and the highest R2 (as the variance explained by the model) was in the US, with
a mean R2 of 0.98. We successfully estimated the IPs for countries/regions on COVID-19 in 2020 and presented them on the TBG.

Conclusion: Temporal visualization is recommended for researchers in future relevant studies (e.g., the evolution of keywords in a
specific discipline) and is not merely limited to the IP search in COVID-19 pandemics as we did in this study.

Abbreviations: EGM = exponential growth model, IP = inflection point, IRT = item response theory, TBG = temporal bar graph.
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Key Points

� Many mathematical COVID-19 models have been
proposed in the past. None illustrated the IP determina-
tion and evaluated the containment of COVID-19 in
comparison ever before, particularly using the differential
equation in calculus to prove the IP determination on an
ogive curve.

� The Collatz conjecture is a simple but unsolved problem
in mathematics. The trend of the Collatz sequences,
similar to the pattern of COVID-19 pandemics, was
analogous to the pandemic observed in countries/regions
using the IP to represent the containment of COVID-19 in
the past.

� The temporal bar graph modified to display the data of
COVID-19 is unique and innovative in numerous fields,
such as the evolution of keywords or acronyms in
disciplines that need the TBG to highlight the insights of
data at a quick glance.
1. Introduction

Despite the obvious extreme importance and extensive research
efforts, the inflection points (IP for short or called the tipping
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points or turning points in much of the existing literature[1])
turned out to be extremely difficult to estimate.[2] The enormous
complexity associated with IPs makes accurate predictive
modeling nearly impossible[3] (e.g., in COVID-19 situations).
Early warning signals should be developed based on the

phenomenon that recovery rates from small disturbances tend to
0 when approaching a tipping point.[2,4] Some laboratory
experiments and field surveys have demonstrated the so-called
“critical slow down” phenomenon.[3,5,6]

Investigating the IPs of infectious disease outbreaks, including
the ongoing coronavirus pandemic, falls under the domain of
tipping points and critical transitions.[4–6] Although numerous
researchers[7–14] have proposed using mathematical models to
predict the number of COVID-19 cases and investigate the IP[15–
21] as the ability of containment responding to COVID-19, none
of them visualized the IP days for counties/regions in comparison
of the containment against COVID-19 infections on a temporal
bar graph (TBG) (e.g., numeric data over time corresponding to
the area of the horizontal bars[22]). A novel mathematical model
to determine the IP days for countries/regions shown on the TBF
is required for development during the COVID-19 pandemic.
Nonetheless, building a predictive model for determining the IP

days for visualizing the data on the TBG for countries/regions is a
challenge that we encountered. Although many mathematical
models have been proposed,[23,24] all of these merely emphasize
the model accuracy to epidemic outbreaks instead of the data
displays that are easily understood about the IP features on the
TBG.
The study aims to verify the IP at the location of item difficulty

based on item response theory (IRT), demonstrate the use of TBG
and interpret the IP features, and compare the differences in IP
and R2 (as the variance explained by the model) for countries/
regions and continents when modeling COVID-19 situations.
2. Methods

2.1. Data source

Two kinds of data were applied to verify the use of TBG,
including the virtual one from the Collatz conjecture[25,26] and
the real one from the confirmed cases in COVID-19 from the
GitHubwebsite[27] for countries/regions (see File 1, Supplemental
Digital Content, http://links.lww.com/MD2/A881). All down-
loaded data are publicly released on the website.[27] Ethical
approval was waived since all the data were obtained from the
GitHub website.
2.2. The determination of IP on a growth curve
2.2.1. Differential equation in calculus to verify the IP on 2
models

2.2.1.1. The exponential growth model. The exponential
growth model (EGM) is expressed in (1)[28]:

f ðtÞ ¼ a
1þ be�ct ; ð1Þ

where a, b, and c are non-zero constants, t denotes the time point
(e.g., the infected day in COVID-19), and e is the exponential
function denoted by fðxÞ ¼ ex (where the argument x is written as
an exponent).
The 1st- and 2nd-order derivatives f

0 ðtÞ and f 00ðtÞ are expressed
in (2) and (3)[29] based on the differential equation in calculus:
2

f
0 ðtÞ ¼ a

1þ be�ct

� �0

¼ a 1þ be�ctð Þ�2
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0 ðtÞ ¼ a 1þ be�ctð Þ�2 bce�ctð Þ
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1þ be�ctð Þ2ect
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ect 1þ be�ctð Þ ;
ð3Þ

Given that an IP of the primitive function f ðtÞ exists, its second-
order derivative f 00ðtÞmust equal 0. As such, both 1þ be�ctð Þ2ect
and ect 1þ be�ctð Þ in denominators cannot be 0. Because a, b, and
c are non-zero constants defined in (1), we let b� ect equal 0, and
then t ¼ lnb

c . Namely, the IP is equal to ln(b)�c when referring to
the EGM in (1).

2.2.1.2. The IRTmodel. The probability can be expressed in IRT
based on (4)[15,16]:

Pro Xnijuð Þ ¼ ea un�dið Þ

1þ ea un�dið Þ ; ð4Þ

The Eq. (5) can be derived from (4):

f ðtÞ ¼ ea t�dð Þ

1þ ea t�dð Þ ; ð5Þ

where a as the discrimination parameter is greater than 0, u, as t
elapsed, is the person’s ability in IRT, and d is the item difficulty
(=IP days) that can be verified using the differential equation in
calculus via the processes of the first- and second-order
derivatives on t[30] as described below:

f
0 ðtÞ ¼ ea t�dð Þ

1þ ea t�dð Þ

� �0

¼ ea t�dð Þ

1þ ea t�dð Þð Þ2
 !

; ð6Þ

f 00 t
ð Þ ¼ f

0 ðtÞ
� �0

¼ eaðt�dÞ� �
1þ eaðt�dÞð Þ2

( )0

¼ �2ðaeaðt�dÞ½1þ eaðt�dÞ� � eaðt�dÞ½aeaðt�dÞÞ�	 
 � 1þ ea t�dð Þ� ��3

¼ �2aeaðt�dÞ½1þ eaðt�dÞ� � eaðt�dÞaeaðt�dÞ	 
 � 1þ ea t�dð Þ� ��3
;

ð7Þ

Let eaðt�dÞ ¼ Z, and gain �2aZ½1þ Z� � aZ2Þ	 
 �
1þ Zð Þ�3 ¼ 0
Therefore, �2aZ� 2aZ2� � � 1þ Zð Þ�3 ¼ 0

�2aZ½1� Z� � ð1þ ZÞ�3 ¼ 0
�2aZ½1� Z�
ð1þ ZÞ3 ¼ 0

Because a and Z must be greater than 0, the value of 1–Z
equals 0.

Hence; 1� Z ¼ 0 ¼ 1� eaðt�dÞ

ea t�dð Þ ¼ 1

a t � dð Þ ¼ lnð1Þ ¼ 0
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Due to a>0, we confirm that t � d ¼ 0 and t ¼ d. Therefore,
the IP (at the t point) is at the location of item difficulty (d).

2.2.2. Comparison of IP determination in 2 mathematical
models. A simulation study on IP determination based on the 2
EGM and IRT models is demonstrated with an MP4 video.[31]

The comparison of IP at t ¼ ln b
c , or at t ¼ d, is verified in Sections

2.2.1 and 2.2.2.
2.3. Virtual data from the Collatz sequence

Considering an iterative method over the set of positive integers
N defined in a range (e.g., 1–100),[26] if n∊N is even, we obtain the
positive integer 1

2 n for the next step. On the other hand, if n∊N is
odd, we then consider the positive integer 3n+1 for the next step.
The Collatz conjecture states that independent of the chosen
initial value for n∊N, the number 1 is eventually reached.
The virtual data from the Collatz sequence would be demon-
strated in determining IP, drawing the TBG, and capturing the IP
features.
Figure 1. IP featuresusing the temporal bar graph todisplay. IP= inflectionpoint.
2.4. Real data from COVID-19 on the TBG

TBG has been applied to visualize the evolution of topic bursts in
a bibliographical study.[28] We enhanced the TBGwith IP and the
middle point in the data, as described in Figure 1.

2.4.1. Outer and inner boxes. The outer bar filled with the light
blue stands for the data ranging from the start to the endwhen the
inner box with data higher than a fixed value (named Xc> the
maximum in all data shown in TBGs� 256, where the interior
colors from 0 to 256) in white was compared.

2.4.2. Heatmaps on the inner box. Geospatial visualizations
often use heatmaps since they quickly help identify “hot spots” or
regions of high concentrations of a given variable.[32] When
adapted to temporal visualizations, heatmaps from dark to light
colors in the inner box can help us identify that a large amount of
data was compared within an attribute (e.g., a country or region
suffering from COVID-19).

2.4.3. Bubbles on the TBG. In Part A, IP features include 3 types
(i.e., left skewness, right skewness, and normal distribution) and
6 stages from incubation, growth, growth+, maturity+, maturity,
and decline as the life circle in Part B, where only the last 7-day
infections are focused. The 4-quadrant matrix is derived from
previous studies[33,34] using the growth/share matrix (GSM)
coined by the Boston Consulting Group in 1970 to classify the
evolution of a specific product in features (i.e., growth on the
Y-axis and share on the X-axis).[33,35,36] The decline stage is
determined by the criterion in (8).
The criterion of decline exists when Nm>Nip, (8)

where Nm is the mean infection cases (=accumulative number �
the number of t at the middle point), and Nip is the cumulative
number divided by the time points at IP days.
The burst strength (BS) was proposed to denote the critical

spot[28] and defined in (8).

BS ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nip � a

p� �
; ð9Þ

where Nip is defined in (9), and the parameter a denotes the item
slope parameter in IRT.[15,16] Two features of growth+ and
maturity+ are particularly emphasized by a black horizontal bar
3

on the left (or right) beside the IP when the curve slope is greater
than 1.0.
2.5. The decision rule on the TBG

The decision rule on TBG is shown in Part C of Figure 1. We
examine whether either 1 green or yellow bubble exists on the
TBG at first glance. Either a black horizontal bar beside the IP is
next. The data skewness toward either the left or right side is the
last. Otherwise, the 2nd wave might exist based on the rule: The
2nd wave is at parameter a<0.5 and at the decline stage with 1
yellow bubble at the right-hand side on the TBG.
2.6. Comparison of IP and R2 in differences when
modeling COVID-19

Comparisons of IPs and R2 among countries/regions and
continents were made and shown on the choropleth map[37]

and forest plot.[38]

http://www.md-journal.com


Figure 2. Features and types of Collatz sequences on the temporal bar graph.
(How to read the TBG: each attribute is a horizontal bar with a specific start and
end date with a text label on its left side. The area of each bar [or the IP bubble]
is sized by the BS). BS = burst strength, IP = inflection point, TBG = temporal
bar graph.
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2.7. Statistical tools and data analysis

The values of the standardized mean deviation were compared
using the forest plot. A significance level of type I error was set at
0.05.
Visual representations of the forest plot and choropleth map

display the comparison of IPs and R2 differences among
countries/regions and continents. All figures, but Figure 1, were
plotted online on Google Maps. The parameter estimation was
executed in Microsoft Excel (File 1, Supplemental Digital
Content, http://links.lww.com/MD2/A881) using the Solver
add-in tool.[15,16]
3. Results

3.1. TBG using virtual data in the Collatz sequence

There are 10 positive integers used to generate the corresponding
Collatz sequences shown in Figure 2. We can see that the number
27 at the topwith the highest BC (determined by item parameter a
and the number at IP in (9)) is shown in the left column. Because
all Collatz(x) eventually reaches 1, the types of evolution stages
are classified as Decline at the end (see the last column in Fig. 2).
Some data values near the IPs in the top 4 Collatz sequences are

colored in red (as heatmaps) because the data are significantly
higher than others. These 4 sequences are skewed toward the left.
The other 6 attributes (denoted by integers) are skewed toward
the right side. The data values less than 33 (i.e., Xc=33 in Fig. 2)
imply that the blue color in the outer boxes appears in contrast to
the white (or red) color in the inner box on the TBG. The data
pattern and feature can be clearly observed and captured on the
TBG via the outer and inner boxes with the bobble locations,
Other data normally distributed at the bottom present the 2

bubbles overlaid (i.e., the location at the middle point equals that
at the IP). Readers are invited to scan the QR code at the top-right
corner and examine the details about the sequence of interest on
Google Maps (i.e., click on the red bobble). Another QR code at
the bottom-right side corner is used to generate the Collatz
sequence by inputting either an integer number (or time-series
data) and then plotting the line chart we drew in Figure 3.
4

3.2. The TBG using real data from COVID-19

Ten counties/regions with confirmed cases in 2020 are presented
in Figure 4. The top 1 with the highest BC is in India (left-skewed
data at the top). Hubei Province in China, denoted by the type of
maturity+ in the past and stationarity at the end, is in the second
row, with right-skewed data (parameter a=3.0, IP at 15days,
Nip=2115, and BS ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2115 � 3

p ¼ 4:4
� �

). Readers are
invited to scan the QR code in Figure 4 and examine the details
about the evolution of the COVID-19 situation in the countries/
regions of interest/in 2020.
Two examples (e.g., India and China) are illustrated in Figure 5

using line charts todisplay thedaily confirmedcases andcumulative
ogive curves. The IP and the middle points correspond to the TBG
in red and black bubbles for a better understanding of the IP
features. Accordingly, we found that the evolution of COVID-19
on the TBG makes the data clear and easy to understand.

3.3. Comparison of IP and R2 in differences when
modeling COVID-19

The geospatial distribution of IPs in countries/regions is shown in
Figure 6. We can see that the top 3 are Sri Lanka, Malaysia, and
Germany using the 3 blue lines linked together. Most regions in
China have shorter IPs in white color when compared to the US
states. The IP stands for the containment ability against COVID-
19.[39]

We found that (1) the shorter IP (=53.9) was observed in China
and the longest (=247.3) in Europe (Fig. 7), and (2) the highestR2

(as the variance explained in the model) was in South America,
with an average of 0.98 (Fig. 8).
When referring to the data in Figure 6, the provinces and areas

with the lower R2 in China are Hebei (=0.7), Yunnan (=0.62),
and Tibet (=0 due to only 1 case that occurred on January 24,
2020). The US states with the lower R2 are Massachusetts
(=0.75), New Jersey (=0.73), and New York (=0.76).
3.4. Online dashboards shown on Google Maps

All the QR codes in figures are linked to the dashboards. Readers
are suggested to examine the displayed dashboards on Google
Maps. For instance, the 2nd wave in Taiwan existed in 2020 (see
the top panel in Fig. 9 or a yellow bobble and parameter a=0.2<
0.5 at the right-hand side appears in Fig. 4), with the IP days at
151 based on the rule: the 2nd wave is at parameter a=0.2<0.5
and at the decline stage with 1 yellow bubble at the right-hand
side on the TBG (see the bottom in Fig. 4). In contrast, the IP at
153 for COVID-19 in Taiwan in 2021 is in the bottom panel of
Figure 9.

4. Discussion

4.1. Principal findings

We observed that the evolution of COVID-19 on the TBG makes
the data clear and easy to understand, the shorter IP (=53.9) was
in China and the longest (=247.3) was in Europe, and the highest
R2 was in the US, with an average of 0.98.
4.2. Contributions of the study

Previous studies[15,16] have proposed a method (such as the use of
the absolute advantage coefficient[40]) to search for the IP

http://links.lww.com/MD2/A881


Figure 3. The Collatz sequences for the initial numbers of 27 (top) and the pattern of normal distribution.
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location, which is redundant because the IP can be directly
determined by observing the item difficulty parameter, as we
proved in (7), using a differential equation in calculus and the
MP4 video.[31]

Many researchers[7–14] have proposed the use of mathematical
models to the number of COVID-19 cases, while others have
investigated the IP days during the COVID-19 pandemic.[15–21]
Figure 4. Features and types of COVID-19 in 2020 for 10countries/areas on
the temporal bar graph (The 2nd wave with a yellow bubble and parameter a=
0.2<0.5 on the right-hand side appears in Taiwan).

5

None of those studies, but the one,[21] used IP days to compare
the containment ability against COVID-19 in countries/regions.
Nonetheless, the study[21] did not report how to effectively
determine the IP days.
On the other hand, the trend of publications on mobile health

research was modeled on the EGM curve along with the IP point
at 20[28] but not with the IP determination, as we did in (3),[29]

using the differential equation in calculus for verification.
The TBG has been illustrated in bibliographical studies,[22,28]

but no such IP points combined on the TBGs, as we demonstrated
in Figures 2 and 4. As such, temporal visualization can be further
improved when compared to previous studies.[41–43]

Although burst strength has been proposed in the study,[44] the
calculation is not as intuitive and easy to understand as we
proposed it in (9) and applied it to the TBG in Figures 2 and 4.
The choropleth map[37] can be complemented with the IP

displayed on the TBG. The online forest plot[38,45] is another
feature that compares the IP and R2 across countries/regions and
continents. GoogleMaps show an online dashboard that is unique
and innovative. Readers are invited to examine them in detail on
their own to manipulate bubbles and icons on dashboards.
4.3. What it implies and what should be changed

Over 3188 articles published in the PubMed database were
searched by using the keyword “inflection point”[45] and 106 in

http://www.md-journal.com


Figure 5. The evolution of confirmed cases of COVID-19 in India (top) and Hubei (China) (bottom) in 2020.
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the title.[46] No such comparisons were made using the IP and R2

on forest plots for countries/regions in COVID-19 and model-
data-fit validation until now.
The uses of novel graph-based data models[47] and recommen-

dation techniques[48] have shown promise in recent years. The
online dashboard-type representation used in epidemiology is
Figure 6. Geographic distribution of IP on COVID-19 in 2020. IP = inflection
point

6

proposed and recommended for future studies and is not limited
to the COVID-19 pandemic, as we performed in this study.
The capacity for effective control against COVID-19 should be

calculated as[21] reported by South Korea, which has successfully
maintained a flat infection curve for more than 50days.
However, if South Korea was selected on the TBG up to the
end in 2020, the IP days is 173, which is considerably longer than
the IP in Hubeiina (Ch) at 15. The reason is the second wave of
COVID-19 occurring in South Korea at the end of 2020.[49]

The animated dashboards designed for this study also surpass
the static images in relevant articles.[50] A picture is worth a
Figure 7. Comparison of IP days on COVID-19 ogive curves in areas in 2020
using the forest plot. IP = inflection point.



Figure 8. Comparison of R-square for IP estimations on COVID-19 ogive
curves in areas in 2020 using the forest plot. IP = inflection point.
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thousand views.[51] We hope that future related research will be
able to make use of the TBG to display the evolution of data on
dashboards, as we did in this study.
4.4. Strengths of this study

First, the IP location is proven at the item difficulty in IRT using
the differential equation in calculus and makes the following
analyses and visualizations possible and feasible, such as IPs on
the TBG, the choropleth map, and the forest plot.
Second, the enhanced TBGwith IP and other signals makes the

data clear and easy to understand and contributions to public
health in quantitative analysis method.
Third, the comparison of effective control against COVID-19

in countries/regions and continents can be made, which is rarely
seen on the choropleth map and the forest plot in the literature.
Fourth, the abstract MP4 video on how to model the COVID-

19 inflections, obtain the IP days, and draw the TBG has been
given to readers for replicating the study in the future,
Figure 9. The determination of IP days in Taiwan. IP = inflection point.
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particularly with the Solver add-in tool in the MS Excel
environment, as in previous studies.[15,16,52–54]
4.5. Limitations and suggestions

Our study has several limitations that should be mentioned. First,
only the IRT model was applied to determine the IP days (or
locations). Future studies are required to examine more models to
estimate IPs and make comparisons between models.
Second, the Microsoft Solver add-in is not a unique method to

estimate model parameters. Many other methods can be applied
to study, such as Warm weighted mean likelihood estimate,[55]

anchored maximum likelihood estimation,[56] and weighted
likelihood estimation.[57] They are worthy of comparison in
future research.
Third, visual dashboards are shown on Google Maps.

However, these visual presentations are not free of charge. For
instance, the Google Maps application programming interface
requires a paid project key for the cloud platform. Thus, the
limitations of the dashboard are that it is not publicly accessible,
and it is difficult to mimic by other authors or programmers for
use in a short period of time. Similarly, the paid tool used for
presenting online visual representations was applied to display
Figures 3 and 5 through JPpower.[58]

Forth, the 2 Sections 2.2.1.1 and 2.2.1.2 are of importance to
the IP determination using differential equations in calculus to
verify. The limitation is hard for most readers who are medicos
not familiar with math terms. Skipping the 2 sections will not
deter them from understanding the meaningfulness of IP and
TBG used in epidemic and public-health fields in the future.
Last, although IRT is common and popular in the educational

and psychometric field, many readers in public health are
unfamiliar with the application of IRT. The IRTmodel consists of
2 parameters used to estimate the IP that needs some effort to
understand or replicate the study through the data and MP4
videos provided in Supplemental Digital Content 1, http://links.
lww.com/MD2/A881.
5. Conclusion

We successfully estimated the IPs for countries/regions on
COVID-19 in 2020 and presented them on the TBG. Temporal
visualization is recommended for researchers in future relevant
studies and is not merely limited to IP searches in COVID-19
pandemics.
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