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ABSTRACT
We present a discrete-event simulation model of the kidney transplantation system in an 
Indian state, Rajasthan. Organs are generated across the state based on the organ donation 
rate among the general population, and are allocated to patients on the kidney transplantation 
waitlist. The organ allocation algorithm is developed using official guidelines published for 
kidney transplantation, and model parameters were estimated using publicly available data to 
the extent possible. Transplantation outcomes generated by the model include: (a) the prob-
abilities of a patient receiving an organ within one to 5 years of registration and (b) the average 
number of deaths per year due to lack of donated organs. Simulation experiments involving 
observing the effect of increasing the organ arrival rate and establishing additional transplan-
tation centres on transplantation outcomes are also conducted. We also demonstrate the use 
of such a model to optimally locate additional transplantation centres using simulation 
optimisation methods.
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1. Introduction and literature review

The exact burden of end-stage renal disease (ESRD) is 
not known in India due to a lack of reliable patient 
registries, but recent studies estimate that 220,000–-
275,000 new patients require renal replacement therapy, 
or dialysis (Jha, 2013; Modi & Jha, 2011). Dialysis is an 
expensive procedure, especially when provided over 
a patient’s lifetime, and also causes substantial impair-
ment of the quality of life of the patient. In comparison 
with dialysis, renal (kidney) transplantation has proven 
to be more effective in prolonging the lives of ESRD 
patients, and when lifetime costs and effectiveness in 
terms of improvement in quality of life and productivity 
are also considered, renal transplantation has been pro-
ven to be substantially more cost-effective as well 
(National Kidney Federation (NKF), 2010; Rosselli 
et al., 2015). However, a massive shortage in donated 
organs in India has led to a precarious situation for ESRD 
patients on the waitlist for transplantation. In this paper, 
we describe the development of a discrete-event simula-
tion model of the kidney transplantation system in 
Rajasthan, the largest state (province) in India, and 
demonstrate how the organ shortage in Rajasthan affects 
transplantation outcomes for waitlisted patients. We also 
demonstrate the use of the model to analyse new logis-
tical situations for kidney transplantation, such as esti-
mating the effect of locating additional transplantation 
centres in the state on organ transport times and organ 
allocation rates within the state. We also demonstrate the 
use of the model, in conjunction with simulation 

optimisation methods such as the NSGS procedure 
(Hong et al., 2015), to optimally locate new transplanta-
tion centres in terms of minimising average organ trans-
port times.

The organ donation rate in India, at 0.34 per million 
population in 2014 (in comparison to 26 and 36 -
per million population in the USA and Spain, respec-
tively), is one of the lowest in the world (Organ India 
and Mohan Foundation, 2014). The southern states of 
India lead the rest of the country in terms of organ 
donation and transplantation activity, while the north-
ern states, having traditionally lagged behind, are now 
working on establishing the required infrastructure. 
Due to campaigns to increase awareness regarding 
organ donation by several key stakeholders including 
the Government of India, the organ donation rate has 
steadily increased to 0.8 organs per million population 
in 2017 (New Delhi Television Limited (NDTV), 
2017), and is expected to continue to grow. Further, 
as part of efforts to both improve organ donation rates, 
avoid organ wastage, and to establish the infrastruc-
ture for organ procurement and transplantation in 
light of increasing organ donation rates, the govern-
ment has plans to substantially increase the number of 
organ retrieval (procurement) and transplant centres 
across the country (New Delhi Television Limited 
(NDTV), 2017). Therefore, it becomes important to 
also develop the mathematical and computational 
infrastructure to model, analyse and optimise organ 
transplantation systems in the Indian context. We 

CONTACT Varun Ramamohan varunr@mech.iitd.ac.in Department of Mechanical Engineering, Indian Institute of Technology Delhi Hauz Khas, 
New Delhi 110016, India

HEALTH SYSTEMS                                           
2022, VOL. 11, NO. 1, 30–47 
https://doi.org/10.1080/20476965.2020.1848355

© Operational Research Society 2020.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/20476965.2020.1848355&domain=pdf&date_stamp=2022-01-27


develop a simulation model of the kidney transplanta-
tion system in Rajasthan as a first step towards addres-
sing this need. We focused on kidney transplantation 
due to the following reasons: (1) the high estimated 
prevalence of ESRD in the country, and (2) kidneys are 
the most donated organs in India (Rajmohan et al., 
2017). We chose to model the kidney transplantation 
system in the state of Rajasthan because (a) it is the 
largest state in India in terms of area, and the eighth 
largest state in terms of population (Census 
Commissioner of India, Ministry of Home Affairs, 
2011), and (b) the state recently established its organ 
transplantation network and had publicly available 
(anonymised) data regarding waitlisted patients and 
donors. Further, we focus our analysis on organ trans-
plantation from deceased donors. This is because less 
than 2% of donated organs come from deceased 
donors (Rajmohan et al., 2017), and therefore, there 
is tremendous potential in increasing deceased organ 
donation among the general public.

Based on Rajasthan’s population, we estimate that 
approximately 11,600 patients require a transplant in 
Rajasthan every year. However, according to the data 
published by the Rajasthan Network for Organ 
Sharing (RNOS), the governmental organisation that 
oversees organ transplantation in the state, there are 
only 303 patients on the waitlist as of December 2019 
(Rajasthan Network for Organ Sharing (RNOS), 
2019a). In Rajasthan, only 43 kidneys were donated 
in 2017 (Rajasthan Network for Organ Sharing 
(RNOS), 2019a). Given the increasing awareness 
among ESRD patients about kidney transplantation 
as the optimal option, and the increase in kidney 
donation rates, a critical analysis of the kidney trans-
plantation system in terms of its outcomes on patients, 
including answering the question of whether the exist-
ing capacity in terms of both organ procurement cen-
tres and transplant centres will be sufficient to 
accommodate demand, will become important. We 
model the kidney transplantation system in 
Rajasthan as a prototype that can be scaled up for 
the entire country and in the process identify issues 
that need to be addressed before doing so.

A substantial amount of work has been conducted 
in applying the methods of operations research and 
simulation to improve various aspects of organ trans-
plantation in many countries. A comprehensive 
review of the operations research literature in organ 
transplantation in its entirety is beyond the scope of 
this article, so we focus our survey of the literature on 
(a) a brief discussion of studies applying operations 
research methods to optimise decision-making (e.g., 
optimal timing of transplantations, organ acceptance/ 
rejection policies), (b) simulation studies conducted to 
analyse and optimise organ transplantation systems, 
and (b) more specifically, on relevant operations 
research studies conducted in the Indian context. For 

a comprehensive account of the literature in organ 
transplantation network management (i.e., optimally 
locating transplantation centres or organ procurement 
centres, reorganising the boundaries of administrative 
regions to reduce geographical disparities in organ 
allocation), we refer the reader to a detailed review of 
the literature on organ transplantation network man-
agement by Ahmadvand and Pishvaee (2018).

Several studies applying operations research meth-
ods to optimise decision-making in transplantation 
have also been published (Alagoz et al., 2004, 2007a, 
2007b; Batun et al., 2018; Sandıkçı et al., 2008, 2013). 
To the best of our knowledge, almost all of these 
studies have involved liver transplantation. These stu-
dies range from determining the optimal timing for 
a living-donor liver transplantation (Alagoz et al., 
2004), the effect of the waiting list on cadaveric liver 
acceptance decisions (Alagoz et al., 2007b), the effect 
of incomplete information regarding the waiting list 
on organ accept/reject decisions (Sandıkçı et al., 2013), 
to incorporating patient preferences in liver accep-
tance decisions (Batun et al., 2018). Most of these 
studies utilise a Markov decision process framework 
to formulate the decision problem in terms of finding 
the optimal policy under uncertainty, and do not 
utilise simulation. Simulation models have been devel-
oped primarily to address issues around the policies 
governing the allocation of organs to waitlisted 
patients. A majority of the models have addressed 
liver transplantation (Comas et al., 2008; Kreke et al., 
2002; Pritsker et al., 1995; Shechter et al., 2005), 
including one of the earliest simulation models of an 
organ transplantation system by Pritsker et al. (1995). 
Kreke et al. (2002) introduced the natural history of 
end-stage liver disease patients with and without 
a transplant into their model that operated indepen-
dently of any allocation scheme. Shechter et al. (2005) 
and Alagoz et al. (2005) built upon this work and used 
such a model to test changes in liver allocation poli-
cies. Similar simulation models have been developed 
subsequently to evaluate liver allocation policies, liver 
transplantation capacity, and other aspects of liver 
transplantation (Feng et al., 2013; Iyer et al., 2011; 
Kilambi et al., 2018; Toro-Díaz et al., 2015).

All of the above studies have been conducted for the 
United States transplantation system. Our search of 
the literature yielded one study that was not liver or 
kidney transplantation-related: Comas et al. (2008) 
developed a simulation model of the Spanish cataract 
transplantation system to evaluate an alternative wait-
ing list prioritisation scheme in comparison with 
a first-in first-out system.

Compared to liver transplantation, fewer studies 
involving kidney transplantation were identified. 
Zenios et al. (1999) developed a Monte Carlo simula-
tion model to compare different allocation policies, and 
simulated the operations of a single organ procurement 
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organisation in the United States. They incorporated 
changes in recipient and donor characteristics, patient 
and graft survival rates, and quality of life in their 
model. Su et al. (2004) developed a simulation model 
of the kidney allocation system in the United States to 
evaluate the effect of incorporation of recipient choice 
to accept or reject a donated kidney based on the 
projected increase in quality-adjusted life years it 
would yield. A. Davis et al. (2013) developed 
a simulation model of the kidney transplantation sys-
tem in the United States as part of a series of studies 
describing efforts to reduce geographical disparities in 
kidney allocation across the United States (Davis et al., 
2015, 2014). Most recently, Sandıkçı et al. (2019) 
develop a new clinically and operationally detailed 
simulation model of the kidney transplantation system 
in the United States that reduces computational run-
time in comparison to the simulation maintained by 
the United Network for Organ Sharing (the organisa-
tion that maintains the organ procurement and trans-
plantation network in the United States) by taking 
advantage of parallel computing methods.

Our work represents a first step towards applying 
the methods of simulation and optimisation to analys-
ing and optimising organ transplantation systems in 
the Indian context. We develop a discrete-event simu-
lation model of the kidney transplantation system in 
Rajasthan, India that models both the logistical and 
allocation aspects of kidney transplantation. From 
a logistical standpoint, the model incorporates the dis-
trict-wise generation of kidneys across the state of 
Rajasthan, and its subsequent transportation to the 
district where the transplantation to the recipient is to 
be performed. From an allocation standpoint, the 
model generates multiple clinical parameters, such as 
the patient age, blood group, whether the patient has 
had one or more immunological graft failures from 
a previous transplant, time on dialysis, and panel reac-
tive antibody (PRA) levels. These parameters are used 
to calculate the patient’s Kidney Allocation Priority 
(KAP) score, which determines the patient’s position 
on the waitlist. Further, the removal time for a patient 
is also generated based on the life expectancy of an 
ESRD patient on dialysis and the time the patient has 
already spent on dialysis at the time of registration on 
the waitlist. Therefore, our model can be used in efforts 
to optimise both the logistical and allocation aspects of 
kidney transplantation. For example, from a logistical 
standpoint, our model can be used in conjunction with 
simulation optimisation methods to identify optimal 
locations of transplantation centres (demonstrated in 
Section 4.1), and from an allocation standpoint, our 
model can evaluate multiple allocation policies to 
determine the policy that maximises patient outcomes 
(e.g., maximise probability of receiving a transplant). 
Our search of the literature did not yield a model for 
kidney transplantation that incorporated both logistical 

and clinical parameters to the extent that we have – 
while Zenios et al. (1999) incorporated multiple clinical 
characteristics, they conducted their analysis for 
a single organ procurement organisation. Further, to 
the best of our knowledge, our study is the first to 
demonstrate the use of simulation optimisation meth-
ods to identify optimal locations for transplantation 
centres from a discrete set of alternatives. Thus, our 
study, in addition to being capable of evaluating alloca-
tion policies, also demonstrates its use to evaluate and 
improve logistical aspects of transplantation systems, 
which have traditionally been the domain of optimisa-
tion formulations.

To the best of our knowledge, there is only one 
relevant study that has been conducted in the Indian 
context for organ transplantation: the work by 
Rajmohan et al. (2017) that involved optimally locating 
organ procurement organisations across the country so 
that total distance (weighted by demand for organs) 
between transplant centres and organ procurement 
organisations is minimised using a deterministic fra-
mework. In comparison to this work, our approach 
represents variability in organ transplantation expli-
citly, and also has the advantage of being able to 
address problems in both transplantation logistics and 
allocation using the same model. Further, given that 
a simulation model represents variability explicitly, it 
enables evaluation of the effect of an “optimal” solution 
on patient outcomes in a more comprehensive manner 
than a deterministic optimisation model. This can 
include, for example, evaluation of the location of 
a new organ transplantation or procurement centre 
generated by an optimal facility location model in 
terms of its effect on the distribution of organ transport 
time; or, as we demonstrate, finding the optimal loca-
tion using ranking and selection simulation optimisa-
tion methods from a discrete set of locations that may 
be generated, for instance, by a traditional continuous 
optimal facility location model.

The remainder of the paper is organised as follows: 
in section 2, we describe the kidney allocation algo-
rithm modelled in this article. In section 3, we describe 
the development of the simulation model and the 
estimation of its parameters. In section 4, we describe 
simulation experiments conducted using the model 
and their results. We conclude in section 5 with 
a brief summary of the article, with its limitations, 
and a discussion of future work.

2. Overview of Kidney Transplantation in 
India

The principal governmental authority overseeing 
organ and tissue transplantation in India is the 
National Organ and Tissue Transplantation 
Organisation (NOTTO), headquartered in New 
Delhi, the Indian capital. Five regional authorities, 
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each called the Regional Organ and Tissue 
Transplantation Organisation (ROTTO), were set up 
under the umbrella of NOTTO to oversee organ dona-
tion and transplantation in five principal geographical 
regions of the country. Each ROTTO oversees organ 
donation and transplantation in several states, and its 
activities include coordination for organ procurement 
and distribution, preservation of organs, quality man-
agement in organs, records maintenance, data protec-
tion and confidentiality, etc. ROTTOs also assist 
NOTTO in developing guidelines for organ procure-
ment and allocation. The guidelines for kidney pro-
curement and allocation that we use in this model to 
perform kidney allocation were developed and pub-
lished by NOTTO (National Organ and Tissue 
Transplant Organization (NOTTO), 2018).

Kidney allocation is a complex process, influ-
enced by a number of factors including medical 
urgency and donor-recipient matching. According 
to the guidelines published by NOTTO, the patient 
should be less than 75 years of age at the time of 
registration, should be a case of ESRD on mainte-
nance dialysis for more than 3 months on a regular 
basis and should be registered only in one approved 
hospital (a transplantation centre). When a patient 
is registered in a hospital (a transplantation centre), 
he/she is added to the corresponding state’s waitlist 
and is assigned a KAP score that determines his/her 
position on the waitlist. The KAP score is calculated 
according to a scoring system designed by NOTTO, 
depicted in the Table 1 below (sourced from the 
kidney allocation guidelines published by NOTTO, 
page 2) (National Organ and Tissue Transplant 
Organization (NOTTO), 2018).

We note here that we do not consider items 6 and 7 
in the calculation of KAP scores for patients in the 
model, as we assumed that the likelihood of the asso-
ciated scenarios being encountered is very low.

According to the allocation guidelines, a cadaveric 
kidney retrieved in a government (public) hospital is 
first considered for allocation only to patients regis-
tered in government transplant hospitals in that state; 
if an appropriate recipient is not found, then a waitlist 
comprised of patients registered in private transplant 
hospitals alone in that state is considered. If the 
retrieving hospital is privately owned/managed, then 
the same recipient selection process is followed, but in 
the reverse order. Thus, the type of transplant hospital 
(public or private) in which a patient is registered can 
impact their chances of receiving a transplant.

Within the waitlist comprising patients registered 
in government or private hospitals, the allocation will 
be done first based on the associated district’s waiting 
list (where the organ was retrieved). If no recipient is 
eligible in the retrieval district’s waiting list, then allo-
cation will be done considering the state’s waitlist. If 
a match is not found in the state’s waitlist, then the 

organ is considered for allocation to other states admi-
nistered by the associated ROTTO, and then to other 
ROTTOs nationally. Further, if the kidney is donated 
by a paediatric donor (less than 18 years), it will first be 
allocated to a paediatric waitlisted patient. If no pae-
diatric patient is eligible, then the kidney will be allo-
cated to an adult patient. Allocation is then done by 
matching blood groups of the deceased kidney donor 
and the patients. A blood group O kidney will be 
allocated to a recipient with group O, then to the 
next available patient on the waitlist of other compa-
tible blood groups – that is, first to group A, then to 
group B, and lastly to group AB in that sequence. If the 
kidney is of blood group A or B, the organ will be 
allocated to the same blood group failing which it will 
be allocated to blood group AB. An AB group kidney 
will only be allocated to an AB patient. This allocation 
process is depicted in algorithm below, and is incor-
porated by the model to the extent that the organ is 
allocated to a patient within the state (Rajasthan).

Kidney allocation process
1. Let the retrieval hospital type be “G” (government), 

and if there are patients on the state waitlist regis-
tered in “G” type hospitals, then the allocation pro-
cess for patients registered in “G” type hospitals is 
followed, as described below. Initialise flag = 0.
1.1.Set current waitlist = district waitlist

1.1.1. If the current waitlist is not empty:
1.1.1.1. Call Age Check Subroutine in (2)
1.1.1.2. If no recipient is found, go to (1.2)

1.1.2. If the current waitlist is empty:
1.1.2.1. Go to (1.2)

1.2. Set current waitlist = state waitlist
1.2.1. If the current waitlist is not empty:

1.2.1.1. Call Age Check Subroutine (2)
1.2.1.2. If suitable recipient is not found, set 
flag = flag + 1 and go to (1.3)

Table 1. Scoring system for prioritising waitlisted patients for 
organ allocation.

SI No. Criteria for scoring Points allotted

1 Time on dialysis (+1) for each 
month on 
dialysis

2 Previous immunological graft failure 
within 3 months of transplantation

(+3) for each graft 
failure

3 Age of recipient (+3) for less than 
6 years 
(+2) for 6 to less 
than 12 years 
(+1) for 12 to less 
than 18 years

4 Patient on temporary vascular access
a) With failed all AV Fistula sites (+2)
b) With failed AV Graft after all failed AVF 

sites
(+4)

5 PRA (Panel Reactive Antibody) (+0.5) for every 
10% above 20%

6 Previous living donor now requiring 
kidney transplant

(+5)

7 Near relative (as per definition of THOTA) 
of previous deceased donor requiring 
kidney transplant

(+5)
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1.2.2. If the current waitlist is empty:
1.2.2.1. Go to (1.3)

1.3. If flag < 2, change hospital type from “G” to “P” 
(or vice versa) in the district waitlist

1.3.1. Repeat allocation procedure in (1.1)
1.3.2. If suitable recipient is not found:

1.3.2.1. Organ unallocated, terminate allo-
cation for this organ, reset flag = 0

2. Age Check Subroutine: Check for the age of donor
2.1. If donor age <18 years:

2.1.1. Check whether the current waitlist con-
tains patients with age <18 years. If yes:

2.1.1.1. Filter waitlist to keep only patients 
with age <18 years

2.1.1.2. Call Blood Group Matching 
Subroutine (3)

2.1.1.2.1. If a suitable recipient is not found, 
go to 2.2.1

2.2. If donor age >18 years:
2.2.1. Set current waitlist to contain patients of 

all ages
2.2.2. Call Blood Group Matching Subroutine (3)

2.2.2.1. If a suitable recipient is not found, 
return

3. Blood Group Matching Subroutine: Check for the 
blood group of donor and match against the 
patients in the current waitlist
3.1. If one or more matches are found, allocate the 

organ to the match with the highest KAP score
3.1.1. Update patient list and organ donated list, 

stop allocation process

3.2.If no match is found, return

Finally, the allocation guidelines published by 
NOTTO consider two additional aspects that we do 
not incorporate into the model: (a) the consideration 
of an “urgent” patient waitlist, which can accommo-
date a very small number of patients in immediate 
need of a kidney, and (b) consideration of patients 
requiring multiple organs (e.g., a heart and a kidney 
transplant). Given that the size of these waitlists is 
typically small, and hence are likely to not affect aver-
age behaviour of the model to a great extent, we do not 
incorporate these into the model at this stage.

3. Model development and parameter 
estimation

3.1. Model structure

We now describe the structure of the discrete-event 
simulation developed to model kidney transplantation 
in Rajasthan, India. The structure of the simulation 
model is depicted in Figure 1.

The model is initialised with patients randomly cho-
sen from the waitlist of all patients registered for kidney 
transplants in the state of Rajasthan that is maintained by 

the RNOS, downloaded from the RNOS website in 
December 2019 (Rajasthan Network for Organ Sharing 
(RNOS), 2019a). Waitlists of patients registered for kid-
ney transplants in each district of Rajasthan are gener-
ated from the overall state waitlist. We provide more 
details regarding initialisation of the simulation in 
Section 4. In the meanwhile, a snapshot of the informa-
tion contained in the state waitlist is depicted in Figure 2 
below. The information in the waitlist – in particular, the 
date of registration with RNOS, date of dialysis, regis-
tered hospital, blood group – is used to estimate multiple 
model parameters, as we discuss in Section 3.2. 
Advancement of the simulation is dependent on three 
principal events: patient arrival, patient removal due to 
death, and organ arrival. The next patient arrival time 
and the next organ arrival times are generated using 
appropriate interarrival time distributions (see Section 
3.2). Removal of a patient from the waitlist occurs in one 
of two ways: the patient receives a transplant, or the 
patient dies (i.e., we do not consider patients baulking 
or reneging from the waitlist). Patient removal due to 
transplantation is governed by whether the patient is 
allocated an organ and undergoes a subsequent success-
ful transplant, and patient removal due to death is deter-
mined using the literature-based removal time assigned 
to the patient when they are added to the waitlists in the 
model. The patient removal time due to death assigned 
to the patient is calculated taking into account the time 
the patient has already spent on dialysis at the time of 
entry into the waitlist. More details regarding input 
parameter estimation are provided in Section 3.2. The 
distances, and therefore the average travel times, between 
the districts of Rajasthan are acquired from Google 
Maps, and the travel time matrix generated in this man-
ner is also part of the initialisation of the simulation. In 
our model, the districts are assumed to be at point 
locations (at their respective district headquarters).

When a patient arrives, his/her KAP score is calcu-
lated, a removal time due to death is assigned, and the 
district and the transplant centre (hospital) where the 
patient is registered is also assigned. The values of the 
clinical parameters required to calculate the patient’s 
KAP score are generated by distributions that are pri-
marily estimated from clinical literature (see Section 3.2). 
The patient is then added to both the state waitlist and 
his/her district waitlist for kidney transplantation.

The position of each patient in both waitlists are 
determined by his/her KAP score. After the patient is 
added to the state and district waitlists, the time of the 
next patient removal due to death is updated (which 
may change depending on the removal time due to 
death assigned to the newly arrived patient), the time 
of arrival of the next patient is generated and the 
overall simulation time is updated accordingly.

If patient removal due to death is the next event to 
occur (i.e., the patient has not received a transplant), 
then the patient is removed from both the state and 
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district waitlists. The total number of patients who 
have died without receiving a transplant is then 
updated. The time of the next patient removal due to 
death is then identified from the state waitlist and is 
updated in the system. The overall simulation time is 
then updated.

If the next event to occur is an organ arrival, then 
the district where the kidney is donated is determined 
using the population-based probability of donation 
assigned to each district of Rajasthan. Values of asso-
ciated parameters such as donor age, donor blood 
group, and type of hospital (government/private or 

Figure 1. Simulation model structure.

Figure 2. RNOS kidney transplant waitlist: a snapshot.
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retrieval/transplant centre) where the kidney is 
retrieved are also generated (see Section 3.2). The 
organ is then allocated according to the allocation 
algorithms developed by NOTTO (Section 2). If 
a suitable recipient is identified, then the patient is 
removed from the state waitlist and also from the 
corresponding district waitlist. The total transporta-
tion time from the kidney procurement centre to the 
transplantation hospital where the patient has been 
registered is calculated and the average transportation 
time of kidneys in Rajasthan is updated. On the other 
hand, if no suitable patient is found according to 
NOTTO’s state-level allocation algorithm, then the 
kidney is considered for allocation in Rajasthan’s asso-
ciated ROTTO. The number of organs not allocated 
within the state is then updated in the system, the time 
of the next organ arrival is scheduled, and the overall 
simulation time is updated.

3.2. Estimation of model parameters

We identify two primary types of model parameters: 
those related to patients, and those related to organs. 
We now describe how these parameters are estimated 
and their associated data sources.

3.2.1. Patient-related parameters
Patient-related parameters are estimated using data 
published on the RNOS website (including the patient 
waitlist), and also using information obtained from 
the literature.

We estimate multiple parameters from the waitlist 
published on the RNOS website (Rajasthan Network 
for Organ Sharing (RNOS), 2019a), downloaded in 
December 2019. The waitlist consisted of patient 
entries from January 2015 onwards; however, the 
data available for 2015 were of poor quality (relatively 
fewer patients were registered in 2015 than in subse-
quent years and arrived in batches, indicating that 
patients may have been registered in batches into the 
waitlist even if they had arrived according to a regular 
pattern), and hence data from patients registering in 
the waitlist from 2016 to the end of 2018 was used to 
estimate model parameters. Data for patients register-
ing in the waitlist in 2019 were set aside for validating 
model outcomes.

The distribution of the interarrival times of patients 
was estimated using the dates of registration of 
patients in the RNOS state waitlist. However, because 
the dates of registration of many patients in the wait-
list in a month were the same (i.e., they appeared to 
have registered on the same day), it was not possible to 
use the interarrival times directly (as this would yield 
many zero values for interarrival times, more than 
would be realistic) in determining a distribution for 
the interarrival times or the arrival rate of patients into 
the waitlist. Hence, the number of patients arriving in 

a month was used to determine the distribution of 
patient arrival rate. A chi-squared goodness of fit test 
was performed to determine the fit of various distribu-
tions to the monthly arrival rates, and the Poisson 
distribution, with a p-value of 0.7 (with the following 
null hypothesis: monthly arrival rate follows the 
Poisson distribution, and the alternate hypothesis: 
the monthly arrival rate does not follow the Poisson 
distribution). Thus, the interarrival times of patients 
are estimated from the monthly arrival rate estimated 
using the RNOS waitlist, and it follows an exponential 
distribution with a mean of 5.83 days. We anticipate 
using a more comprehensive data modelling approach 
to estimate the distribution of patient interarrival 
times as appropriately detailed data also becomes 
available from RNOS; for example, a time-series fore-
casting approach used to estimate the time-dependent 
means of a non-stationary arrival process (Poisson or 
otherwise), as described in (Angelo et al., 2017).

The model was initialised by selecting 10 patients 
randomly from the RNOS state waitlist. Only 10 
patients were used for initialisation as selecting 
a larger number of patients from the waitlist would 
require longer warm-up periods for the simulation, as 
the simulation does not reach steady state until all 
patients chosen to initialise the waitlist are removed 
from the waitlists. Separate district waitlists are cre-
ated based on the city of origin of patients as recorded 
in the state waitlist, and are created because NOTTO 
mandates that organs should first be allocated to 
patients in the same city/district before considering 
waitlisted patients in other districts/cities.

Patients may be removed from the waitlist if they 
die before receiving a transplant, and are therefore 
assigned a removal time due to death when they arrive 
in the waitlist. The removal time due to death of 
a patient is estimated from a recently published retro-
spective study that investigated haemodialysis practice 
patterns and outcomes in Indian ESRD patients 
(Lakshminarayana et al., 2017). The study enrolled 
patients who had spent a minimum of 3 months on 
maintenance haemodialysis, similar to the NOTTO 
eligibility criteria for registering on the transplant 
waitlist, and found that the mean survival time of 
patients on haemodialysis was 40.31 months (standard 
deviation of 26.69 months). In the absence of further 
information (e.g., raw data that could be used for 
distribution fitting), we assumed that a beta distribu-
tion for the removal time, and calculated its alpha and 
beta parameters from the mean and standard devia-
tion. We chose the beta distribution as it enables 
imposing a lower limit of zero on the removal time. 
We reiterate here that the actual removal time 
assigned to a patient is computed by the subtracting 
the time on dialysis at registration from the survival 
time estimated from the beta distribution discussed 
above. If the overall simulation time becomes equal to 
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the removal time due to death of a patient, then he/she 
is removed from the waitlist.

The time on dialysis at registration was estimated 
using the date of dialysis and date of registration fields 
in the RNOS waitlist (i.e., by subtracting the latter date 
from the former). Outliers were identified using a box 
and whisker plot and removed from the data, and 
Anderson-Darling goodness of fit tests were per-
formed to identify the best-fitting distribution to the 
time on dialysis at registration data. The exponential 
distribution was found to be the best-fitting distribu-
tion to the time on dialysis at registration, with 
a p-value of 0.581 (test hypotheses the same as that 
for patient arrival rates). Per the NOTTO allocation 
algorithm, the KAP score of a patient is updated as the 
amount of time the patient spends on dialysis in the 
simulation increases.

In Rajasthan, transplant centres are present only in 
the state capital Jaipur (10 centres) and Ganganagar (1 
centre) districts, and hence the probabilities of 
patients registering with a transplant centre in 
a given district are calculated accordingly. Patient 
blood group and age, which are essential to determine 
organ allocation, are calculated using data obtained 
from on the state waitlist and other reports published 
on the RNOS website (RNOS, 2019c, 2019d). The data 
for patient age are obtained from a histogram of 
patient ages published on the RNOS website 
(Rajasthan Network for Organ Sharing (RNOS), 
2019a). The data from the frequency distribution 
depicted in the histogram were recreated by bootstrap-
ping from the histogram bins, and the best-fitting 
distribution for this data was determined by conduct-
ing the Anderson-Darling goodness of fit tests. The 
Gaussian distribution was found to the best-fitting 
distribution with a p-value of 0.389 (null and alternate 
hypotheses the same as those specified for the patient 
arrival rates). The estimated Gaussian distribution was 
truncated by a lower limit of 1 year and an upper limit 
of 75 years (limits were estimated based on NOTTO 
guidelines). Patient blood group is generated from 

a discrete distribution parameterised by data from 
the state waitlist (see Figure 2).

Estimation of other clinical parameters such as 
PRA levels for a patient, probability of a patient with 
all failed arteriovenous (AV) fistula sites, and the 
probability of a patient with failed AV graft after all 
failed AV fistula sites were estimated using data from 
the clinical literature (Cecka et al., 2011; 
Chandrashekar et al., 2014). Our search of the litera-
ture did not yield studies that reported PRA levels 
among Indian patients registered on kidney transplan-
tation waitlists, and hence PRA levels were estimated 
from an American study that reported calculated PRA 
levels among patients registered on the American kid-
ney transplant waitlist (Cecka et al., 2011). The study 
reported proportions of patients with PRA levels 
within various ranges (see Table 2), and these propor-
tions and ranges were used to generate PRA levels for 
a patient. For example, approximately 5.6% of patients 
reported PRA levels between 1% and 20%, and with 
a probability of 0.056, a patient is assigned a PRA level 
sampled from a uniform distribution from the interval 
[1, 20]. The proportions of patients with all failed AV 
fistula sites and with a failed AV graft after all failed 
AV fistula sites was estimated from an Indian study 
reporting survival characteristics of patients on main-
tenance haemodialysis (Chandrashekar et al., 2014).

The probability of registering a patient with 
a previous immunological graft failure within the 
first 3 months of a previous transplant is also esti-
mated from a clinical report describing the progress 
in renal transplantation in India (Abraham et al., 
2009). The study reported the probability of immuno-
logical graft failure within a year of transplant and this 
was converted into the corresponding three-month 
probability.

Table 2 below lists all patient-related parameters, 
their distributions/estimates and corresponding 
sources. The KAP score of a patient was calculated as 
a function of the above clinical parameters using the 
scoring algorithm published by NOTTO, as described 

Table 2. Patient-related model parameters.
Parameter Distribution Estimate Source

Patient arrival Poisson 5.828 patients/month RNOS (2019a)
Time on dialysis Exponential 260.3 days (IAT) RNOS (2019a)
Patient removal time Beta Mean = 40.31 (SD = 26.69) Lakshminarayana et al. 

(2017)
District in which patient is registered Discrete P(Jaipur) = 0.92; P(Ganganagar) = 0.08; P(others) = 0.00 RNOS (2019a)
Age (years) Normal Mean = 40.78 (SD = 12.18) RNOS (2019d)
Blood Group Discrete O = 0.448; A = 0.144; B = 0.339; AB = 0.0689 RNOS (2019c)
PRA level Discrete P(PRA level = 0) = 0.650; P(1–20) = 0.056; P(21–79) = 0.136;P 

(80–100) = 0.158
Cecka et al. (2011)

Probability of a previous immunological 
graft failure 
within 3 months of transplantation

Discrete P(yes) = 0.020; P(no) = 0.980 Abraham et al. (2009)

With Failed all AV Fistula sites Discrete P(yes) = 0.052; P(no) = 0.948 Chandrashekar et al. 
(2014)

With Failed AV Graft after all failed AVF 
sites

Discrete P(yes) = 0.03125; P(no) = 0.96875 Chandrashekar et al. 
(2014)
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in Section 2 (National Organ and Tissue Transplant 
Organization (NOTTO), 2018).

3.2.2. Organ-related parameters
Precise data regarding the dates of arrival of 
organs (for instance, similar to that available for 
patient arrival) was not available on the RNOS 
website. Therefore, the distribution of interarrival 
times for kidneys from deceased donors was 
assumed to be exponential, and its parameters 
were estimated using aggregate organ donation 
data published by RNOS. According to the most 
recent data published on the RNOS website 
(RNOS, 2019b), the number of organs donated in 
the years 2015, 2016 and 2017 were 12, 4, and 16, 
respectively. Assuming a mean of 14 kidneys being 
donated every year (we assumed that 2016 was an 
outlier), the interarrival times of donated kidneys 
in Rajasthan was assumed to be exponentially dis-
tributed with a mean of 7 donors/year (since two 
kidneys are retrieved from a deceased donor).

We assume that kidneys are donated in each 
district of Rajasthan according to a district- 
specific probability. These probabilities have been 
assigned based on the proportion of Rajasthan’s 
population in each of its districts, with the popu-
lation of Rajasthan and its districts obtained from 
the most recent Official Census of India (Census 
Commissioner of India, Ministry of Home Affairs, 
2011). Other parameters of the donor such as the 
blood group and age, which are required to deter-
mine allocation of the kidney, are also calculated 
according to the proportions of various blood 
groups and age ranges in the population of the 
entire state of Rajasthan. We have assumed that in 
a district, kidneys can be retrieved from 
a deceased donor in a private or a government 
hospital with equal probability. We have made 
the further assumption that if the district where 
the kidney is retrieved has a transplantation centre 
(for Rajasthan, only Jaipur and Ganganagar dis-
tricts have transplantation centres) then the retrie-
val is performed in a transplantation centre, else 
the retrieval is performed in a hospital not capable 
of performing kidney transplantations (i.e., 
a retrieval centre).

After the kidney is retrieved from either 
a retrieval or a transplant centre, it will be allocated 
to a patient (recipient) in the system (Rajasthan) 
according to the allocation algorithm. Table 3 
below lists all organ-related parameters, their dis-
tributions/estimates and corresponding sources. 
Due to space limitations, we do not list all of the 
district-specific probabilities of an organ originating 
from a district; we provide the probabilities asso-
ciated with a few sample districts.

4. Simulation experiments and analyses

The simulation was programmed on the Matlab com-
puting platform. A warm-up period of 12 years was 
used before results were collected over a period of 
12 years. 100 replications were performed for collect-
ing and reporting results. The output parameters col-
lected from the simulation include year-wise 
probabilities of receiving a transplant while on the 
waitlist, average organ transport time, average time 
to transplant for a waitlisted patient, total number of 
patient deaths, number of unallocated organs and the 
total number of transplants in the simulation period. 
The probabilities of transplant are calculated as fol-
lows: patients arriving in each year (e.g., the first year 
after the warm-up period) are tracked separately and 
the proportion of these patients receiving a transplant 
at the end of each subsequent year is updated. For 
example, the two-year probability of transplant for 
patients arriving in the 16th year is estimated by calcu-
lating the proportion of the same set of patients who 
have received a transplant within 2 years of their 
arrival. The same calculation process is followed for 
patients arriving in every year post the warm-up 
period.

Average organ transport time is defined as the 
average time required to transport an organ from the 
retrieval location to its destination (a transplant cen-
tre). Average time to transplant is calculated only for 
patients who received a transplant during the steady- 
state simulation period. Both the probabilities of 
receiving a transplant and the average time to trans-
plant are calculated separately for different blood 
groups and the type of transplant hospital in which 
patients are registered in order to quantify disparities 
in transplantation outcomes on the basis of these 
characteristics. The number of deaths is calculated by 
counting those who are removed from the waitlist 
without receiving a transplant during the simulation 
period. A list of outputs (not limited to those 
described above) is provided in Table 4 and the 

Table 3. Organ-related parameters.
Parameter Distribution Estimate Source

Organ 
interarrival 
Time

Exponential Mean = 52.36 days RNOS (2019b)

Donor age Empirical 3.298 exp(3.176x); 
x �U(0, 1)

Census 
Commissioner of 
India, Ministry of 
Home Affairs 
(2011)

Donor blood 
group

Discrete P(A) = 0.229; 
P(B) = 0.323; 
P(AB) = 0.077; 
P(O) = 0.371

Agrawal et al. 
(2014)

Probability of 
kidney 
originating 
in a district

Discrete Ajmer = 0.038; 
Jaipur = 0.026; 
Sirohi = 0.039

Census 
Commissioner of 
India, Ministry of 
Home Affairs 
(2011)
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changes in probabilities of receiving a transplant with 
respect to time are depicted in Figure 3. The simula-
tion outcome estimates provided in Table 4 are 
averages and their 95% confidence intervals calculated 
using their standard errors. We have also provided the 
distributions of the outcome random variables (e.g., 
organ transport time) themselves in the Appendix 
A (Table A1), because it may be of interest to estimate, 
for example, the probability that the organ transport 
time exceeds 8 hours.

It is clear from the above results that cold ischaemia 
time, the maximum time permissible between organ 
retrieval from the deceased donor and transplantation 
into the recipient, is likely not to be of significant 

concern in Rajasthan as far as the kidney transplanta-
tion time is concerned. This is because the cold ischae-
mia time for a kidney is between 24 and 36 hours 
(Ponticelli, 2015), well above the average organ trans-
port time (5.8 hours) estimated by the model. That 
said, each additional hour of cold ischaemia time for 
a kidney increases both risk of graft failure and mor-
tality (Debout et al., 2015), and hence we consider the 
problem of locating additional transplant centres 
within Rajasthan to determine the extent to which 
they reduce average transport time. Also, locating 
additional transplant centres may prove to have 
a much more substantial effect on transplantation out-
comes for other organs (such as the heart, liver, lungs, 
etc.) which have much shorter cold ischaemia times 
when compared to the kidney, and hence is a question 
worth considering for organ transplantation in 
general.

In comparison to average kidney transport time, 
the average time to transplant and the probabilities 
of receiving a transplant while on the waitlist are 
causes for significant concern. The mean survival 
time on haemodialysis is approximately 40 months, 
with a high standard deviation of approximately 
27 months; therefore, given that the average time to 
transplant is approximately 38 months, there is a sig-
nificant likelihood that a waitlisted patient might die 
before receiving a transplant. This is supported by the 
substantial number of deaths observed per year. There 
are some disparities in transplant outcomes by blood 
group and type of hospital: patients with the O blood 
group are significantly less likely to receive 
a transplant than those with other blood groups, and 
patients registered in a private hospital are approxi-
mately 16% less likely to receive a transplant than 
those registered in a government hospital. The results 
observed for patients with the O blood group are 
supported by a study conducted in Kerala, 
a southern Indian state (Tom & Kumar, 2016). The 
observed disparities are occurring likely because while 
the rate at which the O blood group patients enter the 

Table 4. Key simulation outcomes.
Simulation Outcome Estimate (95% CI)

Average number of organs transplanted 
per year

13.36 (12.98, 13.75)

Average transportation time (hours) 5.81 (5.73, 5.88)
Average time to transplant on the waitlist 

(days)
1148.85 (1137.54, 

1160.15)
Average time to transplant by type of 

hospital (days)
Public = 1112.73 

(1082.95, 1142.52) 
Private = 1183.23 
(1163.29, 1203.16)

Average time to transplant by blood group 
(days)

A = 859.16 (826.63, 
891.68) 
AB = 844.54 (805, 
884) 
B = 1216.14 (1193.19, 
1239.10) 
O = 1342.62 (1322.90, 
1362.34)

Average number of unallocated organs 
per year

0.46 (0.38, 0.54)

Average number of deaths per year 48.63 (48.25, 49.01)
Probability of receiving a transplant within 

5 years
0.138 (0.137, 0.139)

Probability of receiving a transplant within 
5 years by blood group

P(A) = 0.273 (0.271, 
0.275) 
P(AB) = 0.194 (0.192, 
0.197) 
P(B) = 0.129 (0.128, 
0.131) 
P(O) = 0.096 (0.095, 
0.097)

Probability of receiving a transplant within 
5 years by type of hospital

P(Public) = 0.153(0.152, 
0.154) 
P(Private) = 0.128 
(0.127, 0.129)

Figure 3. Probabilities of receiving a transplant with respect to time for different blood groups.

HEALTH SYSTEMS 39



waitlist is approximately 3.1 times that of the A group 
and 6.5 times that of the AB group, the rate at which 
the O blood group organs arrive is only 1.6 times that 
of the A group and 4.8 times that of the AB group. 
These disparities between the relative rates of arrival of 
the patients and organs between blood groups, com-
bined with having to wait significantly longer than in 
a first-come first-served system because of the com-
plex allocation algorithm, is reflected in the disparities 
between probabilities of transplant as well. For 
instance, the probabilities of transplant for the 
O group are less than half that of the A group (≈ 1.6/ 
3.1) and less than 0.75 times (≈ 4.8/6.5) that of the AB 
group.

Validation of the simulation model is a challenge 
given the limited data available regarding kidney 
transplantation outcomes in the Indian context. We 
performed a preliminary round of validation by com-
paring patient arrival numbers for approximately 
330 days from the simulation with patient arrival 
numbers in 2019 as published on the RNOS website. 
As mentioned earlier, the RNOS waitlist data for 2019 
was set aside for validating the outcomes of the model. 
Since only the waitlist data were available to validate 
the outcomes of the model, we were only able to 
validate the rates at which patients register in the 
waitlist. The results of this validation exercise are 
provided in Table 5 below.

It is clear from the above table that the model out-
comes are reasonable when compared to the data 
recorded by RNOS. The numbers of patients with 
the AB and A blood groups registered in the waitlist 
in 2019 lies outside the 95% confidence intervals for 
the corresponding model estimates; however, this is 
likely because we are comparing only a single valida-
tion data point to the simulation outcomes. The over-
all number of patients registering on the waitlist in 
2019, however, is within 1% of the simulation esti-
mate, and hence lends credence to the validity of the 
simulated patient arrival process.

We also attempted another simple approach 
towards validating a key outcome of the model – the 
five-year probability of transplant – that illustrates 
how simple theoretical queueing frameworks may 
provide limited insight in analysing the complex 

queueing discipline represented by the organ alloca-
tion process operating in the kidney transplantation 
system. This involved attempting to compare the five- 
year probability of transplant to the ratio of the overall 
organ arrival rate to the overall patient arrival rate. 
This latter quantity can be considered as an approx-
imate equivalent of the concept of utilisation from 
queueing theory – that is, the long-run probability of 
the system being “busy” would correspond to the long- 
run probability of receiving a transplant. The estimate 
of the ratio of these quantities from the model is 0.212 
(95% CI: [0.194, 0.240]), and the estimate from RNOS 
data is 0.222, indicating the patient arrival and organ 
arrival processes are being simulated accurately. 
However, the five-year probability of receiving 
a transplant while on the waitlist is approximately 
0.138 (95% CI: [0.137, 0.139]). This significant differ-
ence is likely because the patients arriving into the 
transplantation system are not served on a first-come 
first-served basis, and are instead allocated organs 
based on the complex allocation algorithm. Thus, 
patients wait longer than they would if they were 
allocated organs on a first-come first-served basis. 
While this indicates that a simple queueing framework 
may provide limited insight for such systems, a heavy- 
traffic queueing framework with probabilistic reneging 
times and job priorities approximating the priority 
systems represented by the allocation processes based 
on blood group matching may be capable of offering 
more insight. For example, the distributions of KAP 
scores of incoming patients can be estimated (from 
a simulation of arriving patients alone) for each blood 
group and used to determine priorities. We reserve 
this analysis for future research.

More comprehensive validation of model would 
ideally be performed; however, the lack of availability 
of public data has hampered our efforts in this direc-
tion. Other potential avenues of validating the model 
include working with transplantation authorities 
(such as NOTTO) to validate the model structure, 
and obtain additional data from these bodies to refine 
model parameter estimates.

4.1. Simulation experiments

In addition to generating the above model outcomes, 
we also performed the following simulation experi-
ments: a) increasing the organ arrival rate from cur-
rent rate of 14 per year to approximately 120 organs 
per year (in increments of 7 organs/year), and b) 
increasing the number of districts with transplantation 
centres from an initial level of 2 districts to 22 districts, 
by adding one transplantation centre in each district 
considered (with a different district considered in each 
iteration). We first present the outcomes from increas-
ing the organ arrival rate (Figures 4(a)–(c) below).

Table 5. Validation outcomes.

Parameter

Actual 
(RNOS, 
2019a)

Simulation 
Estimate (95% 

CI)

Number of patients registered in 2019 
(up till December 4 2019)

63 62.47 (54.18, 
70.76)

Waitlisted patients with blood group 
A

15 8.77 (5.83, 11.7)

Waitlisted patients with blood group 
AB

8 4.44 (2.66, 6.23)

Waitlisted patients with blood group 
B

17 21.42 (17.16, 
25.67)

Waitlisted patients with blood group 
O

23 27.84 (22.41, 
33.27)
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In Figure 4(a), we present the effect of increasing 
the organ arrival rates on two-year probabilities of 
transplant (and not, for instance, the five-year prob-
abilities of transplant) as this measure might be of 
more immediate interest to patients and healthcare 
providers alike. Once again, we see that the rate of 
increase for the O blood group is the smallest 
among all the blood groups. Further, it is clear 
from Figure 4(a) that the probability of receiving 
a transplant increases with the organ arrival (dona-
tion) rate up to a certain point (around 85%, corre-
sponding to an organ arrival rate of around 80 

organs per year) and then the rate of increase 
becomes much slower and the two-year probability 
of transplant stabilises around 91%. Such behaviour 
likely occurs because as the organ arrival rate 
increases to a point where a significant majority of 
patients (approximately 91%) receive an organ, 
when an organ of a particular blood group arrives 
(e.g., A), a corresponding patient may not be present 
in the waitlist, and the organ thus goes unallocated 
within the state. Further, for some patients (particu-
larly those with randomly assigned small removal 
times due to death), an organ with the appropriate 

Figure 4. (a) Effect of increasing the organ arrival rates on two-year probabilities of transplant by blood group. (b). Effect of 
increasing the organ arrival rates on the average number of deaths and the average number of unallocated organs. (c) Effect of 
increasing the organ arrival rates on average time to a transplant for all the patients and by blood groups.
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blood group may not arrive before their removal 
time due to death. Note that we see that the prob-
abilities of transplant do not increase exponentially 
with organ donation rates. Under relatively simple 
queueing theory frameworks – for example, with 
first-come first-served queuing disciplines – it 
would be expected that the probabilities of trans-
plant (which can, as discussed earlier, be considered 
an approximation of the “utilisation” of the system) 
would increase at approximately exponential rate 
with increase in organ arrival rates until a certain 
threshold organ arrival rate. However, because the 
queueing discipline in this case is the organ alloca-
tion process, which is based on various patient char-
acteristics and not purely on a first-come first-served 
basis, we see a slower rate of increase of the prob-
ability of transplant. In fact, second degree polyno-
mials appear to best describe how probability of 
transplant changes with organ arrival rates (assum-
ing that after a certain threshold organ arrival rate, 
the probabilities of transplant will approach 1 at 
much slower rates).

Figure 4(b) depicts how the average number of 
deaths and the average number of unallocated organs 
change when the organ arrival rate increases. Figure 4 
(c) depicts the change (decrease) in average time to 
a transplant for all patients and by blood group. We 
see that approximately the same behaviour as in 
Figure 4(a) is observed for the average time to trans-
plant as well. Significant improvements in average 
waiting time for a transplant are also evident – the 
average waiting time for a transplant (for all patients) 
reduces significantly from an initial wait time of nearly 
1150 days at an organ arrival rate of 14 per year to less 
than a day days at arrival rates exceeding 105 organs 
per year. However, these results must be interpreted 
cautiously as it is likely that as the awareness regarding 
organ donation increases, the awareness regarding 
organ transplantation in general may also increase, 
and the number of patients on the waitlist may also 
increase.

Also of interest, as mentioned previously, is that the 
average number of kidneys that go unallocated within 
Rajasthan also increases with organ arrival rate. This 
implies that if a state has a high donation rate of 
a particular organ relative to the number of patients 
on the waitlist, then it is likely that these organs will be 
available to neighbouring states. This underscores the 
need for establishing more organ procurement and 
transplantation centres across the country, as this 
will decrease interstate organ transport times, thus 
increasing organ viability for transplantation. 
However, as mentioned earlier, it is likely that increas-
ing awareness regarding organ donation and trans-
plantation will lead to donation rates lagging behind 
the rate at which patients will register on the waitlist 
(as observed in developed countries), and therefore it 

is unlikely that a significant proportion of organs will 
remain unallocated within the state in such a situation.

To observe the effect of having more transplanta-
tion centres across the state of Rajasthan we 
increased the number of transplant centres in incre-
ments of one per district until there are 22 (two- 
thirds of the total number of districts in Rajasthan) 
districts with transplantation centres. The number of 
transplantation centres was increased from 12 initi-
ally in two districts to a total of 32 transplantation 
centres in 22 districts. These districts were selected 
randomly and the type of the transplantation centres 
added in each district was randomly (with equal 
probability) assigned to be a government or private 
hospital. Figure 5(a) shows the behaviour of logistical 
transplantation outcomes – average transportation 
time, and the number of instances where transporta-
tion time is greater than 8 hours when the number of 
transplantation centres are increased. From Figure 5 
(a), we see that as expected, with more transplanta-
tion centres the average transportation time 
decreases from 5.8 hours to 4.9 hours with 18 dis-
tricts and further decreases to 4.5 hours with 22 
districts. We do not include maximum transporta-
tion time in the figure. This is because, as expected, 
the maximum transportation time remains largely 
unchanged as more transplantation centres are 
added, since patients and organ donors are generated 
randomly from across the state, and the maximum 
transportation time is unlikely to change as extreme 
cases are still likely to be generated unless both the 
number of patients registering as well as organ dona-
tion rates increase substantially. However, the num-
ber of instances where organ transport time was 
more than 8 hours reduced from almost 14.8 initially 
to 13.3 at 32 transplantation centres in 22 districts. 
This reduction may seem smaller than expected, but 
this is likely due to the large geographical area of the 
state, and the fact that organ donation rates are low. 
Therefore, given that districts with the highest popu-
lations have the highest probability of generating 
organs as well, patients registered in transplantation 
centres in districts with lower populations are likely 
to receive organs from districts with higher popula-
tions, which may be located at a relatively large dis-
tance. However, if organ donation rates increase, 
then more organs are likely to be generated from 
low-population districts, thereby decreasing the aver-
age transportation times. We test this notion by add-
ing transplantation centres in three districts (chosen 
randomly), yielding a total of 15 transplantation cen-
tres in 5 districts, and increase the organ arrival rate 
to 49 organs per year. We see that at the current 
organ arrival rate of 14 organs per year, the average 
transportation time reduces to 5.6 hours from 
5.8 hours, whereas at the organ arrival rate of 49 
organs per year, the average transportation time 
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reduces to 5.4 hours, and if three optimally located 
districts are chosen (as will be seen in the simulation 
optimisation section), the average transportation 
time reduces further to 5.25 hours.

Nonetheless, even this seemingly small reduction 
can be significant for other organ transplantation sys-
tems such as liver, heart, etc. wherein the cold ischae-
mia time is substantially lower than that for the 
kidney. Even in the case of the kidney transplantation 
system, as discussed before, reducing cold ischaemia 
time by every hour improves both graft and patient 
survival.

As expected, most clinical transplantation out-
comes (average number of deaths, average number of 
transplants, etc.) are not affected by adding transplan-
tation centres, as these are dictated largely by organ 
donation rates. However, the average time to receiving 
a transplant is observed to decrease with an increase in 
the number of transplantation centres, and this is 
likely due to the fact that an organ is first considered 
for allocation within its district of origin. Therefore, 
given that a patient originating in a district is likely to 
register in that district, he/she will be more likely to be 
allocated a kidney if it also originates from that dis-
trict. This is depicted in Figure 5(b) below.

We now demonstrate the use of a ranking and 
selection simulation optimisation method to optimally 
select the location of transplantation centres in terms 
of minimising the average transportation time for an 
organ. We consider the problem of selecting the 

optimal locations for three transplantation centres 
from among 10 alternative location sets. We consider 
only 10 alternatives for each problem in our analysis as 
a proof-of-concept of this approach; however, ranking 
and selection methods such as the NSGS (Nelson et al., 
2001) and KN procedures (Kim & Nelson, 2001) can 
be used for relatively larger numbers of decision alter-
natives – for example, the NSGS procedure has been 
demonstrated to work with reasonable computational 
expense for more than 1000 systems (Hong et al., 
2015).

We apply the NSGS procedure to select the best 
alternative in terms of minimisation of average trans-
portation time. Each alternative for the 3-centre pro-
blem is a set of three districts, which we refer to 
hereafter as a thruple. We now provide a brief 
description of the NSGS procedure. The NSGS pro-
cedure requires that the replications associated with 
each feasible solution – in this case, a transplantation 
centre location thruple – are iid and are normally 
distributed, and that the replications associated with 
each alternative are independent of those from other 
alternatives, implying that common random num-
bers cannot be used in generating these replications. 
The NSGS algorithm is based upon the indifference 
zone approach; that is, it provides the statistical 
guarantee that, given m alternatives, the best alter-
native will be selected with a probability 1 � α, pro-
vided that the best alternative is at least δ better than 
the next best alternative. In other words, the analyst 

Figure 5. (a). Effect of increasing the number of transplantation centres on logistical outcomes related to transplantation. (b). 
Effect of increasing the number of transplantation centres on time to allocation.
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is “indifferent” to alternatives within δ units of the 
best alternative. The NSGS method involves first 
generating a prespecified number of replications 
(n0) for each alternative, and then using α and δ 
(set by the analyst), identifies a subset I of the origi-
nal m alternatives guaranteed to contain the best 
alternative with 1 � α probability. This is the screen-
ing stage. Note that the NSGS procedure utilises 
Rinott’s constant (Wilcox, 1984) and the estimated 
variances for each system during the screening stage.

After the first-stage subset I is formed, the ranking 
and selection stage commences, wherein for each 
alternative in I, the number of additional replications 
to be generated is calculated. The mean for each alter-
native is updated after these additional replications are 
generated using the simulation, and the alternative 
with the lowest average transportation time is selected 
as the best alternative.

For the 3-centre problem, we used an α of 0.05 and 
a δ of 0.20 hours of transportation time. The number 
of initial replications n0 generated from each alterna-
tive was set to 30. We constructed the set of 10 feasible 
solutions as follows: one consisted of a thruple of 
centrally located districts (with respect to the geogra-
phy of the state), three thruples covered the northern, 
southern, eastern and western corners of the state, and 
one thruple was located close to the district (the state 
capital) that contained 11 out of 12 existing transplan-
tation centres. The remainder (5 thruples) were ran-
domly chosen. Intuitively, central locations or 
locations equally distributed across the geographical 
extent of the state would be expected to yield lower 
average transportation times. The results of the simu-
lation optimisation exercise reflect this intuition, as 
the optimal solution is one of the randomly chosen 
thruples that, along with the two districts already 
contain transplantation centres, are located such that 
they are approximately equally distributed across the 
geographical extent of Rajasthan. This optimal thruple 
yields a reduction of approximately 0.60 hours in 
mean transportation time, whereas the next best solu-
tion, well within the indifference zone (δ ¼ 0:2), yields 
a reduction of approximately 0.58 hours in mean 
transportation time. This next best thruple corre-
sponds to locations that are approximately central. 
Therefore, this provides statistical validation to the 
insight that if sufficient resources to establish 
a limited number of new transplantation centres are 
available, choosing locations that are spread equally 
across the region of interest or are centrally located is 
most beneficial from the standpoint of minimising 
organ transportation time.

5. Conclusions and discussion

The work presented in this article is a first step 
towards modelling, analysing and optimising the 

organ transplantation system in India. Therefore, 
there are several avenues of research that we plan to 
pursue in the immediate future, including the follow-
ing: (a) extend and adapt the model of the kidney 
transplantation system of Rajasthan to other states 
and for the entire country; (b) utilise the simulation 
in conjunction with machine learning methods to 
quantify the influence of each patient characteristic 
on the probability of receiving a transplant, based on 
the methodology in Baldwa et al. (2020); (c) determine 
the effect of organ donation awareness campaigns on 
transplantation outcomes. A model such as this can be 
adapted for other organ transplantation systems (e.g., 
liver, heart) in India.

The lack of reliable data required to build and vali-
date such models in the Indian context remains 
a challenge. The southern Indian states of Tamil Nadu 
and Kerala have a more well-established transplant 
system (Tom & Kumar, 2016), and hence have better 
organised data as well. However, we chose the state of 
Rajasthan for this study because, while the above states 
have more established transplant systems and better 
organised data, the RNOS website provides more gran-
ular information regarding the patients on the waitlist 
(e.g., patient age and blood group data, time on dialysis 
before registration). Therefore, a natural choice for next 
modelling steps would be to adapt the model to these 
states. We hope that the model presented in this paper 
will provide a roadmap for modelling and parameteris-
ing simulation models of organ transplantation systems 
in developing nations where the availability of public 
transplantation data is also a challenge.

The utility of a simulation model of an organ trans-
plantation system is evident from previous work done 
in this field, and also from the simulation experiments 
conducted using our model and presented in this paper. 
However, the majority of previous simulation models 
developed to model kidney and liver transplantation 
systems address allocation policies, and hence our 
work provides a proof of concept for the utilisation of 
such models to address logistical issues related to trans-
plantation as well. For example, while A. Davis et al. 
(2013) utilise simulation to suggest organ redirection 
policies to alleviate geographical inequities in kidney 
transplantation outcomes, they do not evaluate the 
logistics itself associated with such policies or with the 
kidney transplantation system they model as a whole. 
Further, to the best of our knowledge, our study is the 
first to demonstrate the use of simulation optimisation 
methods to determine optimal locations of transplant 
facilities. Our simulation model can similarly also be 
used, in conjunction with simulation optimisation 
methods, to optimise organ allocation policies as well. 
A model such as this can generate insights that are not 
necessarily intuitive, such as the fact that patients with 
AB group not having the highest probability of receiv-
ing a transplant despite being universal recipients, the 

44 M. SHOAIB ET AL.



increase in the number of unallocated organs with an 
increase in organ arrival rate, and the reduction in 
average time spent on the waitlist before receiving 
a transplant when the number of districts with trans-
plantation centres are increased. As the transplantation 
infrastructure in India develops further, the need for 
such a model to analyse and optimise allocation as well 
as logistical aspects of the transplantation system will be 
felt more acutely. However, it is also evident from the 
outcomes generated by the model that it is imperative to 
consolidate and expand public awareness programmes 
to increase the organ donation rate in the country so 
that the average time to transplant is reduced and the 
number of deaths while on the waitlist are reduced.
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Appendix A

Table A1. Distribution of key model outcomes.
S. No. Simulation outcome Distribution p-value

1 Time to allocation Logistic (1151.9, 135.6) 0.250
2 Organ transport time Normal (5.78, 1.41) 0.326
3 Time to allocation: blood group A Normal (873.9, 434.6) with Box-Cox transformation (λ = 0.674) 0.096
4 Time to allocation: blood group AB Gaussian kernel density (160.299) Not applicable
5 Time to allocation: blood group B Logistic (1208, 244) 0.179
6 Time to allocation: blood group O Logistic (1352.1, 288.7) 0.250
7 Time to allocation: public hospital Logistic (1112.6, 207.96) 0.230
8 Time to allocation: private hospital Logistic (1181.1, 200.3) 0.250
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