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Abstract

Recent results in coupled or temporal graphical models offer schemes for estimating the 

relationship structure between features when the data come from related (but distinct) longitudinal 

sources. A novel application of these ideas is for analyzing group-level differences, i.e., in 

identifying if trends of estimated objects (e.g., covariance or precision matrices) are different 

across disparate conditions (e.g., gender or disease). Often, poor effect sizes make detecting 

the differential signal over the full set of features difficult: for example, dependencies between 

only a subset of features may manifest differently across groups. In this work, we first give a 

parametric model for estimating trends in the space of SPD matrices as a function of one or more 

covariates. We then generalize scan statistics to graph structures, to search over distinct subsets of 

features (graph partitions) whose temporal dependency structure may show statistically significant 

group-wise differences. We theoretically analyze the Family Wise Error Rate (FWER) and bounds 

on Type 1 and Type 2 error. Evaluating on US census data, we identify groups of states with 

cultural and legal overlap related to baby name trends and drug usage. On a cohort of individuals 

with risk factors for Alzheimer’s disease (but otherwise cognitively healthy), we find scientifically 

interesting group differences where the default analysis, i.e., models estimated on the full graph, 

do not survive reasonable significance thresholds.
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1. Introduction.

Multivariate data analysis exploiting the conditional independence structure between 

features or covariates using undirected graphical models is now standard within any 

data analysis toolbox. When the data are multivariate Gaussian, the zeros in the inverse 

covariance (precision) matrix give conditional independences among the variables [36]. 

Further, if the precision matrix is sparse, we can derive dependencies between features when 

the data are high-dimensional and/or the number of measurements are small. The estimation 

of a graphical model has been extensively studied and a rich literature is available describing 

its statistical and algorithmic properties [34, 31]. For instance, the so-called graphical lasso 
formulation uses an l1-norm penalty on the precision matrix and is widely used, and 

consistency properties in the large p regime [7, 19, 73] are now well understood. These 

formulations have also been extended to various transformations of Gaussian distributions 

(e.g., non-paranormal) using rank statistics [41, 71, 42].

Coupled and Temporal Graphical Models.

Often, data come from two (or more) disparate sources or multiple timepoints. Within the 

last few years, a few proposals have described strategies for linking the sparsity patterns 

of multiple graphical models, e.g., using a fused lasso penalty [10] [72]. Observe that if 

the data sources correspond to longitudinal acquisitions, we should expect the ‘structure’ 

to gradually evolve. Several authors have offered generalizations to address this problem: 

[75] removes the assumption that each graph is independent and structurally ‘close’. Instead, 

[75] can be thought of as a growth model [43] defined on these structures: they show how 

non-identically distributed graphs can be learned over time. Recently, the nonparametric 

procedure in [48] extends these ideas to handle multiple sources, each with multiple 

samples.

The ideas in the literature so far to “couple” multiple graphical model estimation modules 

are mostly nonparametric. While such a formulation offers benefits, in many estimation 

problems, parametric models may be more convenient for downstream statistical analysis, 

particularly for hypothesis testing [24, 20, 51]. Given that the topic of coupled graphical 

models, by itself, is fairly recent, algorithms for parametric estimation of temporal or 

coupled Gaussian graphical models have not yet been heavily studied. This will involve 

parameterizing trends in the highly structured nature of the ‘response’ variable (SPD 

matrices). We find that parametric formulations for manifold-valued data have been 

proposed recently [33, 9]. Because SPD matrices form a Riemannian manifold, algorithms 

that estimate a parametric model respecting the underlying Riemannian metric are more 

suitable in many applications as opposed to assuming a Euclidean metric on positively 

or negatively curved spaces [70, 17, 29]. We will make a few simple modifications (for 

efficiency purposes) to such algorithms and make use of the estimated parameters for 

follow-up analysis.

Finding Group-wise Differences.

Assuming that we have a black-box procedure to estimate a parametric model on the SPD 

manifold available, in many tasks, such an estimation is merely a segue to other analyses 
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designed to answer scientifically meaningful questions. For example, we are often interested 

in asking whether the temporally coupled model estimated using the procedure above differs 

in meaningful ways across groups induced by a stratification or dichotomous variable (e.g., 

gender or disease). For instance, is the ‘slope’ in structured response space statistically 

different across education level or body mass index? While the body of work for graphical 

model estimation is mature, the literature describing hypothesis tests in this regime [58, 6] 

is sparse at best. Given that such questions are simpler to answer with alternative schemes 

(with assumptions on the distributional properties of the data), e.g., structural equation 

modeling, latent growth models and so on [64, 43], it seems that the unavailability of such 

tools is limiting the adoption of such ideas in a broader cross-section of science. We will 

seek to address this gap.

Needles in Temporal Haystacks.

If we temporarily set aside the potential value of a hypothesis test framework for temporal 

trajectories in graphical models, we see that from an operational viewpoint, such procedures 

are most effective when a practitioner already has a precise scientific question in mind. In 

reality, however, many data analysis tools are deployed for exploratory analyses to inform 

an investigator as to which questions to ask. Being able to “localize” which parts of the 

model are different across groups over the entire time window can be very valuable. This 

ability actually benefits statistical power as well. Notice that when the stratified groups are 

not very different to begin with, e.g., healthy individuals with presence or absence of a 

genetic mutation, the effect sizes are likely to be poor. Here, while the trends identified on 

the full precision matrix may still be different (i.e., there may be a real signal associated 

with a grouping variable), they may not be strong enough to survive significance thresholds. 

Ideally, what we need here are analogs of the widely used “scan statistics” for our hypothesis 

testing formulations for temporal graphical models — to identify which parts of the signal 
are promising. Then, even if only a small subset of features were different across groups 

over all time, we may be able to identify these differential effects efficiently. This benefits 

Type 2 error, provides a practical turnkey product for an experimental scientist, and makes 

up the key technical results of our work.

Foundations of our work can be traced back to fundamental developments made by Ulf 

Grenander in a breadth of fields. Early work with Rosenblatt on the analysis of stochastic 

processes and time series first brought to light the fundamental issues of linear modeling in 

Euclidean space, and demonstrated that in many cases it is necessary to develop methods 

that take explicit advantage of the inherent structure within data [23]. Further pioneering 

work on the statistical analysis on Lie groups [21] provides the basis of the Riemannian 

statistics mentioned above. Modern hypothesis testing of these structured, manifold-valued 

data in image analysis is built upon the his joint work [22]. Here, we marry modern 

developments in these areas, using recent strides in linear model fitting on manifolds and 

statistical testing of structured data to develop groupwise testing procedures for longitudinal 

covariances. Concurrent to our work, [59, 74] have developed similar methods of analyzing 

the statistical properties of trajectories on the SPD(n) manifold via the transported square-

root vector field. While here we focus on a simple approach to enable localization, these 

developments can be incorporated into our construction.
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Briefly, we provide (i) a simple and efficient parametric procedure for modeling temporally 

evolving graphical models, (ii) a hypothesis test for identifying differences between group-

wise estimated models, and (iii) a scan algorithm to identify those subsets of the features 
which contribute to the group-wise differences. Together, these ideas offer a framework 

for identifying group-wise differences in temporally coupled graphical models. From the 

experimental perspective, we find scientifically plausible results on a unique longitudinally 

tracked cohort of middle-aged (and young elderly) persons at risk for Alzheimer’s disease 

due to family history, but who are otherwise completely cognitively healthy.

The rest of the paper is organized as follows. In Section 2 we present an efficient manifold 

regression procedure for modeling covariance trajectories, which serves as a blackbox 

module in our hypothesis testing framework. In Section 3, we define our main hypothesis 

test for group difference analysis over covariance trajectories. In Section 4, we present a 

set of technical results describing our localization procedure based on scan statistics, as 

well as derive suitable size corrections to compare across feature subsets. Sections 5, 6, 

and 7 conclude with empirical evaluations of our model on synthetic data, various types 

of demographics/behavior data collected longitudinally in the United States from publicly 

available resources, and finally, our analysis on a unique longitudinal dataset (followed 

since 2001) from a preclinical Alzheimer’s disease study involving approximately 1500 

individuals.

2. Characterizing Covariance Trajectories.

Our main statistical testing framework, to be described shortly, needs an efficient means for 

calculating a “trajectory” of the feature-by-feature interaction graphs over time for the given 

longitudinal data. We now describe a scheme which offers this capability. Let Xt ∈ ℝnt, p be 

the design matrix of all nt samples at time t, where t ∈ {1,...,T}, and T is the total number 

of distinct timepoints. We wish to capture the trends in the relationships between the features 

as a function of t. To evaluate the groupwise differences in changes of such interactions, 

we make use of the fact that these interactions are commonly captured by correlation or 

conditional independence, represented by the covariance matrix (with normalized features) 

and the precision matrix (the inverse of covariance matrix).

Here we simply use the covariance matrix for each timepoint t to denote the interaction 

between features, Ct = cov(Xt). Our goal now is to estimate the parameters of the function, 

t → Ct. We may vectorize the covariance matrix and apply a linear model; its parameters 

will give the trajectory in “vectorized covariance space” as we scan through t. But these 

predictions are not guaranteed to be valid SPD matrices and even if a projection is 

performed to obtain a covariance estimate, distortions introduced by the process may be 

significant [16]. It is well known that classical vector space models tend to be suboptimal 

in the manifold setting (covariance matrices live on the SPD manifold) since they use 

Euclidean metrics which are defined in the ambient space. For manifold-valued data, 

Riemannian metrics are shown to be superior in many applications [17, 5, 29, 63], and 

are increasingly being deployed in machine learning/statistics. We will utilize an appropriate 

statistical model informed by the manifold-structure of the data and then derive a hypothesis 

testing procedure to detect groupwise difference in the changes of interactions between 
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features in longitudinal analysis. To do so, we first summarize basic differential geometry 

notations [12, 38] and then describe our models. If desired, any other (efficient) manifold-

valued linear model [16] can be substituted in; no change in the workflow is needed. A 

reader familiar with manifold regression algorithms may consider this module as a black-

box and skip ahead to Section 3 which uses the parameter estimates from this procedure.

2.1. Riemannian Geometry.

Let ℳ be a differentiable (smooth) manifold in arbitrary dimensions. A differentiable 

manifold ℳ is a topological space that is locally similar to Euclidean space and has a 

globally defined differential structure. A Riemannian manifold is a differentiable manifold 

ℳ equipped with a smoothly varying inner product. The geodesic curve is the locally 

shortest path, analogous to straight lines in ℛp — this geodesic curve will be the object 

that defines the trajectory of our covariance matrices in SPD space. Unlike the Euclidean 

space, note that there may exist multiple geodesic curves between two points on a curved 

manifold. So, the geodesic distance between two points on ℳ is defined as the length of 

the shortest geodesic curve connecting two points. The geodesic distance helps in measuring 

the error of our trajectory estimation (analogous to a Frobenius or l2 norm based loss in the 

Euclidean setting). The geodesic curve from yi to yj is parameterized by a tangent vector in 

the tangent space anchored at yi with an exponential map Exp(yi, ⋅ ):Tyiℳ ℳ. The inverse 

of the exponential map is the logarithm map, Log(yi, ⋅ ):ℳ Tyiℳ. These two operations 

move us back and forth between the manifold and the tangent space. For completeness, 

Table 1 shows corresponding operations in the Euclidean space and Riemannian manifolds. 

Separate from the above notation, matrix exponential (and logarithm) are simply exp(·) 

(and log(·)). Finally, parallel transport is a generalized parallel translation on manifolds. 

Given a differentiable curve γ :ℐ ℳ, where ℐ is an open interval, the parallel transport of 

v0 ∈ Tγ t0 ℳ along curve γ can be interpreted as the parallel translation of v0 on the manifold 

preserving its length and the angle between v(t) and γ. The parallel transport of v from y to 

y′ is Γy y′v.

2.2. Riemannian Manifold Regression.

Several regression models for manifold-valued data have been proposed recently, a majority 

of which are nonparametric [29, 5]. Because of the longitudinal nature of our dataset 

(and recruitment considerations in neuroimaging studies), sample sizes do not exceed a 

few hundred participants (typically much smaller). We have found that generally, in this 

regime, parametric methods are better suited and also offer other benefits for downstream 

applications. Next, we will give a simple parametric model for this problem. Let x and y be 

vectors in ℝp and ℝp
′ respectively.

DEFINITION 2.1.—(Standard GLM.) The Euclidean multivariate multilinear model is

y = β0 + β1x1 + β2x2 + … + βpxp + ϵ (2.1)

where β0, βi and the error ϵ are in ℝp′ and x = [x1...xp]T are the predictor variables.
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Henceforth, we will use the terms covariate and predictor interchangeably to describe those 

specific features we wish to control for in our model (e.g., time-points in our experiments). 

For manifold-valued data, we adapt the formulation proposed by [33].

DEFINITION 2.2.—The Manifold Multivariate General Linear Model (MMGLM) is defined as

min
b ∈ ℳ, ∀j, V j ∈ Tbℳ

1
2 ∑

i = 1

N
d(Exp(b, V xi), yi)2, (2.2)

where V xi: = ∑j = 1
n V jxi

j and d(·, ·) is the geodesic distance between ŷi: = Exp(b, V xi) and 

yi.

This formulation generalizes (2.1), by replacing the intercept β0 and each vector βj for 

a covariate with a base point b ∈ ℳ and a geodesic basis V j ∈ Tbℳ respectively. The 

geodesic basis Vj at b parameterizes a geodesic curve Exp(b, V jxj). Intuitively, this model is 

a ‘generalized’ linear model with the inverse exponential map Exp−1 (or logarithm map Log) 

as a ‘link’ function [33, 9]. When the covariate/predictors are univariate, we will obtain a 

single geodesic curve, modeled via the so-called Geodesic Regression [16].

2.3. Efficient Estimation of Trajectories.

The objective in (2.2), can be solved by both gradient descent [16, 33] and MCMC methods 

[9]. Unfortunately, these schemes can be expensive, especially when the dimension of the 

manifold is large. Further, if the algorithm needs to be run a large number of times, the 

computational footprint quickly becomes prohibitive. Motivated by these considerations, 

we use a so-called log-Euclidean approximate algorithm introduced in [33] with some 

adaptations, which requires mild assumptions on the manifold-valued data.

Recall that in classical ordinary least squares (OLS), the regression curve goes through the 

mean of covariates and response variables, i.e., y − y = β(x − x). Similarly, we assume that 

geodesic curves go through the mean of response variables on the manifold. Then, the base 

point, or intercept, “b” in (2.2) can be approximated by the manifold-valued mean of the 
sample points, the Karcher mean [32]. The propositions derived from [33] lead directly to 

the following.

PROPOSITION 2.3.—Let C be the unique Karcher mean of a sufficiently close set of 

covariance matrices that lie on a curve Ω. Then C ∈ Ω, and for some tangent vector 

V ∈ TCℳ and each C, there exists x ∈ ℝ such that C = Exp(C, V x).

This allows us to bypass the fairly involved variational procedure to estimate the base point 

b.

With this approximation of b̂  via y, the remaining variables to optimize are the tangent 

vectors V. We do so by taking advantage of log-Euclidean schemes. Once the base point 

is established as the Karcher mean, each data point on the manifold is projected into the 

tangent space at that point: Log(y, y). These “centered” points ỹ are now Euclidean, and if 
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the covariates are centered as well (x̃), a closed form solution exists in the standard form of 

V = ỹx̃⊤(x̃x̃⊤)−1
.

In this setting, it is often assumed that two points y1, y2 have a distance defined as 

d(y1, y2): = ‖Log(y1, y2)‖y1 ≈ ‖Log(b, y1) − log(b, y2)‖b. However, on SPD manifolds with an 

affine invariant metric, each tangent space has a different inner product varying as a function 

of the base point b, i.e., u, v b: = tr(b−1/2ub−1vb−1/2). This makes comparison of trajectories 

difficult without moving to tangent bundle formulations. This issue is discussed in some 

detail in [46, 27]. However, note that

REMARK 2.4.—When the base point b is the identity I, then the inner product is exactly the 

Euclidean metric u, v b: = tr(b−1/2ub−1vb−1/2) = tr(uv) = tr(uTv).

This follows from the fact that u and v are symmetric matrices on SPD(p). We take 

advantage of this property through parallel transport. Specifically, we can bring all of 

the data to TIℳ which will allow for a meaningful comparison of two tangent vectors 

from different base points. Similar schemes have been used for projection on submanifolds 

in [70] and other problems [55]. With a fast algorithm to compute (2.2) available, we 

can now accurately model longitudinal trajectories of covariances matrices. Our statistical 

procedure described next simply assumes the availability of some suitable scheme to solve 

the manifold-regression as defined in (2.2) efficiently and does not depend on particular 

properties of the foregoing algorithm.

3. Test Statistics for SPD(p) Trajectories.

With an algorithm to construct a regression model for covariance matrix responses in hand, 

we can now describe a key component of our contribution: a test statistic which allows 

addressing the main question of interest: Is the progression/trajectory of covariance matrices 
(over time) different across two groups? In the standard two-sample testing problem, a 

hypothesis test is set up to check if the parameters of each group are significantly different:

H0:θ1 = θ2 vs . HA:θ1 ≠ θ2 (3.1)

Recall that in a general linear model (GLM), when testing for mean group differences, 

the test parameters are the regression slopes from a standard GLM fit. In our setting, the 

parameters of interest are the population covariance trajectories estimated from the manifold 

regression in (2.2), see Fig. 1. While the trajectories and the slopes are related, note that our 

parameters are estimated on the manifold. Two unique manifold trajectories, when projected 

as simple multivariate responses in Euclidean space, may not be significantly different under 

the GLM hypothesis testing framework, as has been observed by [14]. Returning to our 

longitudinal trajectory formulation, we have the following naïve Covariance GLM:

DEFINITION 3.1.

Let vec(Cg,t) be the vectorized covariance matrix at timepoint t for group g ∈ {1, 2}. Then 

the naïve Covariance GLM is defined as
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vec(Cg, t) = βg
0 + βgt + ϵ (3.2)

with the slope θ = β in the hypothesis test in (3.1), and vec(·) is the vectorized form of the 

input matrix.

With this model, hypothesis testing reduces to a simple difference of slopes, which is 

well-studied in classical statistics literature.

DEFINITION 3.2.

[54] Let β1, β2 be the multivariate slopes calculated from estimating (3.2). Then an α-level 

hypothesis test rejects the null hypothesis β1 = β2 when L > χp2|1 − α, where

L = (β̂1 − β̂2)Σ−1(β̂1 − β̂2) (3.3)

Knowing that the response space is structured, i.e., our covariance matrices lie on the SPD 

manifold, we seek a more appropriate test and corresponding test statistic which adequately 

captures this knowledge.

Observe that we can directly apply the manifold regression in §2 to solve for a linear model 

on the manifold. That is, we construct the manifold GLM as

DEFINITION 3.3.

Let Cg, t be the covariance matrix at timepoint t for group g ∈ {1, 2}. Then the Longitudinal-

Covariance GLM (LCGLM) is defined as

Cg, t = Exp(bg, V gt) (3.4)

with bg and Vg being the base point and tangent vector respectively, as described in §2.

But instead of solving p(p − 1)/2 independent regressions, now we must concurrently solve 

for the entire manifold-valued response variable. In this case, we cannot directly compare 

our trajectories because they lie in different tangent spaces. To accurately compare two 

tangent vectors, we must parallel transport both vectors to the same tangent space. Once 

they are both in the same space, we can construct a simple test statistic for the trajectory 

difference.

L = ‖Γb1 IV 1 − Γb2 IV 2‖I
2

(3.5)

Recall that the inner product at the Identity I coincides with the Euclidean metric. This 

can now be naturally interpreted as a difference of slopes, and together with a standard 

Euclidean Normal noise assumption yields the following hypothesis test.
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PROPOSITION 3.4.

Assume that Γb IV  is normally distributed N(0, I). Then the statistic defined in (3.5) 

follows a χp2 distribution with p degrees of freedom, and the threshold test in (3.2) is an 

α-level hypothesis for the covariate trajectory group difference.

3.1. Incorporating First-Order Differences.

In many real world situations, first-order information in the data is often valuable in 

identifying group differences. Restricting our analysis to only the second-order interactions, 

i.e., covariances, may be inefficient (or suboptimal) when the mean signal difference 

between groups is large. Our construction easily extends to these cases. Particularly, the 

product space over both means and covariances is in ℝp × SPD(p).

REMARK 3.5.—The typical GLM on the first order information is defined in the standard 

Euclidean space. So, computing the regression in the product space ℝp × SPD(p) amounts 

to simply computing the regression on the first and second order statistics (mean and 

covariance) separately.

The above statement suggests that by applying the manifold regression to the covariances 

and the standard regression model for the means, we are directly solving the product space 

regression problem, incorporating both first and second order statistics. However, in these 

cases, the statistic defined above in (3.5) does not directly take into account the potential 

difference in means. However, given our Normal noise assumption we can easily invoke the 

standard Gaussian multivariate likelihood statistic for group differences.

DEFINITION 3.6.—Let μ̂t, Σ̂t be the estimated mean and covariance from the standard linear 

model and our manifold-covariance GLM respectively. Then the Gaussian likelihood of our 

data X is

P (X | μ̂, Σ̂) ∏
t = 1

T
∏
i = 1

nt
P (Xt |N(μ̂t, Σ̂t)), (3.6)

where Xt is the subset of our data collected at timepoint t. Additionally, we can define a 

standard likelihood ratio test statistic as:

Lprod = P (X1 | μ̂1, Σ̂1)P (X2 | μ̂2, Σ̂2)
P (X1, 2 | μ̂1, 2, Σ̂1, 2)

(3.7)

This statistic is again χp2-distributed [54], and an α-level hypothesis test for group difference 

analysis can be defined in the same way as above. While our manifold regression modeling 

is focused on the case of centered data (where the mean signal may not be significantly 

different between the groups), we use the product space construction, wherever appropriate, 

in experimental evaluations.
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4. Localizing Group Differences for SPD(p) Trajectories.

The above procedure provides a precise mechanism to derive a statistic from the group-

wise covariance matrix trajectories. However, when the effect sizes are poor, any scheme 

operating on the trajectories of the full covariance matrix may still fail to identify group 

differences (as is the case in our experiments). To improve statistical power, localizing the 

process of computing the trajectories only to the relevant features is critical. To this end, we 

consider the following global hypothesis testing problem

H0: ∀R, β1
R = β2

R vs . H1: ∃R, β1
R ≠ β2

R,

where β denotes the slope and R is the region of the covariance matrix which only includes 
the relevant features, see Fig. 2. It turns out that by adapting Scan statistics [15, 3], we 

will be able to exclude the effect of irrelevant regions of the covariance matrix in the 

calculated trajectories. By extending this concept to graphs, we obtain an algorithm to 

identify subsets of features of the covariance matrix which show group differences that are 

otherwise unidentifiable, in a statistically rigorous way.

4.1. Scan Statistics.

Scan statistics are a valuable tool for structured multiple testing. In its simplest form, we 

can consider a setting where we place a window (or box) over a region R in an image and 

calculate a local statistic LR, e.g., an average or a response to a convolution filter. Then, 

the window can be raster scanned at various locations in the image (ℛ) and the maximum 

over the set of local statistics can be called the scan statistic. Intuitively, if the image is 

assumed to be a Gaussian random field, we can set up a null hypothesis using a critical 

value and finding a statistically significant signal (i.e., regions) corresponds to comparing 

the local region-wise statistic with the critical value. Of course, there is flexibility in terms of 

specifying properties of the regions as described next.

DEFINITION 4.1.—Let ℛ be the collection of all possible structured regions, and LR be 

some statistic over region R, a structured subset of ℛ. The scan statistic is defined as 

L* = maxR ∈ ℛLR.

Recent results in scan statistics show how size corrections can be used to increase detection 

power in multi-scale analysis with nice guarantees [65, 66]. To utilize these ideas for our 

hypothesis test, we must extend scan statistics and these size corrections to a graph setting 

where the graph is induced by a sparse estimation of the precision matrix, e.g., graphical 

lasso (or any other algorithm of choice) over the features. To do so, structured regions R and 

a statistic LR on each region must be defined on the graph. Intuitively, in our case, LR must 

capture the “difference” in group-wise covariance trajectories. As we will describe shortly, it 

is in the context of this statistic where we utilize the LCGLM (3.4), which will be invoked at 

the level of individual regions R, one by one.

Let G: = (V, E) be a graph over the features (represented in the covariance matrix) with 

vertex set V and edge set E. We define the structured region R ⊆ G as a connected 
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subgraph of G corresponding to the selection of those vertices as our feature subset (block 

of the covariance matrix, see Fig. 2). A natural question is whether such an enumeration 

is tractable if the number of connected subgraphs ℛ is exponential. It turns out that if we 

make a mild assumption on the graph, the number of induced regions can be shown to be 

polynomially bounded. Further, it then naturally provides a size correction, the analog for a 

multiple testing adjustment.

Remarks.: In our motivating application, the group differences we seek to identify will 

involve a cohesive set of features that will be connected to each other, by definition (large 

changes in covariances indicate dependent features). Based on this observation, we assume 

that the true localized subgraph is a “ball” subgraph.

DEFINITION 4.2.—A ball subgraph consists of nodes with a given radius r from a particular 

node (see Fig. 2). The collection of ball subgraphs is defined as

ℛ = {B(v, r):v ∈ V and r ∈ ℕ} (4.1)

where the ball subgraph B(v, r): = {v′ ∈ V :d(v, v′) ≤ r}, and d(v, v′) is the minimum length 

path connecting v and v′.

With this assumption, it can be verified that we now only need to search a polynomially 

bounded set of regions.

REMARK 4.3.—The number of unique ball subgraphs in any graph G is bounded above by 

D |V|, where D is the diameter (longest chain) of the graph G.

On these regions (i.e., blocks of covariance matrix), we will invoke LCGLM to provide 

us a statistic LR. This is just the difference in slopes of the calculated manifold regression 

across groups in (3.5). We will iteratively obtain this statistic for distinct regions R and find 

subgraphs that differ in their trajectories across groups using a size correction for hypothesis 

tests.

Let us revisit the standard linear model setting and assume that our slopes βg
R correspond to 

the subset of slopes from features in R, and β̂g
R

 is an estimate of that slope. In this case, we 

have the following statistic (see e.g. [54]),

β̂1
R

− β̂2
R

ΣR
−1 β̂1

R
− β̂2

R
χ|E(R)|

2 , (4.2)

where ΣR
−1 is the covariance matrix of β̂1

R − β̂2
R

. With a normal noise assumption, this 

covariance will be identity and the statistic would simply be the l2-norm difference as in 

the classical analysis. To make the statistics comparable across different sizes, we use the 

standardized version of a χ|E(R)|
2  distribution,
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LR = (β̂1
R

− β̂2
R

)ΣR
−1(β̂1

R
− β̂2

R
) − E(R)

E(R) . (4.3)

We can extend this analysis to our manifold setting.

DEFINITION 4.4.—For a given structured region R, the region-based LCGLM is written as

(bg
R, V g

R) = argmin
(bR, V R) ∈ TℳR

E[d(Exp(bR, V Rtg), Cg
R)2] (4.4)

where Cg
R is the covariance matrix subblock defined by features included in R for group g (tg 

is our univariate predictor, i.e., time).

To compare the group trajectories, we first parallel transport each tangent vector to 

the identity as described in §2 and then compute the statistic in (3.5) given as 

‖Γb1
R IV 1

R − Γb2
R IV 2

R‖I
2
. In the case of the product space construction, we apply the 

test in (3.4) to the data subset corresponding to the features in region R, with the same 

correction as in (4.3).

Summary.: We now have a region-based statistic for the manifold regression setting 

that is approximately normally distributed N(0, 1), allowing effective comparison across 

differently-sized regions.

4.2. Size Correction.

A final unresolved yet important issue is that we must correct LR based on the number 

of edges E(R) in R. This has a direct consequence on detection power. Observe that the 

normalization for size correction should be determined by the null distribution of LR, i.e., 

when there is no slope difference in the trajectories between groups. In order to derive a 

correction, we need to characterize the behavior of scan statistics within roughly similar 

regions, maxR ∈ ℛ(A)LR, where ℛ(A) is the collection of region Rs with similar size as E(R),

ℛ(A) = R ∈ ℛ:A/2 < |E(R) | ≤ A . (4.5)

Clearly, the behavior of maxR ∈ ℛ(A)LR depends on the “complexity” of ℛ(A) . A clear 

understanding of how similar subgraphs relate to each other leads directly to a correction 

tied to their relative sizes.

To investigate the complexity of ℛ(A), we define the following quantities.

DEFINITION 4.5.—The distance between subgraphs R1 and R2 can be given as

d R1, R2 = 1 − |E R1 ∩ E R2 |
|E R1 ||E R2 | (4.6)
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DEFINITION 4.6.—Let the ϵ-covering number of ℛ(A), denoted by N(A, ϵ), be the smallest 

integer such that there is a subset ℛapprox(A, ϵ) of ℛ such that

sup
R1 ∈ ℛ(A)

inf
R2 ∈ ℛapprox(A, ϵ)

d R1, R2 ≤ ϵ
(4.7)

where |ℛapprox(A, ϵ)| = N(A, ϵ) .

We can verify that all regions in ℛ(A) can be approximated by regions in ℛapprox(A) with 

reasonably small error. From the definitions, notice that the complexity of ℛ(A) is reflected 

by N(A, ϵ) . If N(A, ϵ) is nicely bounded (as is the case here), scan statistics can be calculated 

very efficiently (Lemma 4.8).

Before stating this result, we make a mild assumption on our graph. For any ball subgraph, 

the edges around its center are not too sparse, compared to the edges in the outer region of 

the ball subgraph, i.e., hard on the inside, soft on the outside. This yields,

ASSUMPTION 4.7.—(Avocado) There exist constants S and H such that, for any 

r/2 ≤ r′ ≤ r and v ∈ V,

|E B v, r′ |
|E(B(v, r))| ≥ H 1 − |E B v, r − r′ |

|E(B(v, r))|
S

. (4.8)

We see that this assumption holds for many classes of graphs: a ring graph satisfies this 

condition when H = 1 and S = 1 and the 2-d lattice satisfies this condition when H = 1/4 

and S = 2 (see Fig. 3). With this assumption, we have the following result for the ϵ-covering 

number N(A, ϵ).

LEMMA 4.8.—Let |E| be the total number of edges in G. If (4.8) holds and A is given, then, 

for a constant CH,S which only depends on H and S in (4.8),

N(A, ϵ) ≤ CH, S
|E|
A

1
ϵ

S + 1
. (4.9)

The proof of this result follows from our ball-subgraph construction and our Avocado 

assumption and provided in the Appendix.

Intuitively, this result upper bounds the number of graphs that are necessary to search over to 

completely exhaust the search space of subgraphs. With this result, we can now construct a 

suitable size correction. Following the work of [65] and [66], we can increase the power of 

our test by using the following statistic:

T* = max
R ∈ ℛ

LR − 2 log |E|
|E(R)| . (4.10)
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The significance of this size correction is that we now have a single critical value for each 
candidate subgraph, regardless of the subgraph size. Our final test is defined as I[T* > qα],
where qα is the α-level quantile of T* under the null hypothesis (that no region is truly 

significant across groups). By construction, we can control the type 1 error at a specified 

α-level.

Under the alternative hypothesis of this framework, it is important to note that in many 

cases, large subgraphs that subsume smaller significant graphs may also have large test 

statistics, and our hypothesis test only indicates the existence of some significant region. To 

identify or localize the smaller subsets, we follow the procedure from [30], by beginning 

with the subgraph with the largest test statistic and iteratively removing overlapping 

subsets from the total set of subgraphs. This requires testing each regional/local statistic, 

LR − 2 log( |E | / |E(R) | )) against qα. Under this procedure, we can control the weak family-

wise error rate (wFWER) if we view our problem via the lens of multiple testing. The weak 

FWER is the probability of false discovery under the null hypothesis. To see that this is 

inherently controlled, note

ℙ FN ≥ 1|H0 = ℙ(T* > qα |H0) ≤ α, (4.11)

where FN is the number of false discoveries under the null hypothesis. With this correction 

at the group difference level, we completely avoid any multiple comparisons issues that 

would arise in the case of a test for each subgraph. In addition to controlling the false 

positive rate, we have the following guarantee on identifying truly significant regions under 

the normal noise assumption.

THEOREM 4.9.—If (4.8) holds and the number of edges in the candidate subgraph is larger 

than log2 |E|, i.e.,

|E(R) | ≫ log2 |E | ∀R ∈ ℛ, (4.12)

then the critical value qα satisfies

qα = O(1) . (4.13)

Moreover, as |E| → ∞, if a subgraph R0 obeys

(β1
R0 − β2

R0)
T

ΣR0
−1(β1

R0 − β2
R0)

|E(R0)| ≫ 2 log |E|
|E(R0)| ,

(4.14)

then as |E| → ∞,

ℙ LR0 − 2 log |E|
|E R0 | > qα 1. (4.15)

MEHTA et al. Page 14

Q Appl Math. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The full proof of this result follows a generic chaining argument (see, e.g. [60]) along 

with application of concentration inequalities and union bounds, and can be found in the 

Appendix.

Summary.: At a high level, this result directly characterizes the behavior of T* under the 

null hypothesis H0 and the alternative hypothesis H1, respectively. We see that (4.13) implies 

that T* can roughly be seen as a constant under the null hypothesis, and under the alternative 

hypothesis when (4.14) is satisfied, the test based on T* is consistent, see (4.15).

4.3. Workflow for conducting hypothesis tests on temporal trends of graphs.

With these guarantees, our full workflow is as follows. First, we use an oracle procedure 

to generate a graph over our features that roughly captures the conditional independences. 

Any procedure that provides a conditional independence graph is sufficient. Next, for each 

ball subgraph over this graph, we compute the Longitudinal-Covariance GLM over these 

features for both groups, and compute the statistics outlined in §3. We then compute the 

size-corrected statistic, and compare against the single critical value. For all regions that 

pass this threshold, we apply the procedure from [30]. This workflow shows how to conduct 

hypothesis tests on temporal trends of large covariance matrices, with improved power and 

bounded Type 1 error. Additional implementation details can be found in the Appendix.

5. Localization Evaluation: Trends of Tobacco Usage Across Gender.

We begin our empirical analysis of the model by first applying the subgraph localization 

procedure by itself (standalone), separate from our manifold regression scheme. In this case, 

our statistic is derived from only Generalized Linear Models (GLM) constructions, where 

the β̂g
R

 in equation (4.3) is the slope estimated from fitting standard first order linear models. 

Identifying the differentially varying subgraphs across groups in this way is similar to a 

simpler version of the planted clique identification problem [4], where the clique we are 

trying to identify corresponds to those nodes whose slopes vary significantly across groups.

Data.

The Center for Disease Control (CDC) provides extensive statistics regarding tobacco and 

alcohol usage across the US. This data has been collected systematically for the last few 

decades and is publically available (includes demographic information and gender). As a 

simple application of our proposed framework, we may pose the following question: which 

“sub-groups” of states tend to evolve differently in their correlation (pertaining to tobacco/

alcohol usage) over time? Our framework extends easily to answer this question. In this 

setup, the oracle graph is simply the adjacency graph of the continental US naturally which 

will be used directly in our scanning procedure. For this dataset, we have direct observations 

of node measures: the percentage of males and females who reported smoking or drinking 

heavily in each state. Using gender as the group, we fit standard linear models for each 

candidate subgraph, and compute the difference of gender-wise slopes statistic as described 

above. In Figure 4, we see the regions identified using our method, and interpret some of the 

tobacco usage findings here.
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In the northeast, we see that women have reduced their tobacco usage at a significantly faster 

rate than men compared to the rest of the country. We suspect that this may be at least partly 

tied to the development of women’s cigarette brands in the late 1960s and 1970s followed 

by subsequent aggressive public policy campaigns in the 1990s and 2000s to highlight health 

risks beyond pulmonary or cardiovascular diseases for women (e.g., infertility, reduced 

bone-density in post-menopausal women). We also see that state-wide indoor smoking bans 

were put in place in the Northeast ahead of many other states in the union. In the South, the 

trends among men and women also seems to differ significantly. (see Fig. 4). Apart from 

health factors, the group-wise differences in the group-wise trends may also be explained 

by a few reasons identified in a study in 2007 [57] which found that as the state sales tax 

on cigarettes changed (increased), women were significantly more price elastic than men. 

Between 2006 and 2008, the cigarette tax increased dramatically for all of the 4 states 

identified except for Louisiana, whose tax rate has remained constant. Additionally, while 

Arkansas did increase their cigarette tax in 2009, they did not increase taxes in locations 
near borders shared with higher taxing states. These intricate relationships among states lend 

credibility to the fact that our scan statistics framework is indeed identifying interesting sub-

regions, and suggests that the full covariance-trajectory pipeline may be more appropriate if 

effects beyond the means are relevant within an analysis.

6. Pipeline Evaluation on Simulations and Baby Name Trends Over Time.

We next evaluate the ability of our entire analysis pipeline to identify group differences 

across temporally evolving covariance trajectories. In many existing analyses, the effect of 

the mean differences may be stronger than the effect of the interaction matrix. However, in 

cases where the mean signal is weak, we expect that the covariance effect will be important. 

To evaluate our model in this regime, we perform a set of simulation studies and also 

analyze a publicly available longitudinal dataset.

Simulations.

We randomly generate SPD matrices from a ‘path’ of 4 discrete points along the manifold, 

and use these data as population covariance matrices to generate 0-mean sample data. Table 

6 shows the results of the hypothesis testing procedure with 50 features averaged over 100 

runs, where both the true number of features with covariance trajectory differences, pt, and 

the number of samples per group, n, were varied. As expected, our recovery rate increases 

nicely as a function of the number of samples n and decreases as the size of region of change 

pt is increased when n is held constant.

We compare our model to baseline methods that may be used in practice for the foregoing 

group difference hypothesis test. In standard applications, general linear models (GLMs) 

are often the first line of attack. When the covariates are assumed to be independent, a 

simple linear model as in (3.2) may be suitable. However, when the group difference is 

influenced by specific interactions between covariates, such linear models require additional 

care. A typical solution is to introduce pairwise interaction terms into the model – a choice 

between all possible interactions or specific interactions specified by an expert. The first 

model has problems since the number of samples n ≪ p2 . In the second model, we depend 
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completely on the user’s choice of interactions, and must correct for multiple testing when 

testing different models, at least partly reducing the power of the final test. Figure 5 shows 

the value of our method over these models. For the interaction GLM case, we randomly 

select interaction terms to include in the GLM, with size pt (the ground truth number of 

variables in the interaction). In this way, we approximate the effect of an oracle specifying 

to the GLM which terms may describe the underlying interaction. We report the fraction 

of significance tests where a significance threshold of p ≤ 0.05 was found for each model, 

averaged over 100 runs. We see that our proposed scheme consistently achieves near-perfect 

results in terms of the percentage of null hypotheses that were correctly rejected (i.e., 

there was a significant group-difference signal). The power of scan statistics on graphs is 

particularly evident in the needle in haystack setting where the true differential signal is 

small (pt ≤ 8) and the sample size is small to medium. When the sample size is large and pt 

is also large, the standard linear model with additional interaction terms starts to approach 

the statistical performance of our algorithm.

Longitudinal trends in Baby Names.

In addition to the simulations above, we report results from a simple analysis of how male/

female baby names evolve over time over the last century. The United States Social Security 

Administration provides a publicly available dataset listing the frequency of the top 1000 

baby names in each state for the last 106 years. We evaluate our model in this context to 

examine which “sub-group” of states tend to evolve (or change) in their “name agreement” 

(or correlation) over time between boy names and girl names. Here, rather than calculating 

a sample covariance at each timepoint, we calculate a rank correlation matrix instead. For 

example, if two neighboring Gulf Coast states, say Georgia and Alabama, substantially 

agreed on both boys and girls names in the period following the second World War, but 

gradually this agreement declined over time for girls (but not boys), we expect that our scan 

statistics on graphs hypothesis test will segment out this differential signal (in slope trends) 

from the planar graph induced by the states sharing a border. Shown in Figure 6 are the 

regions identified using our method, applied on only the rank correlations for the top 10 

names for both genders per state per year. Each highlighted region indicates a sub-group 

where their “trends of correlation (or agreement/disagreement)” in preferred baby names 

over the last century varies between boys and girls. For states not identified by our model 

(in gray), we can conclude that the state-to-state name preference-interactions may have still 

evolved over time but we have insufficient statistical evidence to conclude that such trends 

(slopes) are different between boys and girls.

7. Identifying Differentially Covarying Features in Preclinical Alzheimer’s 

Disease.

We now describe experiments and results focused on the key motivation of this work — to 

facilitate analysis of a longitudinal study of individuals at risk for Alzheimer’s disease (AD) 

where the statistical signal is weak (with small to medium sample sizes). We describe the 

dataset details followed by the analysis and then interpret our conclusions in the context of 

scientific results that have been published in the literature in aging and dementia.
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Study background.

We analyzed data from a cohort of individuals who have been longitudinally tracked for at 

least three visits over multiple years, as part of an ongoing study (since 2001) to understand 

the disease processes in the brain before an individual exhibits signs of cognitive decline 

due to Alzheimer’s Disease (AD) [52]. The study, Wisconsin Registry for Alzheimer’s 

Prevention (WRAP) is among the largest of its kind in existence, focused on “preclinical” 

AD, i.e., when the individuals are still cognitively healthy, offering a window into the 

early disease processes where treatments, drugs and interventions are likely to be most 

effective. WRAP and its ancillary studies acquire neuroimaging data (MRI, PET with 

different tracers, diffusion MRI) and various clinical test scores, genetic and demographic 

data as well as clinical measures such as Cerebrospinal Fluid (CSF). Our analysis seeks to 

understand subtle group-wise differences in longitudinal patterns of dependencies between 

these measures at this early stage of the disease.

Dataset.

The dataset consisted of 114 subjects with imaging data from at least two types of imaging 

modalities: Positron emission tomography and diffusion weighted Magnetic Resonance 

(MR) images. Positron emission tomography (PET) images were used to calculate, using 

well-validated pre-processing pipelines, the mean amyloid-plaque load (an important 

biomarker for AD) in 16 different anatomical regions of interest in the brain. Amyloid 

plaque is known to be an AD-related pathology and generally precedes onset of cognitive 

symptoms. Separately, diffusion tensor MR imaging (DTI) data were processed and used to 

calculate both Fractional Anisotropy (FA) and Mean Diffusivity (MD) in 48 distinct regions 

[44]. DTI images provide information about structural connectivity between gray matter 

regions in the brain. In addition to these 108 (48×2+16) image-derived features, we also 

included in the analysis the participant’s scores on a battery of cognitive tests, known to 

be correlated with various neuropsychological functions [39]. Differences were evaluated on 

various groupings of the subjects which were, for the most part, based on known results 

in the literature. Specifically, gender, APOE (Apolipoprotein E) genotype and amyloid 

positivity (based on thresholding the amyloid plaque summaries) have all been evaluated 

as significant in AD studies [49] but often such analyses involve a population covering a 

broader disease spectrum where the signal is much stronger.

Is analysis of second order statistics necessary?—In Figure 7, we present 

histograms detailing the distribution of two critical cognitive tests, stratified across various 

groups of scientific interest. Evaluating these distributions were the key motivation for our 

exploration into the methods described in the paper. Small differences in means across 

groups regardless of grouping selection (i.e., stratification variable), and the saturation that 

occurs at the ceiling of cognitive test scores and other preliminary experiments conducted 

by us suggest that standard analyses are not sensitive enough to identify subtle higher-order 

differences.
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7.1. Results for Group difference analysis for individuals with imaging data.

We now describe, one by one, the components of the largest feature subset discovered for 

each stratification scheme and highlight the main scientific findings. In most cases, we 

provide a brief scientific interpretation of the results for the interested reader. Additional 

details and results are available in the appendix.

A) Graph Scan Statistics on slope differences across gender.—The most 

significant (based on region-score) subset identified by the gender grouping was between the 

FA DTI measurement in the left cingulum gyrus as well as the scores on the Rey Auditory 

Verbal Learning Test (RAVLT). In recent AD research, gender has been identified as a 

factor in the progression of various pathology measures (e.g., incidence and prevalence of 

AD is higher in women [18, 50]), and has contributed to a formal NIH notice (NOT-OD-15–

102). However, we note that previous work in the field has not identified gender-related 

differences when looking only at diffusion measures in the cingulum [40]. Our algorithm 

successfully identified longitudinal changes in interaction between these variables which 

supports the earlier results, and provides some evidence that as men and women age, their 

cognitive decline as measured by RAVLT manifests differently in relation to the cingulum 

gyrus.

B) Graph Scan Statistics on slope differences across genotype.—Next, we 

stratified the cohort based on the genotype known to be most closely linked with AD, i.e., 

the APOE (Apolipoprotein E) gene [8] — we inherit one APOE allele from each parent; 

having one or two copies of the e4 allele increases a person’s risk of getting AD whereas 

the rarer e2 allele is associated with a lower risk of AD. Using this stratification, we obtain a 

low-risk and an at-risk group of individuals. Here, we identified amyloid-load regions within 

the medial and lateral parietal lobes and find that in the “low-risk” group, the covariances 

between Digit Span and Stroop Color-Word scores (attention and concentration scores) and 

amyloid load moves from strongly negative towards 0 as a function of age (Table 3). In the 

“at-risk” group (APOE4), however, we find that as a function of age, the features become 

more and more positively correlated. Existing studies have shown that the accumulation 

of amyloid is significantly different across APOE4 gene expression [45], and our results 

provide some evidence that the expression of the genotype may interact with cognitive 

scores as well, even at this early stage of the disease, when the individuals in our cohort are 

cognitively healthy. The sets of features showing a differential signal are presented in Table 

3.

C) Graph Scan Statistics on slope differences across amyloid load positivity.
—As briefly described above, amyloid load is an important biomarker for AD. For our 

analysis, amyloid (or PiB) positivity is calculated using the mean amyloid PiB measures 

across all brain regions using a PiB PET image scan of the participant. When we used this 

measure for stratification (threshold was set at 1.18, following [11]), our model identified 

fifteen of the sixteen PiB regions that were input to the model when the density of the 

oracle graph was set to be high. This result is as expected, but interestingly we find that 

controlling for the linear combination of the features (through centering), the residual error 

still has significant signal with the PiB positivity measure, indicating that amyloid burden 
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interactions across brain regions plays a very important role in AD progression [25, 26, 61, 

28]. When the sparsity of the oracle graph was increased, however, four neighboring regions, 

the left and right corticospinal tract and the left and right cerebral peduncle were identified 

on both PiB and DTI measures (supported by the literature [13]), together with Part A of 

the Trail Making Test (see Table 4) which happens to be used in AD diagnosis [1]. This 

suggests that changes in atrophy within these regions, as measured by DTI, co-occur with 

changes in amyloid burden. Additionally, because these regions are highly correlated with 

rough and fine motor ability [47], it seems plausible that amyloid positivity will lead to 

higher ‘covariation’ in the regions associated with a measure of fine motor speed, i.e., the 

Trail Making Test.

7.2. Results for for Group difference analysis for individuals with Cognitive Testing data.

In addition to the dataset presented above, we apply our method to a much larger dataset 

consisting of approximately 1500 individuals with only cognitive testing data collected 

in a longitudinal manner. Each individual was administered these tests for between two 

and three time-points, yielding approximately n = 4000 samples for our model. For each 

assessment, a conference of experts applied a diagnostic label indicating normal cognition 

or mild cognitive impairment. Using this binary classification, we can stratify our population 

for group difference analysis. We find that among many different significant subsets, the 

covariance trajectory among the scores on both parts of the Trail-Making Test and on all 

trials of the RAVLT test explain a significant group difference. These have previously been 

shown to be the most sensitive tests for early cognitive decline [2]. Table 5 displays the other 

tests identified by our algorithm, and additional experiments on this larger cohort can be 

found in the appendix.

7.3. Baseline.

In various experiments on this dataset, when the MMGLM procedure is performed for 

the entire feature set in totality (not utilizing any of the proposed ideas based on scan 

statistics), and the null distribution derived using permutation testing, the procedure yields 
no significance across any scientifically interesting group stratifications. This implies that 

the ability to search over different blocks of the covariance matrix is critical in identifying 

meaningful group differences in the trajectories, unavailable using alternate schemes. For 

instance, simpler strategies work well enough for datasets such as ADNI – which includes 

diseased subjects as well as controls – where the signal is stronger and even temporal 

modeling may be unnecessary. While the scientific results need to be interpreted with 

caution and reproducibility experiments on other similar datasets (both within the US 

and internationally) are in the planning phase, we believe that the ability to localize 

differences in these interaction patterns in a statistically rigorous manner is valuable and 

these findings can be investigated standalone, via more classical schemes (e.g., structural 

equation modeling).

8. Conclusions.

The analysis of datasets to identify where clinically disparate groups differ is pervasive 

in biology, neuroscience, genomics and epidemiological studies. We find that graphical 
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models are an ideal tool to analyze high-dimensional data in these areas but have been 

sparingly used for the analysis of group-wise differences, especially in a longitudinal 

setting. Motivated by an application related to longitudinal analysis of imaging and clinical/

cognitive data from otherwise healthy individuals who are at risk for Alzheimer’s disease 

(AD), we show how a combination of manifold regression with a generalization of scan 

statistics to the graph setting yields tools that can be directly deployed. We present 

an efficient algorithm and develop the theoretical results showing the regimes where 

its application is appropriate. In various experiments, while the standard schemes are 

not sufficiently powered to detect the signal, our proposed formulation is able to detect 

meaningful group difference patterns, many of which have a clear scientific interpretation. 

We believe that these results are promising for the neuroimaging application described and 

other regimes where group-wise analysis is desired but the number of features is large.
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Appendix A.: Technical Proofs.

A.1. Proof of Lemma 4.8.

To remind the reader, this result was necessary in order to allow us to reduce the number 

of subgraphs (regions) that need to be evaluated over the graph. By bounding the covering 

number we have a guarantee that we do not need to consider an exponential number of 

subgraphs in order to find a localization.

Proof.

To upper bound N(A, ϵ), we first construct the ϵ-covering set of ℛ(A) under metric d. To this 

end, we decompose ℛ(A) into several disjoint sets

ℛj(A) = B(v, r) ∈ ℛ(A): 1 − (j + 1)ϵ
2 A < |E(B(v, r)) | ≤ 1 − jϵ

2 A ,

for j = 0, 1, …, 1
ϵ . Our strategy is to construct ϵ-covering set for each set ℛj(A) .

We only construct ϵ-covering set for ℛ0(A); ℛj(A) (j ≥ 1) can be treated similarly. To 

construct the ϵ-covering set for ℛ0(A), we denote by dv,r the largest positive number such 

that

|E B v, r − dv, r |
|E(B(v, r))| ≥ 1 − ϵ

2, (A.1)

for every v ∈ V and r ∈ ℕ . Let D1 the collection of dv,r such that B(v, r) ∈ ℛ0(A), i.e.
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D1 = dv, r:B(v, r) ∈ ℛ0(A) ,

and V1 the collection of nodes such that B(v, r) ∈ ℛ0(A), i.e.

V1 = {v:B(v, r) ∈ ℛ0(A)} .

We pick up the largest number in D1, denoted by dv1, r1, i.e. dv1, r1 ≥ dv, r∀dv, r ∈ D1 and 

define V1 as

V1 = v ∈ V1:v ∈ B(v1, dv1, r1/2) .

After defining V1, D2 and V2 can be defined as

D2 = D1\{dv, r:v ∈ V1} and V2 = V1\V1 .

Then we can pick up the largest number in D2, denote by dv2, r2 and V2 can be defined 

similarly. We can repeat the above process until DM and VM are empty for some M. We 

actually obtain a partition of V1,

∪
i = 1
M

Vi = V1 and Vi1 ∩ Vi2 = ∅ 1 ≤ i1 < i2 ≤ M .

Based on dv1, r1, …, dvM, rM, we are ready to prove the set

ℛ0(A, ϵ) = {B(vi, ri):1 ≤ i ≤ M}

is actually an ϵ-covering set for ℛ0(A) . To this end, it is equivalent to show that for arbitrary 

B(v′, r′) ∈ ℛ0(A), we have

d(B(v′, r′), B(vi, ri)) ≤ ϵ (A.2)

when v′ ∈ Vi . To show (A.2), we consider two cases where 

r′ > ri − dvi, ri/2 and r′ ≤ ri − dvi, ri/2. When r′ > ri − dvi, ri/2, then

B(vi, ri − dvi, ri) ⊂ B(v′, r′) .

Combining above result, (A.1), and the definition of ℛ0(A) yields
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|E B v′, r′ ∩ E B vi, ri |
|E B v′, r′ ||E B vi, ri |

≥
|E B vi, ri − dvi, ri |

|E B v′, r′ ||E B vi, ri |

≥ 1 − ϵ
2

|E B vi, ri − dri |
|E B v′, r′ |

≥ 1 − ϵ .

On the other hand, if r′ ≤ ri − dvi, ri/2, then

B(v′, r′) ⊂ B(vi, ri) . (A.3)

By definition of ℛ0(A), we can get

|E B v′, r′ ∩ E B vi, ri |
|E B v′, r′ ||E B vi, ri | ≥ |E B v′, r′ |

|E B vi, ri | ≥ 1 − ϵ .

Therefore, (A.2) is proved and ℛ0(A, ϵ) is an ϵ-covering set for ℛ0(A).

The rest of the proof is to bound the cardinality of ℛ0(A, ϵ), i.e. M. Note that (4.8) 

implies there exists some constant DH,S only depending on H and S such that, for any 

v ∈ V and r ∈ ℕ,

|E(B(v, r/2)) | ≥ DH, S |E(B(v, r)) | .

By the definition of dvi, ri, we can ensure B(vi, dvi, ri/4) are disjoint. Hence, this implies

|E(Vi)| ≥ |E(B(vi, dvi, ri/4))| ≥ DH, S
2 |E(B(vi, dvi, ri))| ≥ DH, S

2 HAϵS /2S + 1 .

The last inequality is suggested by (4.8) and (A.1). The volume argument yields

M ≤ |E|
DH, S

2 HAϵS /2S + 1 ≤ 2S + 1

DH, S
2 H

|E|
A

1
ϵ

S

(4.9) is obtained upon application of the above to each ℛj(A) .

A.2. Proof of Theorem 4.9.

Before we are ready to prove Theorem 4.9, we need the following result:
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LEMMA A.1.

Let Y1,...,Yd be i.i.d. standard Gaussian variable, i.e. N(0, 1) and a1,...,ad be a sequence of 

numbers. If

Z = ∑
i = 1

d
ai(Y i

2 − 1), (A.4)

then

ℙ(|Z | ≥ 2 |a |2 x + 2|a |∞x) ≤ 2exp( − x) (A.5)

where |a |2 = ∑i = 1
d ai2 and |a |∞ = maxi = 1, …, d|ai| .

Proof.—This is a direct extension of lemma 1 in [35] to the negative case. We follow 

arguments similar to theirs. Let φ(x) be the the logarithm of the Laplace transform of 

Y i
2 − 1. For any − 1/2 < x < 1/2,

ϕ(x) = log(E(exp(x(Y i2 − 1)))) = − x − 1
2log(1 − 2x) ≤ x2

1 − 2|x| .

This leads to

log E exZ = ∑
i = 1

d
log E exp aix Y i2 − 1

≤ ∑
i = 1

d ai2x2
1 − 2|ai|x

≤
|a |2

2x2
1 − 2|a |∞x

With the same arguments in [35], we could prove that

ℙ Z ≥ 2|a |∞x + 2|a |2 x ≤ exp( − x) .

The other direction can be proved if we apply the same argument for −Z. □

With this in hand we proceed to prove Theorem 4.9.

Proof.—In the following proof, C always refers to some constant, although its value may 

change from place to place. First, we prove (4.13). To this end, we prove concentration 

inequalities for LR for some R and LR1 − LR2 for some R1 ≠ R2. Since we assume the noise 

follows normal distribution, we have

(β̂1
R − β̂2

R)
T

ΣR
−1(β̂1

R − β̂2
R) =

∑Xi2 − (∑Xi)
2

2 ‖β̂1
R − β̂2

R‖
2

χ|E(R)|
2 .

MEHTA et al. Page 24

Q Appl Math. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



By tail bound for χ2 random variables (see e.g. [35]), we can yield

ℙ LR > 2t + 2t2
|E(R)| ≤ exp(−t2) . (A.6)

By definition, LR1 − LR2 can be written as

LR1 − LR2 =
∑i ∈ R1\R2Zi

|E R1 | + 1
|E R1 | − 1

|E R2 | ∑
i ∈ R1 ∩ R2

Zi −
∑i ∈ R2\R1Zi

|E R2 |

where Zi are independent random variable following distribution χ1
2 − 1.. Lemma A.1 

implies

ℙ |LR1 − LR2| > 2 2d R1, R2 t + 2t2

min |E R1 |, |E R2 | ≤ 2exp(−t2) . (A.7)

We now proceed to prove (4.13) by applying a chaining argument (See [60]) and 

concentration inequalities (A.6) and (A.7). Recall ℛapp(A, ϵ) is the smallest ϵ-covering set of 

ℛ(A) and N(A, ϵ) is the covering number of ℛ(A). For any subgraph candidate R, we denote 

by

πl(R) = argminR′ ∈ ℛapp(A, e−l)d(R, R′) .

For any l* > l*, which will be specified later, we write maxR ∈ ℛ(A)LR into three parts

max
R ∈ ℛ(A)

LR ≤ max
R ∈ ℛ(A)

|LR − Lπl*(R)| + ∑
l = l*

l* − 1
max

R ∈ ℛ(A)
|Lπl + 1(R) − Lπl(R)| + max

R ∈ ℛ(A)
Lπl*(R) .

Now, we bound these three terms above separately.

Term 1.

Let l* = 2log|E|. By concentration inequality (A.7) and union bound, we have

ℙ max
R ∈ ℛ(A)

|LR − Lπl*(R)| > 2 2(x + log |E | )
|E| + 4x + 8log |E|

A

≤ |ℛ(A) |ℙ |LR − Lπl*(R)| > 2 2(x + log |E | )
|E| + 4x + 8log |E|

A
≤ 2|ℛ(A)|

|E|2
exp( − x) ≤ 2exp( − x)

for x < log|E|. Therefore, we have
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ℙ max
R ∈ ℛ(A)

|LR − Lπl*(R)| > C(x + log |E | )
A ≤ exp( − x),

for x < log|E|.

Term 2.

Let l* = log log(|E|/A). Recall that the Avocado assumption (4.8) suggests that

N(A, ϵ) ≤ CH, S
|E|
A

1
ϵ

S + 1
. (A.8)

Applying concentration inequality (A.6) along with

t = log |E|
A + (S + 1)log log |E|

A + x + C (A.9)

and the union bound, we have

ℙ max
R ∈ ℛ(A)

Lπl*(R) > 2t + 2t2
A

≤ N A, 1
log( |E | /A) ℙ Lπl*(R) > 2t + 2t2

A

≤ CH, S
|E|
A log |E|

A
S + 1

ℙ Lπl*(R) > 2t + 2t2
A

≤ exp( − x)

for x < log|E|. Here we also apply condition (4.12). Therefore, we obtain

ℙ max
R ∈ ℛ(A)

Lπl, (R) > 2 log |E|
A + (S + 1)loglog |E|

A + x + C ≤ exp( − x)

for x < log|E|.

Term 3.

For any given l, application of concentration inequality (A.7), covering number condition 

(A.8), and the union bound yields,

ℙ max
R ∈ ℛ(A)

|Lπl + 1(R) − Lπl(R)| > C(log( |E | /A) + l + x)
el + C(log( |E | /A) + l + x)

A

≤ CH, S
|E|
A e(l + 1)(S + 1)ℙ |Lπl + 1(R) − Lπl(R)| > C(log( |E | /A) + l + x)

el + C(log( |E | /A) + l + x)
A

≤ exp( − x)
l2

.

for any x < log|E|. With another standard application of the union bound, we have
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ℙ ∑
l = l*

l* − 1
max

R ∈ ℛ(A)
|Lπl + 1(R) − Lπl(R)| > C(log( |E | /A) + x)

log( |E | /A) + log2 |E | + xlog |E|
A

≤ ∑
l = l*

l* − 1
ℙ max

R ∈ ℛ(A)
|Lπl + 1(R) − Lπl(R)| > C(log( |E | /A) + l + x)

el + C(log( |E | /A) + l + x)
A

≤ ∑
l = l*

l* − 1 exp( − x)
l2

≤ 2exp( − x) .

Putting the three terms above together yields

ℙ max
R ∈ ℛ(A)

LR > 2 log |E|
A + C(x + 1) ≤ 4

log(e |E | /A)exp( − x),

where we apply A ≫ log2 |E| and the inequalities a + b ≤ a + b and a + b ≤ a + b/ a .

Now, we apply this bound to A = |E|2−k, k ≥ 0 yielding

ℙ max
R ∈ ℛ

LR − 2 log |E|
|E(R)| > C(x + 1) ≤ 8exp( − x) .

This immediately suggests that qα = O(1).

Now, let’s turn to the case when a subgraph is significant, that is to prove (4.15). Assume the 

significant region is R0. Using standard statistics we calculate the mean and variance of LR0

E(LR0) =
(β1

R0 − β2
R0)

T
ΣR0

−1(β1
R0 − β2

R0)
|E(R0)| and V ar(LR0) = 2 + 4

(β1
R0 − β2

R0)
T

ΣR0
−1(β1

R0 − β2
R0)

|E(R0)| .

By Chebyshev’s inequality, we have

ℙ
|LR0 − E LR0 |

V ar LR0
> x ≤ 1

x2 . (A.10)

If β1
R0 − β2

R0 T
ΣR0

−1 β1
R0 − β2

R0 ≥ |E R0 |, then (A.10) suggests

ℙ LR0 > |E R0 | 1, |E | ∞

by taking x as a sequence (e.g., log log(|E(R0)|)) which increases slow enough in (A.10). 

This leads to (4.15). If β1
R0 − β2

R0 T
ΣR0

−1 β1
R0 − β2

R0 < |E R0 |, then V ar LR0 < 6. Then (4.14) 

and (A.10) imply
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ℙ LR0 − 2 |E|
|E R0 | > qα 1, as |E | ∞ .

□

Appendix B.: Implementation Details.

The workflow below describes one run of our model given a sparsity is specified for the 

oracle graph procedure.

(1) Oracle Graph. As noted in the main paper, we use graphical lasso (glasso) to 

generate an oracle graph, which allows to define structured regions (subgraphs) 

for scan statistics on graphs. Each element of the input matrix C in (B.1) 

for glasso is generated by calculating the slope for each position of the 

covariance matrix across the predictors for each group, and then taking the 

difference between the groups. The following inverse covariance estimation 

problem, glasso, is then solved using existing MATLAB interfaces to fast C 

implementations.

Θ = arg min
Θ ≽ 0

− log |Θ | + tr(CΘ) + λ‖Θ‖1 (B.1)

With sparsity parameter λ, this procedure generates a reasonably sparse oracle 
graph.

(2) Candidate Subgraphs. With the oracle graph in hand, we then construct the 

set of all ball subgraphs, as defined in Section 4 of our main paper. By limiting 

ourselves to only a few (D|V|) subgraphs, we can perform scan statistics more 

efficiently.

(3) Characterizing the Null Distribution. In the case where we have few samples, 

we cannot directly apply the χ2 result. In these cases, the null distribution is 

then characterized using permutation testing over all candidate subgraphs. For 

each subgraph the input data is permuted a number of times to generate a 

good representation of the distribution at that subgraph. All normalized (but not 

size-corrected) scan statistics are then calculated for all permutations across all 

subsets and then combined in order to create the null distribution.

(4) Calculating the Test Statistic For a specific subset of the data, the scan statistic 

is calculated and corrected as described in Section 4 of the main paper, over the 

original grouping of the data. For each group, the logitudinal-covariance GLM 

(3.3) is computed using the procedures in §2.3.

(5) Region Identification. We first identify all subsets whose statistic falls above 

the α-level threshold specified. Then the subset-collection procedure outlined in 

the main paper, developed by [30], is applied, and the non-overlapping critical 

regions are output.
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Numerical Considerations.

In practice, our empirical covariance matrices calculated on the sample data may not be 

positive definite. The matrix can be rank deficient when we do not have enough linearly 

independent samples. In addition, we may use a rank correlation matrix in its place, which 

also may not be PD. To resolve this issue, we project the empirical covariance matrix onto 

the symmetric-positive definite SPD(n) manifold. We first apply a standard procedure for 

transforming a symmetric matrix into a symmetric positive semidefinite (SPSD) one. As 

described in [69], the standard eigenvalue thresholding, or clipping, λSPSD = max(0,λ) is 

sensible since it provides the optimal projection of any matrix onto the SPSD manifold. 

Let Σ = UΛU⊤ be the eigenvalue decomposition of the matrix Σ. The SPSD projection of 

Σ is then projSPSD(Σ) = Udiag(max(λ1, 0), …, max(λn, 0))U⊤ . And so to project to the SPD(n) 

manifold we can simply add some epsilon to each element of the diagonal:

projSPD(Σ) = Udiag max λ1, 0 , …, max λn, 0 U⊤ + ϵI (B.2)

A remark on the term ϵI will be useful here. We find that in experiments, numerical 

problems can arise if the smallest eigenvalue of the projected matrix is too small. By 

iteratively adding a small ϵ until the smallest eigenvalue is above our threshold, we ensure 

that the matrix is positive definite for the exponential and logarithmic maps. They are 

necessary for moving back and forth between the manifold and the tangent space.

A note on localization accuracy.

In addition to simply checking whether or not we were able to correctly answer the 

hypothesis test group difference, it is important that if a significance is found, that it is found 

in the features that were originally used to generate the data. Using the same simulation 

setup as previous, we take the union of all subsets returned to be significant and check if 

each of the truly changing features pt are contained within the superset.

In this particular case we find that our localization is only dependent on the graphical 

lasso procedure we use to generate the oracle graph. As long as the sparsity specified is 

large enough to include at least pt edges, we find that in every simulation where we find 

a significant difference, the features that express the difference are a superset of the true 

features.

Appendix C.: Preclinical AD Extended Details and Results.

Data and Variable Descriptions.

In our neuroimaging experiments, a large number of our features describe specific and 

localized regions of the brain across multiple imaging modalities. Below we list and describe 

each of regions for each modality, and give a brief background on each of methods used to 

acquire the data. We also include the list of cognitive scores used in our analysis.
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PET Imaging.

Positron emission tomography has become an increasingly popular method of imaging the 

brain, specifically in the areas where cognitive decline can be strongly correlated with the 

specific matter being imaged. Pittsburgh compound B (PiB) was used as the tracer for 

these images, and the 16 mirrored (Left and Right) regions labeled below were selected as 

strongly correlated with the development and progression of Alzheimer’s Disease.

(1) PiB Angular L/R

(2) PiB Cingulum Ant L/R

(3) PiB Cingulum Post L/R

(4) PiB Frontal Med Orb L/R

(5) PiB Precuneus L/R

(6) PiB SupraMarginal L/R

(7) PiB Temporal Mid L/R

(8) PiB Temporal Sup L/R

The average of the voxel values in each ROI (region of interest) of the brain are used for 

imaging features. The 16 regions are highlighted in Figure 8.

FIG. 8. 
16 Positron Emission Tomography (PET) regions.
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FIG. 9. 
17 major DTI fiber bundles measured using Fractional Anisotropy (FA). The 48 selected 

for our analysis include a subset of these, which have been identified as critical regions that 

signal the beginnings of cognitive impairment.

DTI Imaging.

Diffusion tensor imaging is used to measure the restricted diffusion of water through 

and about regions of the brain. The 48 regions here are the aggregated measurements of 

total rates of diffusion for each voxel in that region. The two measurements, Fractional 

Anisotropy (FA) and Mean Diffusivity (MD) collectively well describe the diffusion in a 

specific region. The following is the full list of regions used in our analysis. Regions that 

spanned across both the left and right sides of the brain are indicated as such, and were 

treated as separate and independent in our analyses.

(1) Middle cerebellar peduncle

(2) Pontine crossing tract (a part of MCP)

(3) Genu of corpus callosum

(4) Body of corpus callosum

(5) Splenium of corpus callosum

(6) Fornix (column and body of fornix)

(7) Corticospinal tract R/L

(8) Medial lemniscus R/L

(9) Inferior cerebellar peduncle R/L

(10) Superior cerebellar peduncle R/L

(11) Cerebral peduncle R/L

(12) Anterior limb of internal capsule R/L

(13) Posterior limb of internal capsule R/L

(14) Retrolenticular part of internal capsule R/L

(15) Anterior corona radiata R/L

(16) Superior corona radiata R/L
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(17) Posterior corona radiata R/L

(18) Posterior thalamic radiation (include optic radiation) R/L

(19) Sagittal stratum (include inferior longitidinal fasciculus and inferior fronto-

occipital fasciculus) R/L

(20) External capsule R/L

(21) Cingulum (cingulate gyrus) R/L

(22) Cingulum (hippocampus) R/L

(23) Fornix (cres) / Stria terminalis (can not be resolved with current resolution) R/L

(24) Superior longitudinal fasciculus R/L

(25) Superior fronto-occipital fasciculus (could be a part of anterior internal capsule) 

R/L

(26) Uncinate fasciculus R/L

(27) Tapetum R/L

Cognitive Evaluations.

The battery of cognitive test scores in our analysis included a breadth of evaluations chosen 

specifically for their coverage of various measures of cognition. Among all tests given to the 

cohort, the following 17 were selected by expert clinicians and researchers in the field for 

their coverage and their potential value in understanding trends across groups.

(1) WAIS-III Digit Span Forward Raw Score

(2) WAIS-III Digit Span Backward Raw Score

(3) WAIS-III Letter-Number Sequencing Raw Score

(4) COWAT CFL Score

(5) Boston Naming Test Total Score

(6) RAVLT Learning Trial A1 Raw Score

(7) RAVLT Learning Trial A2 Raw Score

(8) RAVLT Learning Trial A3 Raw Score

(9) RAVLT Learning Trial A4 Raw Score

(10) RAVLT Learning Trial A5 Raw Score

(11) RAVLT Learning Trial A6 Raw Score

(12) RAVLT Delayed Recall Raw Score

(13) Stroop Word/Color-Word Scaled Score

(14) Trail-Making Test Part A

(15) Trail-Making Test Part B
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(16) Clock Drawing Test Score

(17) Center for Epidemiologic Studies Depression Scale Score

WAIS-III.

This is the most widely used IQ test. The Digit Span examination is specifically meant to 

evaluate the working memory of an individual. Participants are required to attempt to recall a 

series of numbers in order, both forwards and backwards. Letter-Number sequencing reflects 

a similar idea, but with a mix of both numbers and letters in increasing and alphabetical 

order, and is meant to be an indicator of more complex mental control [67].

Rey Auditory Visual Learning Test.

This test is specifically meant to evaluate all aspects of memory. Each trial evaluates a 

different type of memory, ranging from short-term and working memory to procedural and 

episodic memory. [53].

Trail-Making Test.

This is a very popular test in providing information about executive function in the brain. 

The test consists of drawing lines among a randomly generated set of points in a square, 

where each point is labeled with a number. In Part A, participants must ‘connect the dots’ 

in increasing numerical order, and in Part B in increasing numerical and alphabetical order. 

The score on the test is primarily dictated by the time in seconds it takes to complete the task 

for 25 of these ‘dots.’ More background information and normative analyses can be found in 

[62].

Other tests similarly measure various cognitive function. While the Depression Scale Score 

did not crop up in any of our analyses here, it has been shown that depression is strongly 

associated with AD-related decline [68].

Detailed Imaging with Cognitive Tests Results.

In the following tables we provide additional details of the statistical test we performed on 

the preclinical AD cohort. Each set contains a set of features found to display significant 

group difference (at the p ≤ 0.05 level) along the covariance trajectory divided by the group 

variable indicated.

While some of these associations are well-known, few have been indicated as novel by AD 

researchers and clinicians, and to be of interesting value for further analysis.

Detailed results on larger cohort with only cognitive scores.

We also applied our method to a larger cohort consisting of approximately 1500 subjects 

with varying temporal measurements on the battery of cognitive tests. Each individual 

had approximately 3 visits worth of data, and so our total number of measurements was 

approximately
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TABLE 6.

Group difference across Amyloid Load (PiB Positivity)

Amyloid Load (PiB Positivity)

Set 1 PiB Angular L/R PiB Cingulum Ant L/R

PiB Cingulum Post L/R PiB Frontal Med Orb L/R

PiB Precuneus L/R PiB Temporal Sup L/R

PiB Temporal Mid L/R PiB SupraMarginal L

Set 2 FA Cerebral peduncle R FA Cerebral peduncle L

MD Corticospinal tract R MD Corticospinal tract L

Trail-Making Test Part A Score MD Cerebral peduncle R

PET Cingulum Post R

TABLE 7.

Group difference in gender

Gender

Set 1 Rey Audio and Verbal Learning Test FA Cingulum L

Set 2
FA Medial lemniscus L FA Cingulum (hippocampus) L

FA Posterior thalamic radiation (include optic radiation) L

Set 3 FA Corticospinal tract R FA Superior fronto-occipital fasciculus R

TABLE 8.

Group difference across Genotype APOE4 expression

Genotype: APOE4

Set 1 Digit Span Backward Raw Score Stroop Color-word

PiB Cingulum Post L PiB Cingulum Post R

PiB Frontal Med Orb L PiB Frontal Med Orb R

PiB Precuneus L PiB Precuneus R

PiB SupraMarginal PiB Temporal Mid R

TABLE 9.

Group difference across Expert MCI Diagnosis

Consensus Conference

Set 2 Digit Span Backward Raw Score Stroop Color-word

PiB Cingulum Post L PiB Cingulum Post R

PiB Frontal Med Orb L PiB Frontal Med Orb R

PiB Precuneus L PiB Precuneus R
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Consensus Conference

PiB SupraMarginal PiB Temporal Mid R

n = 4000. In addition to the groupings used above, we were able to use an algorithmic 

cognitive impairment (ACI) measure to further evaluate the model against a factor which 

is known to be group-separating. Below are the tabulated feature sets identified by our 

model for each of the group separations described in the main paper. In this case to increase 

interpretability of the results we limited our search to groups of 3–6 features.

When grouped by genotype, the most indicative subset as shown in Table 11. These tests 

are most closely associated with memory, and we see that no tests of executive function or 

spatial ability (Trail-Making or Clock Drawing) were included.

In addition to an algorithmic measure of impairment, a conference of expert clinicians and 

researchers have given each individual a clinical impairment diagnosis for each time they 

underwent the cognitive battery. Using this as a group separator, we found a large number of 

overlapping subsets that displayed significant group difference at the p = 0.05 level. These 

are shown in Table 12. Trail-Making Test Parts A and B appeared in all identified subsets.

TABLE 10.

Group Difference Localization Across Algorithmic Impairment

Algorithmic Cognitive Impairment

Set 1 Boston Naming Test Total Score RAVLT Learning Trial A1 Raw Score

RAVLT Learning Trial A6 Raw Score

TABLE 11.

Group Difference Localization Across ApoE4 Genotype

Genotype: ApoE4

Set 1 WAIS-III Digit Span Backward Raw Score RAVLT Learning Trial A3 Raw Score

RAVLT Learning Trial A4 Raw Score RAVLT Learning Trial A5 Raw Score

TABLE 12.

Group Difference Localization Across Expert Clinical Diagnosis

Expert Consensus Measure

WAIS-3 Letter-Number Sequencing Raw Score Boston Naming Test Total Score

RAVLT Learning Trial A2 Raw Score RAVLT Learning Trial A3 Raw Score

RAVLT Learning Trial A4 Raw Score RAVLT Learning Trial A5 Raw Score

RAVLT Learning Trial A6 Raw Score RAVLT Delayed Recall Raw Score

Trail-Making Test Part A Trail-Making Test Part B

Clock Drawing Test Score Center for Epidemiologic Studies Depression Scale Score
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FIG. 10. 
Histograms of the Delayed Recall Scores for all time points for the ~ 4000 individual 

measurements across different group separations. We note in particular that the results 

found from the genotype separation above would have been hard to identify since given the 

distributions are extremely overlapping (top left) for this particular separation.

Appendix D.: Differential Geometry Basics and Notes.

We briefly introduce notions that we used in the main paper. For more details, we refer the 

reader to [12, 37, 56].

Differentiable manifold.

A differentiable (smooth) manifold of dimension n is a set ℳ and a maximal family of 

injective mappings φi:Ui ⊂ Rn ℳ of open sets Ui of Rn into ℳ such that:

(1) ∪i φi Ui = ℳ
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(2) for any pair i, j with φi(Ui) ∩ φj(Uj) = W ≠ ϕ, the sets φi−1(W ) and φj−1(W )

are open sets in Rn and the mappings φj−1 ∘ φi are differentiable, where ∘ 

denotes function composition.

3. The family {(Ui, φi)} is maximal relative to the conditions (1) and (2).

Roughly speaking, a differentiable (smooth) manifold ℳ is a topological space that is 

locally similar to Euclidean space and has a globally defined differential structure.

Tangent space (Tpℳ) .

The tangent space at p ∈ ℳ is the vector space, which consists of the tangent vectors of all 
possible curves passing through p.

Tangent bundle (Tℳ) .
The tangent bundle of ℳ is the disjoint union of tangent spaces at all points of 

ℳ, Tℳ = Ip ∈ ℳTpℳ . The tangent bundle is equipped with a natural projection map 

π:Tℳ ℳ .

Riemannian manifold.

A Riemannian manifold is equipped with a smoothly varying metric (inner product), which 

is called Riemannian metric.

Various geometric notions, e.g., the angle between two curves or the length of a curve, can 

be extended on the manifold.

Geodesic curves.

A geodesic curve on a Riemannian manifold is the locally shortest (distance-minimizing) 

curve. These are analogous to straight lines in Euclidean space and a main object to 

generalize linear models to Riemannian manifolds.

Geodesic distance.

The geodesic distance between two points on ℳ is the length of the shortest geodesic curve 

connecting the two points. More generally, distance between two points on Riemannian 

manifolds is defined by the infimum of the length of all differentiable curves connecting the 

two points. Let γ be a continuously differentiable curve γ : [a, b] ℳ between p and q in ℳ
and g be a metric tensor in Mc. Then, formally, the distance between p and q is defined as

d(p, q): = inf
γ ∫

a

b
gγ(t)(γ̇(t), γ̇(t))dt (D.1)

where γ(a) = p and γ(b) = q.
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Exponential map.

An exponential map is a map from a tangent space Tpℳ to ℳ, which is usually locally 

defined due to the existence and uniqueness of ordinary differential equation for the map. 

The geodesic curve from yi to yj can be parameterized by a tangent vector in the tangent 

space at yi with an exponential map Exp(yi, ⋅ ):Tyiℳ ℳ .

Logarithm map.

The inverse of the exponential map is the logarithm map, ℳ Tyiℳ . For completeness, 

Table 13 shows corresponding operations in the Euclidean space and Riemannian manifolds. 

In the main paper, for the readability when operations are multiply nested, exponential map 

and its inverse logarithm map are denoted by Exp(p, x) and Log(p, v) respectively, where 

p, x ∈ ℳ and v ∈ Tpℳ . They are usually denoted expp(x) and logp(v) in most of differential 

geometry books.

Separate from the above notations, matrix exponential, i.e, exp(X): = ∑ 1
k!Xk, where 0! = 1 

and X0 = I and matrix logarithm are denoted by as exp(·) and log(·).

Intrinsic mean.

Let d(·, ·) define the distance between two points. The intrinsic (or Karcher) mean is the 

minimizer to

y = arg min
y ∈ ℳ

∑
i = 1

N
d y, yi

2, (D.2)

which may be an arithmetic, geometric or harmonic mean depending on d(·, ·). A Karcher 

mean is a local minimum to (D.2) and a global minimum is referred as a Fréchet mean.

On manifolds, the Karcher mean satisfies ∑i = 1
N logyyi = 0.
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FIG. 11. 
Karcher mean on manifolds

This identity implies the first order necessary condition of (D.2), i.e., y is a local minimum 

with a zero norm gradient [32]. In general, on manifolds, the existence and uniqueness of 

th.e Karcher mean is not guaranteed unless we assume, for uniqueness, that the data is in a 

small neighborhood.

Parallel transport.

Let ℳ be a differentiable manifold with an affine connection ∇ and I be an open interval. Let 

c : I → ℳ be a differentiable curve in ℳ and let V0 be a tangent vector in Tc(t0)ℳ, where t0 

∈ I. Then, there exists a unique parallel vector field V along c, such that V(t0) = V0. Here, 

V(t) is called the parallel transport of V(t0) along c.

Geometry of SPD manifolds.

Covariance matrices are symmetric positive definite matrices. Let SPD(n) be a manifold for 

symmetric positive definite matrices of size n × n. This forms a quotient space GL(n)/O(n), 

where GL(n) denotes the general linear group
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TABLE 13.

Basic operations in Euclidean space and Riemannian manifolds.

Operation Euclidean Riemannian

Subtraction xixj = xj − xi xixj = Log(xi, xj)
Addition xi + xjxk Exp(xi, xjxk)
Distance ‖xixj‖ ‖Log(xi, xj)‖xi
Mean ∑i = 1

n xxi = 0 ∑i = 1
n Log(x, xi) = 0

Covariance E (xi − x)(xi − x)T E Log(x, x)Log(x, x)T

(the group of (n × n) nonsingular matrices) and O(n) is the orthogonal group (the group of (n 
× n) orthogonal matrices). The inner product of two tangent vectors u, v ∈ Tpℳ is given by

u, v p = tr(p−1/2up−1vp−1/2) (D.3)

This plays the role of the Fisher-Rao metric in the statistical model of multivariate 

distributions. Here, Tpℳ is a tangent space at p (which is a vector space) is the space 

of symmetric matrices of dimension (n + 1)n/2. The geodesic distance is d(p, q)2 = 

tr(log2(p−1/2qp−1/2)).

The exponential map and logarithm map are given as

Exp(p, v) = p1/2exp p−1/2vp−1/2 p1/2, Log(p, q) = p1/2log p−1/2qp−1/2 p1/2 . (D.4)

Let p, q be in SPD(n) and a tangent vector w ∈ Tpℳ, the tangent vector in Tqℳ which is the 

parallel transport of w along the shortest geodesic from p to q is given by

Γp q(w) = p1/2rp−1/2wp−1/2rp1/2 (D.5)

where r = exp p−1/2v
2 p−1/2 and v = Log(p, q)
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FIG. 1. 
Group-wise MMGLM: The left and right figures represent two linear models on the SPD(p) 

manifold. Points xi in the tangent space are our covariate or predictor, and points yi in the 

manifold space represent SPD(p) matrices. In our regression setting, we wish to minimize 

the error (brown curves) between the estimation and the sample points. Because each linear 

model has a different base point, the trajectories cannot be directly compared as in the 

Euclidean setting.
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FIG. 2. 
(left) A region of the sparse precision matrix, (center) The corresponding subgraph of that 

region, along with balls of varying radius from the root node E, (right) The ball subgraph 

constructed with r = 1. These subgraphs with bounded radius act as the structured regions on 

which scan statistics can be applied.
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FIG. 3. 
(Left) Chain, ring and 2D lattice graphs that satisfy the Avocado Assumption. (Right) Star 

graph that does not satisfy the property: from the center node the graph is “too dense on the 

outside.”
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FIG. 4. 
(left,top) States identified as having significantly different time-varying tobacco usage across 

gender from 2001 to 2015. (left,bottom) States identified as having significantly different 

time-varying heavy drinking use across gender from 2010 to 2015. (right) Linear regressions 

over tobacco usage fitted to the four states defined by the ball subgraph centered at 

Louisiana. Best viewed in color.
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FIG. 5. 
Correct null hypothesis rejections over 100 runs for three models. For p = 50 features, each 

plot shows the rejection rate for pt ∈ {4, 8, 20} (from left to right) respectively as a function 

of the number of sample points.
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FIG. 6. 
Contiguous states identified as having significantly different time-varying co-occurrences 

between boys and girls baby names from 1910 to 2015. Best viewed in color.
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FIG. 7. 
Histograms of the Boston Naming Test Scores and RAVLT Total Scores for all time points 

for the 114 individual measurements across different group separations. The means for each 

test score is not significantly different across different stratification variable.
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MEHTA et al. Page 52

TABLE 1.

Basic operations in Euclidean space and Riemannian manifolds.

Operation Euclidean Riemannian

Subtraction xixj = xj − xi xixj = Log(xi, xj)
Addition xi + xjxk Exp(xi, xjxk)
Distance ‖xixj‖ ‖Log(xi, xj)‖xi
Mean ∑i = 1

n xxi = 0 ∑i = 1
n Log(x, xi) = 0

Covariance E (xi − x)(xi − x)T E Log(x, x)Log(x, x)T
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TABLE 2.

Detection Accuracy of hypothesis test scheme (100 runs).

pt = 5 pt = 8 pt = 10 pt = 15

n = 10 0.06 0.02 0.04 0.03

n = 20 0.75 0.75 0.53 0.29

n = 50 0.99 1.00 1.00 0.80

n = 100 1.00 1.00 1.00 0.95

n = 200 1.00 1.00 1.00 0.98

n = 1000 1.00 1.00 1.00 1.00
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TABLE 3.

Group difference across Gender (left) and Genotype APOE4 expression (right). Three disjoint sets of features 

were identified as coavarying significantly differently among gender, while one larger set was identified in the 

genotype stratification.

Gender

Set 1 RAVLT Total (1–5)
FA Cingulum L

Set 2 FA Medial lemniscus L
FA Cingulum (hippocampus) L
FA Post thalamic radiation L

Set 3 FA Corticospinal tract R
FA Superior O.F. fasciculus R

Genotype: APOE4

Digit Span Backward Raw Score Stroop Color-word Score

PiB Cingulum Post L PiB Cingulum Post R

PiB Frontal Med Orb L PiB Frontal Med Orb R

PiB Precuneus L PiB Precuneus R

PiB SupraMarginal PiB Temporal Mid R
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TABLE 4.

Group difference across Amyloid Load (PiB Positivity)

Amyloid Load (PiB Positivity)

Set 1 PiB Angular L/R PiB Cingulum Ant L/R

PiB Cingulum Post L/R PiB Frontal Med Orb L/R

PiB Precuneus L/R PiB Temporal Sup L/R

PiB Temporal Mid L/R PiB SupraMarginal L

Set 2 FA Cerebral peduncle R FA Cerebral peduncle L

MD Corticospinal tract R MD Corticospinal tract L

Trail-Making Test Part A Score MD Cerebral peduncle R

PET Cingulum Post R
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TABLE 5.

Group difference localization across expert clinical diagnosis. With significantly more samples and a larger set 

of cognitive tests, those above were identified as significantly different across the expert consensus measure.

Expert Consensus Diagnosis

WAIS-3 LNS Raw Score Boston Naming Test Total Score

RAVLT A2 Raw Score RAVLT A3 Raw Score

RAVLT A4 Raw Score RAVLT A5 Raw Score

RAVLT A6 Raw Score RAVLT Delayed Recall Raw Score

Trail-Making Test Part A Trail-Making Test Part B

Clock Drawing Test Score CES Depression Scale Score
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