
DUAL-GLOW: Conditional Flow-Based Generative Model for 
Modality Transfer

Haoliang Sun1,2,3, Ronak Mehta1, Hao H. Zhou1, Zhichun Huang1, Sterling C. Johnson1, 
Vivek Prabhakaran1, Vikas Singh1

1University of Wisconsin-Madison

2Shandong University

3Inception Institute of Artificial Intelligence

Abstract

Positron emission tomography (PET) imaging is an imaging modality for diagnosing a number 

of neurological diseases. In contrast to Magnetic Resonance Imaging (MRI), PET is costly and 

involves injecting a radioactive substance into the patient. Motivated by developments in modality 

transfer in vision, we study the generation of certain types of PET images from MRI data. We 

derive new flow-based generative models which we show perform well in this small sample size 

regime (much smaller than dataset sizes available in standard vision tasks). Our formulation, 

DUAL-GLOW, is based on two invertible networks and a relation network that maps the latent 

spaces to each other. We discuss how given the prior distribution, learning the conditional 

distribution of PET given the MRI image reduces to obtaining the conditional distribution between 

the two latent codes w.r.t. the two image types. We also extend our framework to leverage 

“side” information (or attributes) when available. By controlling the PET generation through 

“conditioning” on age, our model is also able to capture brain FDG-PET (hypometabolism) 

changes, as a function of age. We present experiments on the Alzheimers Disease Neuroimaging 

Initiative (ADNI) dataset with 826 subjects, and obtain good performance in PET image synthesis, 

qualitatively and quantitatively better than recent works.

1. Introduction

Positron Emission Tomography (PET) images provide a three-dimensional image volume 

reflecting metabolic activity in the tissues, e.g., brain regions, which is a key imaging 

modality for a number of diseases (e.g., Dementia, Epilepsy, Head and Neck Cancer). 

Compared with Magnetic Resonance (MR) imaging, the typical PET imaging procedure 

usually involves radiotracer injection and a high cost associated with specialized hardware 

and tools, logistics, and expertise. Due to these factors, Magnetic Resonance (MR) imaging 

is much more ubiquitous than PET imaging in both clinical and research settings. Clinically, 

PET imaging is often only considered much further down the pipeline, after information 

from other non-invasive approaches has been collected. It is not uncommon for many 
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research studies to include MR images for all subjects, and acquire specialized PET images 

only for a smaller subset of participants.

Other use cases.

Leaving aside the issue of disparity in costs between MR and PET, it is not uncommon to 

find that due to a variety of reasons other than cost, a (small or large) subset of individuals 

in a study have one or more image scans unavailable. Finding ways to “generate” one type 

of imaging modality given another is attracting a fair bit of interest in the community and 

a number of ideas have been presented [34]. Such a strategy, if effective, can increase the 

sample sizes available for statistical analysis and possibly, even for training downstream 

learning models for diagnosis.

Related Work.

Modality transfer can be thought of “style transfer” [6, 11, 15, 16, 19, 22, 24, 25, 27, 30, 31, 

42, 43, 49, 50] in the context of medical images and a number of interesting results in this 

area have appeared [13,17,23,28,32,34,44]. Existing methods, mostly based on deep learning 

for modality transfer, can be roughly divided into two categories: Auto-encoders and 

Generative Adversarial Networks (GANs) [3,12,18]. Recall that auto-encoders are composed 

of two modules, encoder and decoder. The encoder maps the input to a hidden code h, and 

the decoder maps the hidden code to the output. The model is trained by minimizing the 

loss in the output Euclidean space with standard norms (ℓ1, ℓ2). A U-Net structure, introduced 

in [36], is typically used for leveraging local and hierarchical information to achieve an 

accurate reconstruction. Although the structure in auto-encoders is elegant with reasonable 

efficiency and a number of authors have reported good performance [32,37], constructions 

based on minimizing the ℓ2 loss often produce blurry outputs, as has been observed in [34]. 

Partly due to these reasons, more recent works have investigated other generative models. 

Recently, one of the prominent generative models in use today, GANs [12], has seen much 

success in natural image synthesis [3], estimating the generative model via an adversarial 

process. Despite their success in generating sharp realistic images, GANs usually suffer 

from “mode collapse”, that tends to produce limited sample variety [1, 4]. This issue is 

only compounded in medical images, where the maximal mode may simply be attributed to 

anatomical structure shared by most subjects. Further, sample sizes are often much smaller 

in medical imaging compared to computer vision, which necessitates additional adjustments 

to the architecture and parameters, as we found in our experiments as well.

Flow-based generative models.

Another family of methods, flow-based generative models [7,8,21], has been proposed for 

variational inference and natural image generation and have only recently begun to gain 

attention in the computer vision community. A (normalizing) flow, proposed in [35], uses 

a sequence of invertible mappings to build the transformation of a probability density to 

approximate a posterior distribution. The flow starts with an initial variable and maps it to 

a variable with a simple distribution (e.g., isotropic Gaussian) by repeatedly applying the 

change of variable rule, similar to the inference procedure in an encoder network. For the 

image generation task, the initial variable is the real image with some unknown probability 

function. Designating a well-designed inference network, the flow will learn an accurate 
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mapping after training. Because the flow-based model is invertible, the generation of 

synthetic images is straightforward by sampling from the simple distribution and “flowing” 

through the map in reverse. Compared with other generative models and Autoregressive 

Models [33], flow-based methods allow tractable and accurate log-likelihood evaluation 

during the training process, while also providing an efficient and exact sampling from the 

simple prior distribution at test time.

Where is the gap?

While flow-based generative models have been successful in image synthesis, it is 

challenging to leverage them directly for modality transfer. It is difficult to apply existing 

flow-based methods to our task due to the invertibility constraint in the inference network. 

Apart from various technical issues, consider an intuitive example. Given an MRI, we 

should expect that there would be many solutions of corresponding PET images, and vice 
versa. Ideally, we prefer the model to provide a conditional distribution of the PET given 

an MRI – such a conditional distribution can also be meaningfully used when additional 

information about the subject is available.

This work.

Motivated by the above considerations, we propose a novel flow-based generative model, 

DUAL-GLOW, for MRI-to-PET image generation. The value of our model includes explicit 

latent variable representations, exact and efficient latent-variable inference, and the potential 

for memory and computation savings through constant network size. Utilizing recent 

developments in flow-based generative models by [21], DUAL-GLOW is composed of two 

invertible inference networks and a relation CNN network, as pictured in Figure 1. We 

adopt the multi-scale architecture with spliting technique in [8], which can significantly 

reduce the computational cost and memory. The two inference networks are built to project 

MRI and PET into two semantically meaningful latent spaces, respectively. The relation 

network is constructed to estimate the conditional distribution between paired latent codes. 

The foregoing properties of the DUAL-GLOW framework enable specific improvements in 

modality transfer from MRI to PET images. Sampling efficiency allows us to process and 

generate full 3D brain volumes.

Conditioning based on additional information.

While the direct generation of PET from MRI has much practical utility, it is often also the 

case that a single MRI could correspond to a very different PET image – and which images 

are far more likely can be resolved based on additional information, such as age or disease 

status. However, a challenge arises due to the high correlation between the input MR image 

and side information: traditional conditional frameworks [21,29] cannot effectively generate 

meaningful images in this setting. To accurately account for this correlation, we propose a 

new conditional framework, see Figure 1, where two small discriminators (Multiple Layer 

Perceptron, MLP) are concatenated at the end of the top inference networks to faithfully 

extract the side information contained in the images. The remaining two discriminators 

concatenated at the left invertible inference network are combined with Gradient Reverse 

Layers (GRL), proposed in [10], to exclude the side information which exists in the latent 

codes except at the top-most layer. After training, sampling from the conditional distribution 
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allows the generation of diverse and meaningful PET images. Extensive experiments 

show the efficiency of this exclusion architecture in the conditional framework for side 

information manipulation.

Contributions.

This paper provides: (1) A novel flow-based generative model for modality transfer, 

DUAL-GLOW. (2) A complete end-to-end PET image generation from MRI for full three-

dimensional volumes. (3) A simple extension that enables side condition manipulation – 

a practically useful property that allows assessing change as a function of age, disease 

status, or other covariates. (4) Extensive experimental analysis of the quality of PET images 

generated by DUAL-GLOW, indicating the potential for direct application in practice to help 

in the clinical evaluation of Alzheimer’s disease (AD).

2. Flow-based Generative Models

We first briefly review flow-based generative models to help motivate and present our 

algorithm. Flow based generative models, e.g., GLOW [21], typically deal with single image 

generation. At a high level, these approaches set up the task as calculating the log-likelihood 

of an input image with an unknown distribution. Because maximizing this log-likelihood is 

intractable, a flow is set up to project the data into a new space where it is easy to compute, 

as summarized below.

Let x be an image represented as a high-dimensional random vector in the image space 

with an unknown true distribution x ~ p*(x). We collect an i.i.d. dataset D with samples 

{xi}i = 1
n  and choose a model class pθ(x) with parameters θ. Our goal is to find parameters θ

that produces pθ(x) to best approximate p*(x). This is achieved through maximization of the 

log-likelihood:

ℒ(D) = 1
n ∑

i = 1

n
logpθ(xi) . (1)

In typical flow-based generative models [7,8,21], the generative process for x is defined in 

the following way:

z pθ(z), x = gθ(z), (2)

where z is the latent variable and pθ(z) has a (typically simple) tractable density, such 

as a spherical multivariate Gaussian distribution: pθ(z) = N(z; 0, I) . The function gθ(·) may 

correspond to a rich function class, but is invertible such that given a sample x, latent-

variable inference is done by z = fθ(x) = gθ−1(x). For brevity, we will omit subscript θ from 

fθ and gθ.

We focus on functions where f is composed of a sequence of invertible transformations: 

f = fk ∘ ⋯ ∘ f2 ∘ f1, where the relationship between x and z can be written as:
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x
f1 h1

f2 h2⋯
fk z . (3)

Such a sequence of invertible transformations is also called a (normalizing) flow [35]. Under 

the change of variables rule through (2), the log probability density function of the model (1) 

given a sample x can be written as:

logpθ(x) = logpθ(z) + log |det(dz/dx)| (4)

= logpθ(z) + ∑
i = 1

k
log|det(dhi/dhi − 1)| (5)

where we define h0 = x and hk = z for conciseness. The scalar value log|det(dhi/dhi−1)| is 

the logarithm of the absolute value of the determinant of the Jacobian matrix (dhi/dhi−1), 

also called the log-determinant. While it may look difficult, this value can be simple 

to compute for certain choices of transformations, as previous explored in [7]. For the 

transformations fi i = 1
k  which characterizes the flow, there are several typical settings that 

result in invertible functions, including actnorms, invertible 1 × 1 convolutions, and affine 

coupling layers [21]. Here we use affine coupling layers, discussed in further detail shortly. 

For more, details regarding these mappings we refer the reader to existing literature on 

flow-based models, including GLOW [21].

3. Deriving DUAL-GLOW

In this section, we present our DUAL-GLOW framework for inter-modality transfer. We first 

discuss the derivation of the conditional distribution of a PET image given an MR image 

and then provide strategies for efficient calculation of its log-likelihood. Then, we introduce 

the construction of the invertible flow and show the calculation for the Jacobian matrix. 

Next, we build the hierarchical architecture for our DUAL-GLOW framework, which greatly 

reduces the computational cost compared to a flat structure. Finally, the conditional structure 

for side information manipulation is derived with additional discriminators.

Log-Likelihood of the conditional Distribution.

Let the data corresponding to the MR and PET images be denoted as 

Dm and Dp . From a dataset Dm = {xmi }i = 1
n , we are interested in generating images which 

have the same properties as images in the dataset Dp = {xpi }i = 1
n . In our DUAL-GLOW 

model, we assume that there exists a flow-based invertible function fp which maps the PET 

image xp to zp = fp(xp) and a flow-based invertible function fm which maps the MR image 

xm to zm = fm(xm). The latent variables zp and zm help set up a conditional probability 

pθ(zp|zm), given by

pθ(zp |zm) = N(zp; μθ(zm), σθ(zm)) (6)

Sun et al. Page 5

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The full mapping composed of fp, fm, μθ and σθ formulates our DUAL-GLOW framework:

xm
fm zm

μθ, σθ zp
fp−1

xp, (7)

see Figure 2. The invertible functions fp and fm are designed as flow-based invertible 

functions. The mean function μθ and the covariance function σθ for pθ(zp|zm) are assumed to 

be specified by neural networks. In this generating process, our goal is to maximize the log 

conditional probability pθ(xp|xm). By the change of variable rule, we have that

logpθ(xp |xm) = log(pθ xp, xm)/pθ(xm) (8)

= logpθ(zp |zm) + log |det(d(zp, zm)/d(xp, xm))|
|det(dzm/dxm)| (9)

= logpθ(zp |zm) + log(|det(dzp/dxp)|) . (10)

Note that the Jacobian d(zp, zm)/d(xp, xm) in (9) is, in fact, a block matrix

d(zp, zm)
d(xp, xm) =

dzp/dxp 0
0 dzm/dxm

. (11)

Recall that calculating the deteriminant of such a matrix is straightforward (see [38]), which 

leads directly to (10).

Without any regularization, maximizing such a conditional probability can make the 

optimization hard. Therefore, we may add a regularizer by controlling the marginal 

distribution pθ(zm), which leads to our objective function

max
fm, fp, μθ, σθ

logpθ(zp |zm) + log(|det( dzp
dxp

)|) + λlogpθ(xm)

= logpθ(fp(xp) |fm(xm)) + log(|det( dzp
dxp

)|)

+ λlog(pθ(fm(xm))|det( dzm
dxm

)|),

(12)

where λ is a hyperparameter, pθ(zm) = N(zm;0,I) and pθ(zp|zm) = N(zp;μθ(zm),σθ(zm)).

Interestingly, compared to GLOW, our model does not introduce much additional 

complexity in computation. Let us see why. First, the marginal distribution pθ(z) in GLOW 

is replaced by pθ(zp|zm) and pθ(zm), which still has a simple and tractable density. Second, 

instead of one flow-based invertible function in GLOW, our DUAL-GLOW has two flow-

based invertible functions fp, fm. Those functions are setup in parallel based on (12), 

extending the model size by a constant factor.
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Flow-based Invertible Functions.

In our work, we use an affine coupling layer to design the flows for the invertible functions 

fp and fm. Before proceeding to the details, we omit subscripts p and m to simplify notations 

in this subsection. The invertible function f is composed of a sequence of transformations 

f = fk ∘ ⋯ ∘ f2 ∘ f1, as introduced in (3). In DUAL-GLOW, {fi}i = 1
k  are designed by using 

the affine coupling layer [8] following these equations:

hi = fi(hi − 1)
hi; 1:d1 = hi − 1; 1:d1

hi; d1 + 1:d1 + d2 = (hi − 1; d1 + 1:d1 + d2 ⊙ exp(s(hi − 1; 1:d1))
+t(hi − 1; 1:d1),

(13)

where ⊙ denotes element-wise multiplication, hi ∈ Rd1 + d2, hi;1:d1 the first d1 dimensions 

of hi, and hi;d1 + 1:d1 + d2 the remaining d2 dimensions of hi. The functions s(·) and t(·) are 

nonlinear transformations where it makes sense to use deep convolutional neural networks 

(DCNNs). This construction makes the function f invertible. To see this, we can easily write 

the inverse function fi
−1 for fi as

hi − 1 = (fi)−1(hi)
hi − 1; 1:d1 = hi; 1:d1

hi − 1; d1 + 1:d1 + d2 = (hi; d1 + 1:d1 + d2 − t(hi; 1:d1))
⊙ exp(−s(hi; 1:d1)) .

(14)

In addition to invertibility, this structure also tells us that the log(|det(dzp/dxp)|) term in our 

objective (12) has a simple and tractable form. Computing the Jacobian, we have:

∂fi(hi − 1)
∂hi − 1

=
I1:d1 0

∂fi; d1 + 1:d1 + d2
∂hi − 1; 1:d1

diag(exp(s(hi − 1; 1:d1)))
, (15)

where I1:d1 ∈ Rd1 × d1 is an identity matrix. Therefore,

log(|det(dzp/dxp)|) = ∑
i = 1

k
log(|det(dhi/dhi − 1)|)

= ∑
i = 1

k
log(|det(diag(exp(s(hi − 1; 1:d1))))|)

= ∑
i = 1

k
log exp ∑

j = 1

d1
s(hi − 1; j)

which can be computed easily and efficiently, requiring no on-the-fly matrix inversions [21].
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Efficiency from Hierarchical Structure.

The flow f = fk ∘ ⋯f2 ∘ f1 can be viewed as a hierarchical structure. For the two datasets 

Dm = {xmi }i = 1
n and Dp = {xpi }i = 1

n , it is computationally expensive to make all features of 

all samples go through the entire flow. Following implementation strategies in previous 

flow-based models, we use the splitting technique to speed up DUAL-GLOW in practice, 

see Figure 3. When a sample x reaches the i-th transformation fi in the flow as hi − 1, we 

split hi − 1 in two parts hi−1,1 and hi−1,2, and take only one part hi−1,1 through fi to become 

hi = fi(hi−1,1). The other part hi−1,2 is taken out from the flow without further transformation. 

Finally, all those split parts {hi, 2}i = 1
k − 1 and the top-most hk are concatenated together to 

form z. By using this splitting technique in the flow hierarchy, the part leaving the flow 

“early” goes through fewer transformations. As discussed in GLOW and previous flow-

based models, each transformation fi is usually rich enough that splitting saves computation 

without losing much quality in practice. We provide the computational complexity in the 

appendix. Additionally, this hierarchical representation enables a more succinct extension to 

allow side information manipulation.

How to condition based on side information?

As stated above, additional covariates should influence the PET image we generate, 

even with a very similar MRI. A key assumption in many conditional side information 

frameworks is that these two inputs (the input MR and the covariate) are independent 

of each other. Clearly, however, there exists a high correlation between MRI and side 

information such as age or gender or disease status. In order to effectively incorporate 

this into our model, it is necessary to disentangle the side information from the intrinsic 

properties encoded in the latent representation zm of the MR image.

Let c denote the side information, typically a high-level semantic label (age, sex, disease 

status, genotype). In this case, we expect that the effect of this side information would be 

at a high level in relation to individual image voxels. As such, we expect that only the 

highest level of DUAL-GLOW should be affected by this. The latent variables zp should 

be conditioned on side variable c and zm = {hi, 2}i = 1
k  except hk. Thus, we can rewrite the 

conditional probability in (12) by adding c:

max
fm, fp, μθ, σθ

logpθ(zp |zm′ , c)

+ log(|det( dzp
dxp

)|) + λlogpθ(xm),
(16)

where zm′ = {hi, 2}i = 1
k − 1 is independent on c, and

pθ(zp |zm′ , c) = N(zp; μθ(zm′ , c), σθ(zm′ , c)) . (17)

To disentangle the latent representation zm′  and exclude the side information in zm′ , 

we leverage the well-designed conditional framework composed of both flow and 
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discriminators. Specifically, the condition framework tries to exclude the side information 

from {hi, 2}i = 1
k − 1 and keep it in hk at the top level during training time. To achieve this, we 

concatenate a simple discriminator for each {fi}i = 1
k − 1 and add a Gradient Reversal Layer 

(GRL), introduced in [10], at the beginning of the network. These classifiers are used for 

distinguishing the side information in a supervised way. The GRL acts as the identity 

function during the forwardpropagation and reverses the gradient in back-propagation. 

Therefore, minimizing the classification loss in these classifiers is equivalent to pushing the 

model to exclude the information gained by this side information, leading to the exclusive 

representation zm′ = {hi, 2}i = 1
k − 1 . We also add a classifier without GRL at the top level of fm, 

fp that explicitly preserves this side information at the highest level.

Finally, the objective is the log-likelihood loss in (16) plus the classification losses, which 

can be jointly optimized by the popular optimizer AdaMax [20]. The gradient is calculated 

in a memory efficient way inspired by [5]. After training the conditional framework, we 

achieve PET image generation influenced both by MRI and side information.

4. Experiments

We evaluate the model’s efficacy on the ADNI dataset both against ground truth images 

and for downstream applications. We conduct extensive quantitative experiments which 

show that DUAL-GLOW outperforms the baseline method consistently. Our generated PET 

images show desirable clinically meaningful properties which is relevant for their potential 

use in Alzheimer’s Disease diagnosis. The conditional framework also shows promise in 

tracking hypometabolism as a function of age.

4.1. ADNI Dataset

Data.—The Alzheimer’s Disease Neuroimaging Initiative (ADNI) provides a large database 

of studies directly aimed at understanding the development and pathology of Alzheimer’s 

Disease. Subjects are diagnosed as cognitively normal (CN), significant memory concern 

(SMC), early mild cognitive impairment (EMCI), mild cognitive impairment (MCI), late 

mild cognitive impairment (LMCI) or having Alzheimer’s Disease (AD). FDG-PET and 

T1weighted MRIs were obtained from ADNI, and pairs were constructed by matching 

images with the same subject ID and similar acquisition dates.

Preprocessing.—Images were processed using SPM12 [2]. First, PET images were 

aligned to the paired MRI using coregistration. Next, MR images were nonlinearly mapped 

to the MNI152 template. Finally, PET images were mapped to the standard MNI space using 

the same forward warping identified in the MR segmentation step. Voxel size was fixed for 

all volumes to 1.5 × 1.5 × 1.5mm3, and the final volume size obtained for both MR and 

PET images was 64 × 96 × 64. Through this workflow, we finally obtain 806 MRI/PET 

clean pairs. The demographics of the dataset are provided in the appendix. In the following 

experiments, we randomly select 726 subjects as the training data and the remaining 80 as 

testing within a 10-fold evaluation scheme.
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Framework Details.—The DUAL-GLOW architecture outlined above was trained using 

Nvidia V100 GPUs with Tensorflow. There are 4 “levels” in our invertible network, each 

containing 16 affine coupling layers. The nonlinear operators s(·) and t(·) are small networks 

with three 3D convolutional layers. For the hierarchical correction learning network, we split 

the hidden codes of the output of the first three modules in the invertible network and design 

four 3D convolutional networks for all latent codes. For the conditional framework case, 

we concatenate the five discriminators to the tail of all four levels of the MRI inference 

network and the top-most level of the PET inference network. The GRL is added between 

the inference network and the first three discriminators. The hyperparameter λ is the 

regularizer and set to 0.001. For all classification losses, we set the weight to 0.01. The 

model was trained using the AdamMax optimizer with an initial learning rate set to 0.001 

and exponential decay rates 0.9 for the moment estimates. We train the model for 90 epochs. 

Our implementation is available at https://github.com/haolsun/dual-glow.

4.2. Generated versus Ground Truth consistency

We begin our model evaluation by comparing outputs from our model to 4 state-of-the-art 

methods used previously for similar image generation tasks, conditional GANs (cGANs) 

[32], cGANs with U-Net architecture (UcGAN) [36], Conditional VAE (C-VAE) [9,39], 

pix2pix [16]. Additional experimental setup details are in the appendix. We compare using 

commonly-used quantitative measures computed over the held out testing data. These 

include Mean Absolute Error (MAE), Correlation Coefficients (CorCoef), Peak Signal-to-

Noise Ratio (PSNR), and Structure Similarity Index (SSIM). For Cor Coef, PSNR and 

SSIM, higher values indicate better generation of PET images. For MAE, the lower the 

value, the better is the generation. As seen in Table 1 and Figure 4, our model competes 

favorably against other methods.

Figure 5 shows test images generated after 90 epochs for Cognitively Normal and 

Alzheimer’s Disease individuals. Qualitatively, not only is the model able to accurately 

reconstruct large scale anatomical structures but it is also able to identify minute, sharp 

boundaries between gray matter and white matter. While here we focus on data from 

individuals with a clear progression of Alzheimer’s disease from those who are clearly 

cognitively healthy, in preclinical cohorts where disease signal may be weak, accurately 

constructing finer-grained details may be critical in identifying those who may be 

undergoing neurodegeneration due to dementia. More results are shown in the appendix.

4.3. Scientific Evaluation of Generation

As we saw above, our method is able to learn the modality mapping from MRI to 

PET. However, often image acquisition is used as a means to an end: typically towards 

disease diagnosis or informed preventative care. While the generated images may seem 

computationally and visually coherent, it is important that the images generated add some 

value towards these downstream analyses.

We also evaluate the generated PET images for disease prediction and classification. Using 

the AAL atlas, we obtain all 116 ROIs via atlas-based segmentation [45] and use the mean 

intensity of each as image features. A support vector machine (SVM) is trained with the 
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standard RBF kernel (e.g., see [14]) to predict binary disease status (Normal, EMCI, SMC 

vs. MCI, LMCI, AD) for both the ground truth and the generated images. The SVM trained 

on generated images achieves comparable accuracy and false positive/negative rates (Table 

2), suggesting that the generated images contain sufficient discriminative signal for disease 

diagnosis.

Adjusting for Age with Conditioning.—The conditional framework naturally allows 

us to evaluate potential developing pathology as an individual ages. Training the full 

conditional DUAL-GLOW model, we use ground truth “side” information (age) as the 

conditioning variable described above. Figure 6 shows the continuous change in the 3 

generated images given various age labels for the same MRI. The original image (left) is at 

age 50, and as we increase age from 60 to 100, increased hypometabolism becomes clear. 

To quantitatively evaluate our conditional framework, we plot the mean intensity value of 

a few key ROIs. As we see in Figure 7, the mean intensity values show a downward trend 

with age, as expected. While there is a clear ‘shift’ between AD, MCI, and CN subjects 

(blue dots lie above red dots, etc.), the wide variance bands indicate a larger sample size may 

be necessary to derive statistically sound conclusions (e.g., regarding group differences). 

Additional results and details can be found in the appendix.

4.4. Other Potential Applications

While not a key focus of our work, to show the model’s generality on visually familiar 

images we directly test DUAL-GLOW’s ability to generate images on a standard computer 

vision modality transfer task. Using the UT-Zap50K dataset [47,48] of shoe images, we 

construct HED [46] edge images as “sketches”, similar to [16]. We aim to learn a mapping 

from sketch to shoe. We also create a cartoon face dataset based on CelebA [26] and train 

our model to generate a realistic image from the cartoon face. Fig. 8 shows the results of 

applying our model (and ground truth). Clearly, more specialized networks designed for 

such a task will yield more striking results, but these experiments suggest that the framework 

is general and applicable in additional settings. These results are available on the project 

homepage and in the appendix.

5. Conclusions

We propose a flow-based generative model, DUAL-GLOW, for inter-modality 

transformation in medical imaging. The model allows for end-to-end PET image 

generation from MRI for full three-dimensional volumes, and takes advantage of explicitly 

characterizing the conditional distribution of one modality given the other. While inter-

modality transfer has been reported using GANs, we present improved results along with 

the ability to condition the output easily. Applied to the ADNI dataset, we are able to 

generate sharp synthetic PET images that are scientifically meaningful. Standard correlation 

and classification analysis demonstrates the potential of generated PET in diagnosing 

Alzheimer’s Disease, and the conditional side information framework is promising for 

assessing the change of spatial metabolism with age.
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Figure 1: 
The DUAL-GLOW framework. For the conditional module, the dashed and dotted pieces are 

added and removed respectively. The colored circle represents the latent code whereas the 

gray one is the image or the intermediate output.
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Figure 2: 
DUAL-GLOW for image generation.
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Figure 3: 
Spliting.
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Figure 4: 
Box plot of MAE metrics for different methods.
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Figure 5: Synthetic images are meaningful for subjects in both extremes of disease spectrum.
Left: CN. Middle: MCI. Right: AD. The generated PET images show consistency of 

hypometabolism (less red, more yellow) with the ground truth image.
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Figure 6: Conditioning on age should yield generated images that show increased 
hypometabolism with age.
These are representative results from our PET generation as a function of age. As we scan 

left to right, we indeed see a decrease in metabolism (less red, more yellow) which is 

completely consistent with what we would expect in aging.
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Figure 7: 
The mean intensity with 95% standard deviation bands of 3 ROIs with the change of age for 

all test subjects. The clear downward trend reflects expected hypometabolism as a function 

of age.
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Figure 8: 
Sample generation using DUAL-GLOW. The first row: UT-Zap50K dataset. The second 

row: CartoonFace dataset.
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Table 2:

Validation on the ground truth and synthetic images for the AD/CN classification.

Ground Truth Synthetic

Accuracy 94% 91%

False Negative Rate 6% 6%

False Positive Rate 0% 3%
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