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Representing individual electronic states for
machine learning GW band structures of 2D
materials
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Choosing optimal representation methods of atomic and electronic structures is essential

when machine learning properties of materials. We address the problem of representing

quantum states of electrons in a solid for the purpose of machine leaning state-specific

electronic properties. Specifically, we construct a fingerprint based on energy decomposed

operator matrix elements (ENDOME) and radially decomposed projected density of states

(RAD-PDOS), which are both obtainable from a standard density functional theory (DFT)

calculation. Using such fingerprints we train a gradient boosting model on a set of 46k G0W0

quasiparticle energies. The resulting model predicts the self-energy correction of states in

materials not seen by the model with a mean absolute error of 0.14 eV. By including the

material’s calculated dielectric constant in the fingerprint the error can be further reduced by

30%, which we find is due to an enhanced ability to learn the correlation/screening part of

the self-energy. Our work paves the way for accurate estimates of quasiparticle band

structures at the cost of a standard DFT calculation.
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The electronic band structure is one of the most funda-
mental and important characteristics of a crystalline solid.
It relates the quantum mechanical energy levels of an

electron in the solid to its (crystal) momentum and provides the
basis for describing and understanding a range of materials
properties. As a consequence, the accurate prediction of electro-
nic band structures represents a cornerstone problem of com-
putational condensed matter physics.

Density functional theory (DFT)1 with semi-local exchange-
correlation functionals2 is the standard method for solving the
electronic structure problem of materials from first principles.
However, the DFT single-particle energies do not in general
provide an accurate model for the electronic band structure3.
Instead, the gold standard for band structure calculations is
represented by the GW self-energy method4, which provides the
true quasiparticle (QP) band structure, i.e., it goes beyond a
mean-field description by explicitly accounting for exchange and
many-body screening effects5,6. In ref. 7 the mean absolute error
on the calculated bandgap relative to experimental references for
a set of ten simple semiconductors and insulators was found to be
2.05 eV for DFT-LDA and 0.31 eV for non-self-consistent
G0W0@LDA. Very similar results have been found in other
studies8,9. The improved accuracy of the GW method comes at
the price of a significantly more involved methodology and a
much higher computational cost. In practice, this means that GW
calculations are limited to small-scale studies of relatively simple
materials.

Recently, machine learning (ML) has attracted widespread
interest as a means to predict materials properties without per-
forming expensive quantum mechanical calculations10–15. In the
context of bandgap predictions, Zhou et al. trained a support
vector machine on 3896 experimental bandgaps using a repre-
sentation based only on elemental properties of the constituent
atoms16. Rajan et al. used different regressions methods to predict
bandgaps of MXene crystals using a training set of 76 G0W0

bandgaps and a representation encoding atomic and structural
properties17. Liang et al. used a representation based on atomic
ionicity descriptors to predict GW bandgaps of a set of 2D
semiconductors18. In all these previous studies, the ML model
was trained to predict the size of the bandgap rather than the full
k-resolved band structure. Thereby, important information is
missed including the type of the bandgap (direct or indirect), the
curvature of the valence and conduction bands at the extrema
points (effective masses), and the position and dispersion of other
bands away from the bandgap. Predicting the full band structure
directly from the atomic structure of the material is a daunting
challenge that, although possible in principle, would require
highly sophisticated ML models and immense amounts of
training data.

Here we take a different approach, in which the output from a
DFT calculation is taken as input to an ML model to predict the
full GW band structure. The philosophy behind our approach is
that standard DFT calculations are computationally very cheap,
in particular, compared to GW, and although they do not directly
produce the desired precision, they hold the gist of the material’s
genome and thus should provide an excellent starting point for
accurate property predictions. In our scheme, the rich, but
unmanageable, information contained in the DFT wave functions
is encoded into low dimensional fingerprints via energy-resolved
orbital projections and operator matrix elements. These state-
specific electronic fingerprints provide a description of the local
environment of a given electronic eigenstate in the infinite-
dimensional Hilbert space and are thus analog to the well-known
fingerprints used to describe atoms in chemical environments19.

Using a data set of 286 G0W0 band structures of non-magnetic
2D semiconductors comprising a total of 46,000 ðεQPnk ; kÞ pairs, we
train a gradient boosting algorithm to predict the G0W0 correc-
tion of an eigenstate from its DFT fingerprint. The method
achieves a mean absolute error (MAE) of 0.14 eV for individual
band energies and 0.18 eV for the bandgap. These deviations are
significantly smaller than the typical size of the G0W0 corrections
and also lower than the accuracy of the G0W0 method itself. The
model can be further and significantly improved by adding static
electronic polarisability to the fingerprint. A SHAP feature ana-
lysis reveals that the inclusion of the polarisability allows the ML
model to distinguish between materials with similar PBE band
structures but different dielectric screening properties, which is
directly related to the size of the GW correction.

We have used the resulting ML model to obtain G0W0 band
structures for ∼700 2D semiconductors from the Computational
2D Materials Database (C2DB)20,21. These materials are addi-
tional to the data set used in this study, and the band structures
will be published on the C2DB web page22.

Results
Figure 1a shows an example of a PBE (orange) and G0W0 (green)
band structure for monolayer MoS2 (note that spin–orbit inter-
actions are not included throughout this work). It is clear that
there are significant differences between the two descriptions.
First of all, G0W0 yields a QP bandgap of 2.53 eV in good
agreement with the experimental value of 2.5 eV23 while PBE
yields a significantly smaller bandgap of 1.58 eV. It can also be
noted that unoccupied bands are shifted up in energy while
occupied bands are shifted down. This is in fact a general trend
across all the materials in the data set and it leads to a double
peak in the histogram of G0W0 corrections with the peak of
negative (positive) corrections corresponding to occupied

Fig. 1 G0W0 data. a Example of PBE and G0W0 band structures of monolayer MoS2. The prediction target data is the difference in energy between the PBE
and G0W0 energies. b Histogram of the G0W0 corrections for all states in all materials. c Histogram of the absolute values of the G0W0 corrections with a
mean of 1.17 eV.
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(empty) bands, see Fig. 1b. The absolute values of the G0W0

corrections range from 0 to 3 eV with an average value of 1.17 eV,
see the histogram in Fig. 1c. Returning to the band diagram in
panel (a) we further note that not all the bands are shifted by the
same amount—even when disregarding the different signs for
occupied/empty bands. Although for most materials, all the
occupied bands experience similar, though material-specific,
shifts and the same holds for the empty bands, there are several
examples, like MoS2, where this is not the case. Therefore, an
accurate prediction of G0W0 corrections for general bands
requires a representation that not only encodes the occupation of
the state but also information about the energy and shape of the
wave function and its relation to other relevant states of the
crystal.

Electronic fingerprints. The ENDOME and RAD-PDOS repre-
sentations, defined in the Methods Section, are attempts to gen-
eralize the notion of the local environment of an atom, which has
been successfully employed to represent solids and molecules in
machine learning studies, to the case of an electronic state. The
ENDOME fingerprint represents the local environment of an

energy eigenstate nkj i in terms of operator matrix elements
between the state itself and other eigenstates of the crystal,
j nkh jÂ n0k0j ij2. These matrix elements are arranged on a grid as a
function of the energy difference εnk � εn0k0 , and their sign is used
to encode the occupation of the final state n0k0j i. With the
ENDOME fingerprint, two states are thus considered similar if
they have similar matrix elements with other states of similar
relative energies. In this work, we include matrix elements for the
position operator, momentum operator, and Laplacian operator.
Since we exclusively consider 2D materials in the present work,
the fingerprints are split into in-plane and out-of-plane compo-
nents for the position operator (labeled xy and z, respectively)
and the momentum operator (labeled pxy and pz). The RAD-
PDOS fingerprint is a correlation function in energy and radial
distance between the atomic orbital projections (onto angular
momentum channels s, p, and d) of the reference eigenstate
and all other eigenstates of the crystal. Figure 2 visualizes the
two types of fingerprints for three different electronic states
of MoS2.

Any reasonable fingerprint should comply with certain general
requirements13 of which invariance and simplicity are the most

Fig. 2 Visualization of electronic state fingerprints for MoS2. a Shows the PBE band structure. b, c Show ENDOME fingerprints of the conduction band
minimum and valence band maximum states for the K-point. d–i Show six RAD-PDOS fingerprints for combinations of s, p, and d orbitals.
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fundamental. In the present context, this means that the
fingerprint should be invariant with respect to the choice of the
unit cell (number of primitive cells, rotations, and translations),
the gauge used for the Bloch wave functions and that it should be
computationally cheap to generate compared to a full G0W0

calculation. Both the ENDOME and RAD-PDOS fingerprints
clearly fulfill these requirements. Besides the invariance and
simplicity conditions, the fingerprints should also be unique such
that two different systems (here electronic states) are not mapped
to the same fingerprint, and they should be descriptive such that
systems with similar properties are close in fingerprint space. The
interpretation and quantitative assessment of notions such as
different systems and similar properties are obviously problem-
dependent. This fact can make it difficult for problem
independent fingerprints like the ENDOME and RAD-PDOS to
meet these requirements in general. This is, however, not a
principal problem, and can usually be solved by increasing the
size of the training data set, at least as long as the fingerprints are
complex and flexible enough to capture the variations in the
considered systems that are relevant to the specific learning
problem.

An impression of the descriptiveness of the fingerprints can be
obtained from Fig. 3, which shows two-dimensional projections
of the ENDOME-pxy and RAD-PDOS-dd fingerprints using t-
distributed stochastic neighbor embedding (tSNE) color-coded by
the GW corrections. It is clear that data points, which are close in
pxy-space have similar GW corrections. The pd fingerprint is also
descriptive for some data points, but there is also a large blob of
data points that are indistinguishable in fingerprint space but
have very different GW corrections. Not unexpectedly, these
points correspond to the subset of materials without valence d-
electrons, which results in all-zero pd fingerprint vectors. The
tSNE plots for the other components of the ENDOME and RAD-
PDOS fingerprints look similar.

State energies. To predict the state-specific G0W0 corrections to
the PBE eigenvalues of 2D semiconductors, we use the XGBoost
package24 to build a machine learning model based on a gradient
boosting algorithm for decision tree ensembles. The G0W0 data
set was described and analysed in detail in ref. 25. We split the
data set into a training set of 228 randomly selected materials
(37,851 electronic states) and a test set consisting of the
remaining 58 materials (8766 electronic states). As an objective
function, we use the mean absolute error (MAE) between
the predicted and actual G0W0 corrections. The electronic states

are represented by the ENDOME and RAD-PDOS fingerprints
supplemented by a set of extra features consisting of the occu-
pation of the state (fnk= 0, 1), its distance to the Fermi energy
(εnk− EF), the PBE bandgap of the material (Egap), and the static
averaged in-plane and out-of-plane polarisabilities of the material
(12 ðαx þ αyÞ and αz). The averaged in-plane polarisability is used
to ensure invariance of the feature with respect to rotations of the
2D material in the plane, which is important for materials with
in-plane anisotropy. The effect of including the polarisabilities in
the fingerprint has been analysed separately (see later discussion).

The results of the model together with relevant baselines for
assessing its performance are summarized in Table 1. The first
row shows the estimated accuracy of our target G0W0 data
relative to experiments based on previous reports in the
literature7–9. Experimental data for individual band/state QP
energies are scarce and subject to significant uncertainties, and
thus do not represent a meaningful reference. The remaining
rows of the Table show the mean absolute error (MAE) on the
bandgap and individual state energies for different approximate
methods versus G0W0. The MAE on state energies is evaluated
over all the bands for which G0W0 data is available, namely the
eight highest valence bands (VB) and four lowest conduction
bands (CB). The second and third rows are straightforward
comparisons of band energies from PBE and HSE06 with G0W0,
respectively. The fourth row shows the MAE between G0W0 and

Fig. 3 tSNE visualizations of fingerprints. a tSNE components of ENDOME pxy. b tSNE components of RAD-PDOS pd fingerprints color-coded with the
GW corrections. For pxy, states with similar GW corrections are also close in fingerprint space. In b a large amount of the states with both positive and
negative GW corrections have similar distances in fingerprint space, corresponding to the materials without d-electrons where the RAD-PDOS pd
fingerprint will be all zeros.

Table 1 Summary of results.

Methods Target property MAE

Bandgap (eV) State energies (eV)

G0W0 vs. experiment ≈ 0.3 N/A
PBE vs. G0W0 1.70 1.17
HSE06 vs. G0W0 0.85 0.47
PBE with ideal scissor-operator
vs. G0W0

0 0.17

ML (8VB+ 4CB) vs. G0W0 0.23, 0.18(*) 0.14, 0.11(*)

ML (VB+CB) vs. G0W0 0.18, 0.15(*) 0.31, 0.22(*)

The table shows the mean absolute error (MAE) on the bandgap and individual state energies
for G0W0 versus experiments and different approximate methods versus G0W0, respectively.
The MAE on state energies is always evaluated for the eight highest valence bands (VB) and
four lowest conduction bands (CB). ML(X) refers to the test set MAE of the gradient boosting
model after training on all bands (8VB+4CB) or only the highest valence and lowest
conduction band (VB+CB), respectively. The values marked by (*) are obtained after training
the model with the static polarisability of the materials included as extra features in the
fingerprint.
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PBE after the occupied and unoccupied PBE energies have been
rigidly shifted (by applying a scissors operator) to match the
valence band maximum (VBM) and conduction band minimum
(CBM) of the G0W0 band structure. From this, it follows that the
lowest possible MAE on individual band energies obtainable with
a model trained to predict only the VBM and CBM energies is
0.17 eV. The last two rows of the table show the MAE on the test
set obtained with the XGBoost model (see below for more
details). Improved performance for the bandgap can be obtained
by training the model only on the highest valence and lowest
conduction band (last row); however, such a restriction on the
training data reduces the prediction accuracy for bands further
away from the bandgap. The numbers marked by (*) refer to the
MAE obtained when the static polarisability of the materials is
included in the fingerprint (see later discussion).

In the following, unless stated otherwise, results refer to the
case where the model has been trained on all bands (8VB+ 4CB)
and with the static polarizabilities included in the fingerprint.

Figure 4a shows a parity plot of the predicted vs. true values for
the train and test set. The evaluation yields MAEs of 0.05 and
0.11 eV for the train and test set, respectively. To test for the
potential bias of the model, the residual distributions are plotted
in Fig. 4b, showing that both the train and test set have residuals
distributed evenly around 0 eV. To estimate the effect of adding
more data to the train set, a learning curve is shown in Fig. 4c.
The learning curve is calculated by continuously adding more
materials to the training set while evaluating the performance on
a constant test set. The test set MAE decreases significantly up to
≈50 materials after which the learning curve flattens considerably,
although still presenting a slightly decreasing MAE. This suggests
that a generalizable model can be trained using a rather limited
number of materials, though it should be noted that overfitting
issues decrease with the amount of materials in the training set. In
general, it is difficult to assess whether the learning ability of the
model is limited by the flexibility of the model/fingerprint or by
the noise level in the data set. We do stress, however, that the
numerical precision of the G0W0 corrections is not expected to be
much better than 0.05 eV due to errors introduced by e.g., plane-
wave extrapolation and linearisation of the self-energy, see ref. 25.
This could explain (part of) the finite prediction error of the
model.

All MAEs reported in this paper were evaluated for a specific,
randomly generated test set of 58 materials. We have verified that
this test set is representative and fair by comparing it to MAEs
obtained for 100 different random test sets, see Methods section.

The data used to train and evaluate the ML model represent
states/energies evaluated at discrete uniformly distributed k-
points of the Brillouin zone. However, the resulting ML model

can of course be used to predict the G0W0 energy corrections of
states at arbitrary k-points and thereby generate full, densely
sampled band structures. Figure 5 shows examples of ML-
generated band structures for PtO2, SbClTe, GeS2, and CaCl2,
which are all test set materials. For comparison, the PBE and the
true discrete G0W0 energies are also shown. Overall, the ML
bands closely interpolate the true G0W0 energies. In cases where
the ML bands deviate, e.g. the conduction bands of CaCl2, they
still present a better description than PBE. Interestingly, the ML
model is able to deviate from a scissors operator that would
ascribe the same corrections to all occupied and all unoccupied
bands, respectively. This is for example clear in the PtO2 band
structure where the four conduction bands are shifted by different
amounts. We note that the single-point regression nature of the
model, i.e., the fact that the model does not explicitly couple
different k-points, can sometimes lead to weak and unphysical
wiggles in the machine-learned band energies. These qualitative
errors may be reduced by applying a smoothing function (e.g., a
Gaussian filter) as post-processing of the ML energies across
bands. This has been done for the plots in Fig. 5.

Bandgaps. The ML state energies can be translated into ML
bandgaps by simply calculating the vertical difference between
conduction band minimum and valence band maximum. Figure 6
shows parity plots of the predicted bandgaps vs. G0W0 bandgaps
for an ML model trained on all bands and an ML model trained
only on valence and conduction bands. Due to the discreteness of
the original G0W0 data, the ML bandgap has been evaluated on
the same states (discrete k-points) that define the G0W0 gap. The
PBE and HSE06 data are also shown as baselines. Only data from
the test set has been used for the comparison. The PBE and
HSE06 functionals systematically underestimate the bandgaps
leading to MAEs of 1.70 and 0.85 eV, respectively. The ML model
trained on all bands achieves an MAE on the bandgap of 0.18 eV,
while training the ML model only on valence and conduction
bands reduces the bandgap MAE to 0.15 eV, but at the cost of
increasing the MAE on the individual state energies across all
bands from 0.11 to 0.22 eV.

While our ML model and fingerprints allow for the prediction
of state-specific properties, such as individual band energies, it is
of interest to compare its accuracy on bandgap predictions to
alternative schemes reported in the literature. Lee and
coworkers26 used nonlinear support vector regression with
fingerprints containing the Kohn-Sham bandgap obtained with
both the PBE and the mBJ xc-functionals, together with a set of
features describing the constituent chemical elements, to predict
G0W0 bandgaps of inorganic bulk semiconductors. Using a

Fig. 4 Machine learning results. a Parity plot showing the ML predicted vs. true values of the GW correction for individual states for the train and test set.
The MAEs of the train and test set are 0.05 and 0.11 eV, respectively. b Histograms of the prediction residuals of the train and test set. c Learning curve for
the ML model showing validation MAE as a function of the number of materials/states in the training set.
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database of 270 G0W0 bandgaps, they obtained a root mean
square error (RMSE) of 0.24 eV. Rajan et al. used a Gaussian
process to predict G0W0 bandgaps of 2D MXene crystals with a
fingerprint encoding atomic and structural properties of the
MXenes17. Employing a training set of 76 G0W0 MXene
bandgaps, they obtained an RMSE of 0.14 eV.

We stress that both the inorganic bulk semiconductors
considered ref. 26 and, in particular, the MXene 2D crystals of
ref. 17, represent more homogeneous sets of materials than the 2D
crystals considered in the present work. Nevertheless, with an
RMSE of 0.26 and 0.21 eV on the predicted G0W0 bandgap for
the models trained on 8VB+ 4CB and VB+ CB, respectively, our
general ML model with purely electronic fingerprints, is
comparable in accuracy to the more system-specific ML models.

Additionally, by applying our ML model on ∼700 semiconduc-
tors from C2DB we have found the bandgap to change nature
(direct/indirect) in 12% of the materials when comparing the PBE
and ML bandgaps. For these materials, 72% shift from direct to
indirect gaps.

Effective masses. Since the ML model can be used to calculate
G0W0 energies at any k-point grid, it is possible to use the method
to calculate effective masses. Effective masses at the valence and
conduction band extrema can be calculated by fitting a second-

Fig. 6 Comparison of bandgaps. Parity plots for predicted bandgaps vs.
GW bandgaps for PBE and HSE06 and two different ML models predicting
GW corrections for either all bands (MAE= 0.18 eV) or only valence and
conduction bands (MAE= 0.15 eV) which significantly outperform PBE and
HSE06 with MAEs of 1.70 and 0.85 eV, respectively.

Fig. 5 Machine-learned band structures. Examples of band structures for four 2D materials from the test set. Both PBE and GW band structures are shown
along with the ML predictions. The materials are selected to cover a wide range in the prediction accuracy of the test set. Band structures for PtO2 (a),
SbClTe (b), GeS2 (c), and CaCl2 (d).
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order polynomial to the energies at a densely sampled k-point
grid centered around the band extrema20,21. This method is
generally challenging with G0W0 due to the high computational
cost of calculating the energies at sufficiently dense k-point grids,
but using the ML model it is possible to achieve accurate esti-
mates of the G0W0 effective masses.

Figure 7 shows effective masses calculated using PBE and ML
energies for ≈330 materials using a k-point density of 55/Å−1 in a
radius of 0.16Å−1.

The validity of the polynomial fit is evaluated using a mean
absolute relative error (MARE) metric. The MARE is defined as
the absolute difference between the parabolic fit and the actual
ML-G0W0 band energies averaged over an energy range of
100 meV (from the band extremum) relative to the actual band
energies averaged over the same energy range. The data shown in
Fig. 7 includes only fits with MARE less than 10%.

Returning to Fig. 7 we note that the effective masses obtained
with ML-G0W0 can deviate quite significantly from the PBE
values. Specifically, the mean absolute deviation is 0.31m0 and
0.19m0 for valence and conduction bands, respectively, corre-
sponding to relative deviations of 32 and 28%. We can also
deduce that the ML-G0W0 method has a general tendency to yield
smaller effective masses than PBE, although deviations from this
trend occur relatively often.

Discussion
Feature importance. Often the evaluation of a machine learning
model stops after considering the overall performance in terms of an
objective function like the MAE. However, important insight may be
gained by analysing how the model responds to different features in
the input data. This is particularly important when devising new
types of fingerprints. To extract information about the role of the
different features composing the fingerprint vectors used in the
present work, a feature importance analysis is performed using a
feature subset hold-out method. The features are grouped at two
different levels: The first level has four groups, namely the RAD-
PDOS components, the ENDOME components, the extra features
covering the PBE gap, occupation number, distance to the Fermi
level, and finally the in-plane and out-of-plane polarizabilities. The
second level breaks the RAD-PDOS and ENDOME components
further down into their individual ll0 angular momentum blocks and
operator matrix elements, respectively. The analysis is carried out in
two complementary ways where a group of features is either used
exclusively or dropped from the full fingerprint when training the
ML model.

Figure 8 shows the test set MAE on individual state energies for
the various feature groups with the all-feature baseline indicated by
the vertical black line. Focusing first on panel (a), the analysis shows
that both the RAD-PDOS and ENDOME perform well by

themselves, though not as well as the full fingerprint. The extra
features, in particular the polarisabilities, are unable to produce an
accurate ML model. The poor performance of the polarisability-only
feature is unsurprising as this feature is fully material-specific and not
even able to distinguish between occupied and unoccupied states.
Panel (b) shows the same analysis when the feature groups are
broken further down. When used alone, the pp, ss, and sp
components of the RAD-PDOS perform best followed by the
various operator matrix elements of the ENDOME. An interesting
observation is that at this level of feature grouping, almost any group
of features can be dropped without increasing the MAE, except for
the in-plane polarisability, αxy, which results in a significant 27%
increase of the MAE from 0.11 to 0.14 eV. This reveals a clear feature
synergy since αxy in itself does not have any predictive ability unless it
is combined with other features (see below). In general, there seems
to be some redundant information in the various fingerprint
components since dropping any of the feature sets, at least at the
second level of grouping, does not affect the test score by much. In
some cases, the model might even gain performance when dropping
some features (not visible on the scale of the plot). This suggests that
a feature selection algorithm prior to the prediction algorithm might
in general slightly improve the performance of the model. However,
since gradient boosting algorithms like XGBoost already has some
implicit feature selection in the training iterations, the improvement
is not expected to be significant and is thus not considered here.

SHAP analysis. The role of the αxy feature and its synergy with
other features is further investigated using the general feature
importance method SHAP, which is a game-theoretic approach to
explain the output of any machine learning model27. SHAP builds
an explanation model on top of an ML model which relates the
output from the ML model to the importance of individual fea-
tures for each predicted output. The SHAP values for a given
feature can thus be interpreted as the direct effect of that feature
on the model output, i.e. the difference between the model’s
prediction when used with and without that particular feature in
the input. Figure 9a shows the SHAP values for αxy as a function
of αxy. Only states from the test set are shown in Fig. 9, and the
color code in panel (a) reflects the occupancy of the state. The plot
shows a surprisingly clear trend: The SHAP values for occupied
states increase consistently and monotonously for increasing αxy
while the opposite trend is seen for the empty states. In the fol-
lowing, we present a physical explanation for this observation.

The G0W0 correction can be split into two terms with distinctly
different physical origin: ΔEQP

nk ¼ ðvxnk � vxcnkÞ þ Δscr
nk . The first term

(in parenthesis) represents the difference between the local xc-
potential (in this case the PBE potential) and the nonlocal exact
exchange potential while the last term accounts for the interaction of

Fig. 7 Effective masses. Comparison of effective masses calculated using PBE and ML-G0W0 eigenvalues for valence and conduction band of ∼800
materials. a Shows effective masses for the valence bands and b shows for the conduction bands. There seems to be a (weak) systematic trend for the ML
model to predict smaller effective masses than PBE for both valence and conduction bands.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28122-0 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:468 | https://doi.org/10.1038/s41467-022-28122-0 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the electron/hole with its own polarization cloud. The first term is
typically negative for occupied states and positive for unoccupied
states (Hartree–Fock typically opens the PBE gap), but its
magnitude depends on the detailed shape of the wave functions of
the system. In particular, this term can be quite different for
different states of the same material. Moreover, one does not expect
the size of this term to correlate with the material’s static
polarisability and thus it should not be captured by the αxy-SHAP
values. The second term is always positive for occupied states (hole
quasiparticles) and negative for unoccupied states (electron
quasiparticles) because the Coulomb interaction of the bare particle
with its oppositely charged polarization cloud will always stabilize
the quasiparticle, thus shifting occupied states up and empty states
down in energy28–30. Now, the shape and size of the polarization
cloud does not depend on the detailed shape of the wave function
but is largely governed by the (microscopic) polarisability of the
material. Therefore, on purely physical grounds, the static
macroscopic polarisability, αxy, is expected to provide a good
descriptor for Δscr

nk : A large value of αxy signals high screening ability

of the material and therefore large QP polarization clouds, which in
turn will yield a large Δscr

nk (with opposite signs for occupied/empty
states). This is exactly what is seen in Fig. 9a. By subtracting the αxy-
SHAP values for the states at the CBM and VBM, we obtain the αxy-
SHAP values for the bandgap correction, see Fig. 9b. These show
that the αxy feature increases the bandgap in materials with low
screening and decreases the bandgap in materials with high
screening. Again, this is perfectly in line with the physical
understanding of screening-induced renormalization of the
bandgaps28–30.

It can be noted that the αxy-SHAP values for the state energies
and bandgaps are significantly larger than the change in the MAE
upon including/dropping αxy from the feature set, see Fig. 8b. For
example, the αxy-SHAP values for the bandgap range from −0.50 to
0.70 eV while the MAE decreases by 0.03 eV when αxy is included.
This is due to the redundant information carried by the feature set.
When the model is trained without αxy as a feature, other features
can, to a large extent, provide the same information. For example,
the PBE bandgap alone correlates fairly well with αxy. To test this

Fig. 9 SHAP analysis. a SHAP values for αxy for the prediction of GW correction energies color-coded by occupancy. For materials with a low polarisability,
the ML model predicts a more negative GW correction for the occupied states and a more positive correction for the unoccupied states. For materials with
a high polarisability, the occupied states are predicted with a more positive correction when using the polarisability as a feature while the unoccupied states
are only weakly affected. b SHAP values for αxy for the prediction of bandgaps. This shows that the bandgap increases for materials with a low αxy and
decreases for high αxy values.

Fig. 8 Feature analysis of ML model. Solid bars refer to an ML model using only the specific features while the shaded bars are for an ML model without
these features. a High-level feature group. b Low-level feature groups.
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hypothesis, we have carried out the same SHAP analysis for EPBE
g on

a model trained with and without αxy in the feature set. The analysis
shows that when αxy is used to train the model, the EPBE

g -SHAP
values are fairly low (below ±0.1 eV) and do not show any clear
trends. In contrast, when αxy is not included in the fingerprint, the
EPBE
g -SHAP values are very similar to the αxy-SHAP values shown

in Fig. 9, although the values are slightly smaller and the trend less
pronounced. This shows that in the absence of αxy the model uses
EPBE
g to encode similar information. However, the model also finds

that αxy provides a better description of Δscr
nk than does EPBE

g , which

is why the SHAP values of EPBE
g are dwarfed by those of αxy when

both features are available for learning.

Summary. In summary, we have introduced two different
methods to generate fingerprints of individual electronic states
based on information available from a standard DFT ground-
state calculation (eigenvalues and wave functions). The finger-
prints were used to train a decision-tree-based ML model to
predict the G0W0 corrections to the PBE band structure of a 2D
semiconductor. The model achieves an MAE of 0.14 eV for
individual state energies, which is reduced to 0.11 eV when the
static polarisability is included in the fingerprint. For the band-
gap, the MAE is 0.15–0.23 eV depending on whether the model is
trained on all bands or only the valence/conduction bands and
whether or not the static polarisability is included in the finger-
print. This level of precision is highly encouraging considering
that the noise on the employed G0W0 data for individual state
energies could be on the order of 0.05 eV and that the accuracy of
the G0W0 method itself, when evaluated against experimental
bandgaps, is about 0.3 eV. Since the bottleneck of the computa-
tions is the self-consistent DFT calculation (in particular the
structural relaxation if performed), the method enables GW-
quality band structures at the cost of a DFT calculation. Although
the current work has focused on states in periodic 2D crystals, the
methods can be straightforwardly used to fingerprint states in 3D
crystals as well as non-periodic structures like molecules or sur-
faces. While the fingerprint methods can be used for e.g., 3D
crystals, the ML model trained on 2D materials will not be
transferable since some of the fingerprint components are divided
into in-plane and out-of-plane parts. To use the full method of
fingerprints and ML model for 3D crystals would require an ML
model trained on a database of GW calculations of such systems.

Methods
This section describes the definition and generation of the Energy Decomposed
Operator Matrix Elements (ENDOME) and Radially Decomposed Projected Density
Of States (RAD-PDOS) fingerprints. In addition, the G0W0 band structure data set is
presented along with a description of the employed machine learning model.

Electronic state fingerprints. The ENDOME fingerprint is based on operator
matrix elements between electronic states (here assumed to be Bloch states of a
periodic crystal)

Ank;n0k0 ¼ j nkh jÂ n0k0
�
�

�j2 ð1Þ

where Â is some operator. For a reference state nkj i with energy εnk, the ENDOME
fingerprint is defined as

mA
nkðEÞ ¼ ∑

n0k0
Ank;n0k0G E � ðεnk � εn0k0 Þ; δE

� �

exp �αEE
� �

signðEF � εn0k0 Þ; ð2Þ

where G(x; δ) is a Gaussian of width δ centered at x= 0. This function encodes the
matrix element between the reference state and all other states at an energy dis-
tance of E from the reference state. In principle, any operator can be used to create
fingerprints, but in this study, we include the position operators (x, y, z), the
momentum operators (∇x, ∇y, ∇z), and the Laplace operator (∇2). These operators
are all diagonal in the k index. In addition, we include the all-one matrix,
Ank;n0k0 ¼ 1, which essentially yields the density of states (DOS) translated to the
energy of the reference state, εnk.

In practice, the function mA
nkðEÞ is represented on a uniformly spaced energy

grid with 50 energy points from −10 to 10 eV around the reference state. Since we
consider 2D materials, the in-plane (x and y) components of both the position and
momentum operators are collected into a single fingerprint vector (i.e., mxy

nk ¼
mx

nk þmy
nk and similarly for the momentum operator) while the out-of-plane z

component is treated separately. For a given reference state, the ENDOME
fingerprint thus consists of six 50-dimensional vectors resulting in a total of 300
features.

The RAD-PDOS encodes the electronic structure in terms of the density of
states projected onto atomic orbitals. Specifically, a correlation function in energy
and radial distance is defined as

ρνν
0

nk ðE;RÞ ¼
1
Ne

∑
n0k0aa0

ρaνnkρ
a0ν0
n0k0G R� jRa � Ra0 j; δR

� �

exp �αRR
� �

G E � ðεnk � εn0k0 Þ; δE
� �

´ exp �αEE
� �

signðEF � εn0k0 Þ
ð3Þ

where Ne is the number of electrons in the system, a and a0 denote atoms in the
primitive unit cell and the entire crystal, respectively, and ν and ν0 denote atomic
orbitals. The atomic projections are given by

ρaνnk ¼ j ψnkjaν
� �j2 ð4Þ

The functions ρνν
0

nk ðE;RÞ are represented on a uniform (E, R)-grid of size
25 × 20 spanning the intervals from −10 to 10 eV (centered around the reference
energy εnk) and 0 to 5Å, respectively. For the Gaussian smearing functions we use
δE= 0.3 eV and δR= 0.25Å, respectively. For a given state, the RAD-PDOS fingerprint
consists of six 2D grids of 500 points each resulting in a total of 3000 features.

Figure 2 shows examples of ENDOME and RAD-PDOS fingerprints for three
different states at the K-point of MoS2. Note that some of the RAD-PDOS
fingerprints are qualitatively similar (e.g., sp and pp) but the scales differ by about
an order of magnitude. This is due to the fact that the density of states projected
onto s and p orbitals have a similar dependence on energy.

The G0W0 data set. The data set comprises quasiparticle (QP) energies from 286
G0W0 band structures of non-magnetic 2D semiconductors covering 14 different
crystal structures and 52 chemical elements. The QP energies have been obtained
from plane-wave-based one-shot G0W0@PBE calculations with full frequency inte-
gration and were produced as a part of the Computational 2D Materials Database
(C2DB)20,21. The data set has been described and analysed in detail in ref. 25.

The QP energies of the data set have been calculated under the standard
assumption that the G0W0 self-energy can be treated within first-order
perturbation theory and linearized around the non-interacting reference energy,
ω= εnk, leading to the expression

EQP
nk � ϵnk þ ZRe ψnk

� �
�ΣðϵnkÞ ψnk

�
�

�� � ð5Þ
where

Z ¼ 1� ∂Σ

∂ω

�
�
�
�
ω¼ϵnk

 !�1

ð6Þ

is the QP weight and ψnk is the PBE wave function with eigenvalues ϵnk. In practice,
the G0W0 correction to the PBE energies, ΔEQP

nk ¼ EQP
nk � ϵnk , were used as targets

for the machine learning model.
To ensure the highest data quality, the original data set was filtered such that

only states with QP weights between 0.7 and 1.0 were kept. As shown in ref. 25 the
MAE on the QP correction of such states due to the linearization of the QP
equation is 0.04 eV.

Machine learning model. The choice of learning algorithm for a machine-learned
model depends on different considerations such as the amount of training data
available and the nature of the learning objective (regression/classification, discrete/
continuous). The fingerprints presented here are not designed for a specific
learning algorithm and can thus be used to train a wide range of algorithms. For
this specific purpose of predicting G0W0 QP energies, several types of algorithms
including tree-based ensemble methods, neural networks, and Gaussian process
regression have been considered and tested. The machine learning model is built
using a gradient boosting method from the XGBoost distribution based on decision
trees in an ensemble24. The choice of XGBoost as a learning algorithm is based on
its generality and good performance across multiple machine learning applications,
the possibility to extract knowledge from single features, and the ability of training
on large amounts of data. For this specific purpose, a neural network and a
gaussian process regression method have also been tested resulting in similar
prediction accuracy.

A train and test set is created using a random 80/20% split on the material level
which results in a train set of 228 materials (37851 QP energies) and a test set of 58
materials (8766 QP energies). Hyperparameters of the learning algorithm (max
depth= 5, learning rate= 0.15, and number of estimators= 60) are tuned using a
grid search method with fivefold cross-validation of the 80% train set. The
performance of the machine learning is based on the mean absolute error (MAE) of
the 20% test set.
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Since the test set size is only 58 materials, the test MAE might exhibit some test
set dependence. To evaluate this effect, the entire process of splitting the data in 80/
20% train/test set, training the model using fivefold cross-validation on the train
set, and evaluating the MAE of the test set, has been repeated 100 times using
different seeds for the random split. The distribution of the 100 test MAEs have a
mean of 0.13 eV and a standard deviation of 0.02 eV. We note that the specific test
set used for Table 1 yields an MAE within one standard deviation from the mean.

Since the XGBoost model is based on decision trees some small discontinuities
in-band energies might be introduced by the model. When calculating effective
masses using a harmonic fit on a much smaller energy scale than the full band
structures it was necessary to use a neural network (feed-forward network with
three hidden layers with 200 neurons and tanh activation functions) to ensure a
more continuous output. This NN yielded a test MAE of 0.13 eV compared to the
0.11 eV of the XGBoost model.

Data availability
The structures of the materials used in this study have been deposited in C2DB22 (https://
doi.org/10.11583/DTU.14616660.v1). The data set generated for this study is available at
https://gitlab.com/knosgaard/electronic-structure-fingerprints.

Code availability
The Python code used to compute the fingerprints can be found here https://gitlab.com/
knosgaard/electronic-structure-fingerprints.
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