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Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell lung cancer (NSCLC). LUSC occurs at the bronchi, shows a
squamous appearance, and often occurs in smokers. To determine the epigenetic regulatory mechanisms of tumorigenesis, we
performed a genome-wide analysis of DNA methylation in tumor and adjacent normal tissues from LUSC patients. With the
Infinium Methylation EPIC Array, > 850,000 CpG sites, including ~350,000 CpG sites for enhancer regions, were profiled, and the
differentially methylated regions (DMRs) overlapping promoters (pDMRs) and enhancers (eDMRs) between tumor and normal
tissues were identified. Dimension reduction based on DMR profiles revealed that eDMRs alone and not pDMRs alone can
differentiate tumors from normal tissues with the equivalent performance of total DMRs. We observed a stronger negative
correlation of LUSC-specific gene expression with methylation for enhancers than promoters. Target genes of eDMRs rather than
pDMRs were found to be enriched for tumor-associated genes and pathways. Furthermore, DMR methylation associated with
immune infiltration was more frequently observed among enhancers than promoters. Our results suggest that methylation of
enhancer regions rather than promoters play more important roles in epigenetic regulation of tumorigenesis and immune
infiltration in LUSC.
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INTRODUCTION
Lung squamous cell carcinoma (LUSC) is a subtype accounting
for 20~30% of total cases of non-small-cell lung cancer (NSCLC).
LUSC occurs at the bronchi, shows a squamous appearance, and
often leads to keratinization1. LUSC often occurs in smokers;
thus, several studies have demonstrated an association between
smoking and LUSC2,3. The identification of oncogenic driver
alterations and their matched targeted therapies are largely
limited to the other major subtype of NSCLC, adenocarcinoma4.
However, LUSC patients respond to immune checkpoint
blockade, partly owing to their relatively high mutation burden.
Therefore, many clinical trials on immune checkpoint blockade
have been undertaken for LUSC patients5. Currently, the
fibroblast growth factor receptor (FGFR), insulin-like growth
factor (IGF), and PI3-AKT signaling pathways have been
examined as new targeted therapies4.
For improved treatment strategies for LUSC, a better under-

standing of the molecular mechanisms associated with the
regulation of tumorigenesis and tumor immunogenicity is
necessary. Given the substantial impact of epigenetic regulation
on tumor biology, genome-wide analysis of DNA methylation and
the associated transcriptome have been utilized for several cancer
types, including LUSC6. The human genome has much larger distal
regulatory regions than proximal ones, and the former are called
enhancers and the latter promoters. Despite occupying a much

larger portion of genomic DNA than promoters and exerting a
substantial effect on cancer progression and prognosis7,8,
enhancers have been relatively unexplored for the study of DNA
methylation in the majority of cancer types, including LUSC. This
lack of research is partial because the major platform technology
for DNA methylation profiling is the Infinium HumanMethyla-
tion450 BeadChip (450 K), which mostly covers the annotated
promoter regions. Recently, the Infinium Methylation EPIC Array
(850 K), which covers > 850,000 CpG sites, including ~350,000 CpG
sites for enhancer regions, has become available9. Therefore, more
comprehensive and cost-effective studies of enhancer DNA
methylation in human tumor samples are now feasible.
In the present study, we generated methylation profiles for 37

patients with LUSC who were recruited from Korea using an
Infinium Methylation EPIC Array (850 K) and identified differen-
tially methylated regions (DMRs). These DMRs were then
subdivided into two groups: those overlapping with annotated
promoter regions (pDMRs) and those overlapping with annotated
enhancer regions (eDMRs). Through dimension reduction analysis,
we found that eDMRs alone and not pDMRs alone can classify
tumors from normal tissues with equivalent performance to total
DMRs. We observed a stronger negative correlation of LUSC-
specific gene expression with methylation for enhancers rather
than promoters. Gene set enrichment analysis revealed that target
genes of eDMRs rather than pDMRs were enriched for tumorigenic
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genes and pathways. In addition, we found that single nucleotide
polymorphisms (SNPs) related to the risk of LUSC were enriched
within DMRs. Finally, methylation-associated immune infiltration
was more frequently observed among enhancers than promoters.
These results together suggest that methylation of enhancers
rather than promoters play more important roles in epigenetic
regulation of tumorigenesis and immune infiltration in LUSC.

MATERIALS AND METHODS
Patient cohorts
A study cohort of 37 LUSC patients was established by recruiting patients
from Yonsei Cancer Center (YCC), Seoul, Korea (Supplementary Table 1).
Tumor tissue and adjacent normal tissue biopsies were performed on each
patient during surgery.

DNA methylation profiling
Thirty-seven pairs of fresh tumor tissue and adjacent normal tissue
specimens were selected from the archives of Severance Hospital. The
DNA methylation profiles of the patients were obtained using the
Infinium Methylation EPIC Array (850 K). The experimental procedure
for DNA methylation profiling is described in the Supplementary
Methods.

DNA methylation analysis
Raw methylation data (IDATs) were processed by the RnBeads10 and
Minfi11 packages. Prior to data processing, the getQC function of the Minfi
package was used to evaluate sample quality, followed by functional
normalization. Using RnBeads, we filtered out noninformative CpG sites by
removing the sites with a detection P value > 0.01 using “remove.sites”.
Thereafter, the rnb.execute.low.coverage.masking, rnb.execute.sex.
removal, rnb.execute.context.removal, rnb.execute.cross.reactive.removal,
rnb.execute.snp.removal, and rnb.execute.greedycut functions were
applied. Given that the patients were from a Korean population, we
additionally removed Korean single nucleotide polymorphisms (SNPs) with
minor allele frequencies >0.01, as per the KOVA12 and KRGDB (KRGDB,
http://152.99.75.168/KRGDB/menuPages/intro.jsp) databases. Conse-
quently, 651,062 of 866,895 CpG sites remained. DMRs were identified
by the RnBeads package, which evaluates the methylation level of a given
region such as a promoter or enhancer and calculates the significance of
differences between comparison groups. We used the predefined
promoter region from the RnBeads package and assigned enhancers
based on a publicly available enhancer-promoter interaction (EPI) map
specific for lung cancer13. This EPI map was constructed by using four
types of chromatin interaction data: chromatin interaction analysis by
paired-end tag sequencing (ChIA-PET), correlations between proximal and
distal DNase I hypersensitive sites (DHSs), the association of cap analysis
gene expression (CAGE) tag correlation between enhancer RNAs (eRNAs)
and mRNAs, and integrated methods for predicting enhancer targets (IM-
PET) with stringent filtration for PET counts ≥ 5. For each differentially
methylated enhancer, target genes were mapped using the same EPI map.
We collected pDMRs from the promoter region and eDMRs from the
enhancer region, in which the false discovery rate (FDR) < 0.01. Finally,
target genes were filtered with the Consensus Coding gene sequence14

database. Among the DMRs and DEGs, we defined functional DMRs as
those showing an opposite direction of change in the methylation and
gene expression levels, which share the same target gene.

Gene expression analysis
RNA sequencing was performed for the same 37 pairs of fresh tumor tissue
and adjacent normal tissue specimens from previous patients. Each sample
was subsequently applied for sequencing library preparation, which was
conducted using TruSeq RNA Access Library Prep Guide Part # 15049525
Rev. B with the TruSeq RNA Access Library Prep Kit (Illumina). RNA
sequencing was performed with a HiSeq 2500 system (Illumina), and the
obtained sequencing data were processed according to the manufacturer’s
protocol. Trimming was performed using Trimmomatic 0.3215. Thereafter,
STAR-2.5.2a16 was applied to the reference genome (GENCODE, h19
(GRCh37.p13, release 19)) for read mapping17. FeatureCounts18 was used
for transcript quantification. Differentially expressed genes were analyzed
using DESeq219. The threshold for DEGs was given as |logFC | >2 and a
q-value < 0.01.

The cancer genome atlas (TCGA) DNA methylation data
analysis
The methylation data (450 K) of LUSC patients who had paired tumor
and normal samples were obtained from TCGA (https://gdac.
broadinstitute.org/). Each CpG site collapsed into a single gene that
shared the same promoter region. pDMRs were obtained by the same
process as YCC data.

Dimension reduction and clustering of samples based on DMR
profiles
Uniform manifold approximation and projection (UMAP) and t-stochastic
neighbor embedding (tSNE) were performed with beta values of pDMRs
alone, eDMRs alone, or total DMRs in the tumor and normal samples from
the YCC cohort. tSNE was performed by using the Rtsne package in R with
perplexity 10. UMAP was performed by using the Seurat package with the
RunUMAP function (dims= 1:10). K-means clustering was performed by
using the k-means function in R with the number of clusters= 2. The
entropy was calculated for cluster evaluation.

Correlation analysis between methylation and gene
expression of LUSC-specific genes
We obtained TCGA data downloaded from the UCSC XENA browser. LUSC-
specific genes were defined by comparing 32 other cancer types and
normal LUSC samples with a fold change > 2 and p-value < 0.05 using the
one-sided Wilcoxon signed-rank test. LUSC-specific genes compared to
lung adenocarcinoma (LUAD) were also obtained via the same procedure
above, except the comparison set was only LUAD. We analyzed
overlapping genes only between TCGA data and our cohort. Genes with
expression levels < 1 were removed from all the samples before correlation
analysis. Correlation analysis between the methylation value and the
expression value was obtained by Spearman’s correlation coefficient from
the promoter and enhancer regions, respectively.

Gene set enrichment analysis
We performed enrichment analysis using Fisher’s exact test. We also used
the Benjamini-Hochberg (BH) correction to obtain the FDR for multiple
gene set analysis. We compiled gene sets from various databases: cancer
hallmark gene sets from CancerSEA20, cancer-associated genes from
CancerMine21 using information for NSCLC only, and pathway gene sets
from Reactome22. We compiled 125 cancer-testis (CT) genes from Cheng
et al.23 by taking extremely highly expressed genes in tumors of the TCGA-
LUSC cohort, which were annotated as the “high-confidence testis-specific
coding genes” (C1) group.

Super-enhancer (SE) analysis
The SEs of lung tissue were compiled from Hnisz et al.24. DMRs for SE
regions (seDMRs) were defined by their overlap with eDMRs. seDMR
target genes were obtained from the target genes of
overlapping eDMRs.

Risk-related SNP enrichment analysis
The risk-related SNPs for LUSC were obtained from the genome-wide
association study (GWAS) catalog (https://www.ebi.ac.uk/gwas/home)25.
SNPs related to the risk of LUSC were collected from GWASs that contained
LUSC patients. We used hg19 coordinates to annotate these SNPs. We
assigned a risk-related SNP on a DMR if the SNP was located within 5 kbp
from the DMR. Thereafter, we tested the significance of enrichment of
these SNPs among DMRs using the binomial distribution.

Immune infiltration analysis
The proportion of immune infiltrates was evaluated using CIBERSORTx26

with the default signature matrix (LM22) from matched RNA-seq data. We
only considered differentially abundant immune infiltrates between
tumor and normal tissue obtained using the Wilcoxon signed-rank test
with BH correction (q-value < 0.01). The correlation between the
methylation level and the abundance of immune infiltrates was obtained
by Spearman’s correlation analysis with q-value < 0.01 by BH correction.
For the overlap analysis for genomic regions of interest with partially
methylated domains (PMDs), we obtained PMD regions for EPIC array
from Zhou et al. (https://zwdzwd.github.io/pmd)27 and filtered for the
850 K CpG sites.
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RESULTS
Overview of differentially methylated regions in LUSC
The overall strategy of our study is summarized in Fig. 1a. Using
the Infinium Methylation EPIC Array, we profiled the methylation
status of > 850,000 CpG sites for tumors and adjacent normal
tissues obtained from 37 LUSC patients. We also profiled the
transcriptome of these samples using RNA sequencing. Thereafter,
we obtained DMRs between tumors and normal tissues from

promoter and enhancer regions using the RnBeads package10. To
identify DMRs overlapping with promoter or enhancer DNA
regions, we first selected annotated promoters and enhancer
regions. Thereafter, we considered only 17,660 promoter regions
and 27,283 enhancer regions that can be profiled by Infinium
Methylation EPIC Array. RnBeads analysis identified 5603 pDMRs
(3924 hypo- and 1679 hypermethylated) and 7332 eDMRs (4654
hypomethylated and 2061 hypermethylated) (Fig. 1b and
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Fig. 1 Overview of differentially methylated regions in lung squamous cell carcinoma (LUSC). a Overview of our genome-wide
methylation analysis: (i) Study design, (ii) Analysis of differentially methylated regions (DMRs), risk-related single nucleotide polymorphisms
(SNPs) and immune infiltration, and (iii) Gene set enrichment analysis of functional DMRs. b–e Stacked bar plots for the count of promoter
DMRs (pDMRs) and enhancer DMRs (eDMRs) (b), the count of target genes of pDMRs and eDMRs (c), the count of functional pDMRs (F-pDMRs)
and functional eDMRs (F-eDMRs) (d), and the count of target genes of F-pDMRs and F-eDMRs (e). f–g Dimension reduction of methylation
profiles for tumor and normal samples using t-stochastic neighbor embedding (tSNE) (f) and uniform manifold approximation and projection
(UMAP) (g).
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Supplementary Table 2a-e). Hypomethylation was dominant in
both the pDMRs and eDMRs, which is consistent with the previous
observation that cancer cells tend to be hypomethylated
compared to normal cells28. To validate the DMR analysis quality,
we compared pDMRs from this study with those identified from
the TCGA cohort (TCGA-LUSC). We found that the pDMRs from our
study significantly overlapped with those from the TCGA cohort (p
< 0.0001 by Fisher’s exact test, Supplementary Fig. 1a), retrieving
> 66% of the pDMRs from TCGA-LUSC.
Functional interpretation of methylation dynamics at regulatory

regions requires information on their target genes (Fig. 1c and
Supplementary Table 2f-g). Genes located downstream of each
promoter were assigned as promoter targets. Thus, the number of
pDMR target genes was 5603, which was the same as the number
of pDMRs. We compiled enhancer targets based on the enhancer-
promoter interaction network in lung cancer13. Given that an
enhancer can interact with multiple promoters, the number of
eDMR target genes might differ from the number of eDMRs. We
identified 7332 eDMR target genes. Functional DMRs (F-pDMRs
and F-eDMRs) were defined using an inverse relationship between
DMR methylation and the differential expression of target genes
(Supplementary Table 3). We found that both F-pDMRs and
F-eDMRs were biased toward hypomethylation (Fig. 1d). The
number of target genes was similar between the F-pDMRs and
F-eDMRs (Fig. 1e).

eDMR profiles outperformed pDMR profiles in classifying
tumors from normal tissues
Epigenetic profiles characterize cellular states. Thus, we can
distinguish tumors from normal tissues based on the DMR profiles
of samples. We compared epigenetic profiles based on pDMRs
alone, eDMRs alone, and total DMRs to distinguish tumors from
normal tissues using dimension reduction and clustering analysis.
We utilized two commonly used nonlinear manifold approaches
for dimension reduction methods: tSNE and UMAP. We observed
well-separated samples based on DMR profiles with both tSNE and
UMAP (Fig. 1f, g). K-means clustering identified two groups of

samples, tumor, and normal tissues. We assessed the quality of
clusters based on entropy measures, where lower entropy
indicates better classification between tumors and normal tissues.
Notably, profiles with eDMRs alone showed as good classification
performance as profiles with total DMRs with both tSNE and
UMAP. In contrast, profiles of pDMRs alone showed inferior
classification performance to the profiles of total DMRs. These
results suggest that enhancer methylation is the dominant
epigenetic factor that characterizes tumors compared with normal
tissues in LUSC.

Methylation of enhancers has a stronger effect on LUSC-
specific gene expression than that of promoters
LUSC has distinct characteristics from LUAD, another major type of
NSCLC, and other types of cancers with different tissue origins.
The phenotypic and molecular properties specific to LUSC might
be associated with LUSC-specific gene expression. To study the
influence of DNA methylation of promoter and enhancer regions
on LUSC-specific gene expression, we measured the correlation
between the methylation level of the regulatory regions and their
targets, which are LUSC-specific genes. A similar analytical scheme
was used for the study of DNA methylation in advanced prostate
cancer29. We first defined two different sets of LUSC-specific
genes: (1) differentially expressed genes compared with LUAD and
(2) differentially expressed genes compared with all other types of
cancers, including LUAD and normal tissue of LUSC. We identified
LUSC-specific genes using transcriptome data based on 33 types
of cancers from the TCGA cohort (Supplementary Table 4). We
found 1512 and 1017 LUSC-specific genes compared to LUAD
among pDMR and eDMR targets, respectively, and found that
DMR methylation was significantly more negatively correlated
with their expression than that of other genes (Fig. 2a). Notably,
the negative correlation between methylation and target gene
expression was stronger for eDMRs. We also found seven and four
LUSC-specific genes, compared to 32 other types of cancers from
the TCGA cohort and normal tissue of LUSC, among pDMR and
eDMR targets, respectively. Similarly, LUSC-specific genes showed
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a more negative correlation with pDMRs and eDMRs than
nonspecific genes (Fig. 2b). However, only eDMR-targeted LUSC-
specific genes showed a significantly stronger negative correlation
with methylation than nonspecific genes. These results suggest
that DNA methylation regulates the expression of genes involved
in LUSC-specific properties, and eDMRs have a stronger regulatory
effect than pDMRs on LUSC-specific gene expression.

eDMR rather than pDMR target genes are associated with
tumorigenesis in LUSC
For functional interpretation of epigenetic regulation mediated by
DNA methylation in LUSC, we performed gene set enrichment
analysis for DMR targets using various databases for pathway and

cancer-associated processes. First, we assessed the enrichment of
functional DMR targets for cancer hallmark genes by CancerSEA20.
Notably, we observed no significantly enriched cancer hallmarks
among the F-pDMR targets (by q-value <0.05). In contrast, the
F-eDMR targets were significantly enriched in “cell cycle”,
“metastasis”, “EMT”, “differentiation”, “hypoxia”, and “invasion”
with hypomethylation and enriched for “hypoxia” with hyper-
methylation (Fig. 3a and Supplementary Table 5a). This result
indicates that methylation of enhancers rather than promoters is
largely attributable to the epigenetic regulation of cancer hallmark
pathways in LUSC.
Thereafter, we tested the enrichment of functional DMR targets

for cancer-associated genes such as oncogenes, tumor suppressor
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genes, and driver genes annotated by the CancerMine21 database.
Consistent with the enrichment analysis for cancer hallmark genes,
we observed significant enrichment of cancer genes among the
F-eDMR but not F-pDMR targets (by p-value < 0.05, Fig. 3b and
Supplementary Table 5b-c). Notably, we found that oncogenes and
driver genes were enriched for hypomethylated eDMR targets (i.e.,
potentially upregulated in tumors), while tumor suppressor genes
were enriched for hypermethylated F-eDMR targets (i.e., potentially
downregulated in tumors). This result suggests that methylation of
enhancer rather than promoter regions primarily mediates
epigenetic control of tumor progression in LUSC.
In addition to canonical pathways for tumorigenesis, other

biological processes may be associated with LUSC characteristics.
Thus, we performed gene set enrichment analysis of functional
DMR targets for pathway genes annotated by the Reactome22

database. There were ten pathways enriched among the F-pDMR
targets (q-value < 0.01), which could be categorized into “G-
protein-coupled receptor (GPCR) signaling”, “keratinization”, or
others (Fig. 3c and Supplementary Table 5d). GPCRs comprising a
large family of cell-surface receptors are involved in tumorigenesis,
and their signaling pathway is a major target for cancer drug
development30. Keratinization is one of the most common features
of LUSC and is associated with poor clinical outcomes31. These
results indicate that methylation of promoter regions mediates
epigenetic regulation of genes involved in tumor-associated GPCR
signaling and keratinization in LUSC. These pathways were also
found to be most significantly enriched among functional F-pDMR
targets in the TCGA-LUSC cohort (Supplementary Fig. 1b,
Supplementary Tables 5e, and 6), which validates our findings.
Similar to the results with other cancer-associated genes, we

observed a much stronger association of F-eDMR targets with
Reactome pathways. There were 73 and four enriched pathways
among hypomethylated and hypermethylated F-eDMR targets,
respectively (Fig. 3c and Supplementary Table 5f). The majority of
enriched pathways were associated with cancer progression and
were assigned to 14 categories. Several were involved in cellular
proliferation and migration, such as “DNA stability”, “cell cycle”,
“ribosome biogenesis”, “apoptosis”, “differentiation”, “Notch and
WNT signaling”, “Rho GTPase signaling”, and “ECM”. Epigenetic
modification pathways were also enriched for F-eDMR targets and
were previously reported to be involved in the regulation of
cancer progression32. “Collagen” is another enriched pathway
known to accelerate fibrosis in lung cancer, leading to poor
prognosis33,34. The surfactant-related pathway was enriched for
target genes regulated by hypermethylated F-eDMR. Previously,
the anticancer activity of surfactant proteins was reported in
multiple studies35–37. Therefore, downregulated surfactant path-
ways in tumors could promote cancer progression in LUSC.
Overall, pathway enrichment analysis using the Reactome
database confirmed the association of DMR target genes with
tumorigenesis and the dominant regulatory roles of enhancer
methylation in LUSC.

pDMRs play dominant roles in regulation of cancer-testis gene
expression in LUSC
Our unbiased functional analysis of DMR targets revealed the
dominant roles of enhancer methylation in the regulation of
tumorigenesis and other pathways that characterize neoplasms in
LUSC. While seeking cancer-associated gene families primarily
regulated by methylation of promoter rather than enhancer
regions, we found that CT genes were greatly enriched among the
F-pDMR targets. Gene products of CT genes are CT antigens
composed of a large family of tumor-associated antigens. CT
antigens are expressed in human tumors and not in normal
tissues, except in germ cells such as testis and placenta. These
antigens can be abnormally expressed in cancer cells and thus are
considered promising targets for cancer immunotherapy. How-
ever, the molecular functions of CT antigens in germ or tumor cells

remain largely unknown, although evidence of their contribution
to tumor cell physiology and neoplastic behaviors has accumu-
lated38. We obtained 125 high-confidence CT genes using the
extremely high expression in LUSC tumors23 and subsequently
performed enrichment analysis for both F-pDMR and F-eDMR
targets. Notably, CT genes were significantly enriched among
F-pDMR targets only (Fig. 3d and Supplementary Table 5g). In
addition, only hypomethylated DMR targets were enriched for CT
genes, which is consistent with a previous observation of a
negative correlation between the average promoter methylation
levels of CT genes and the number of activated CT genes23. These
results suggest that, contrary to other types of cancer-associated
genes, epigenetic regulation of CT antigen expression is primarily
controlled by promoter methylation in LUSC.

Methylation of super-enhancers is associated with
tumorigenesis in LUSC
Previously, aberrant DNA methylation of the SE region in human
cancer was demonstrated by whole-genome bisulfite sequen-
cing39. SEs are known to play key roles in the control of cell
identity and diseases24. Given the strong influence of enhancer
methylation on tumorigenesis in LUSC, we hypothesized that SEs
also play important roles in epigenetic regulation of cancer
progression. Based on the overlap between annotated SEs and
DMRs, we defined super-enhancer DMRs (seDMRs) (Supplemen-
tary Table 7a-b). We found ~1000 seDMRs composed of an
approximately equal number of hypomethylated and hyper-
methylated regions and found ~1500 target genes (Fig. 4a and
Supplementary Table 7c-f). When we filtered them by the
negative correlation between methylation and target gene
expression levels to identify functional seDMRs (F-seDMRs), we
obtained < 200 F-seDMRs. We found that Reactome pathways for
“keratinization” and “surfactant metabolism” were significantly
enriched for target genes of hypomethylated and hypermethy-
lated F-seDMRs, respectively (q-value < 0.01, Fig. 4b and
Supplementary Table 7g). These results support the known
protumor and antitumor activities of keratinization and surfac-
tant, respectively31,35–37. Notably, all five enriched Reactome
pathways among hypermethylated F-seDMR targets were
associated with surfactant metabolism. Pulmonary surfactant is
a lipoprotein complex involved in various pulmonary functions,
including compliance. Surfactant proteins A and D are involved
in innate immunity by opsonizing bacterial cells in the alveoli.
We found that genes for surfactant protein A2 (SFTPA2),
surfactant-associated protein A3 (SFTA3), and surfactant protein
D (SFTPD) are target genes of two hypermethylated F-seDMRs
(Fig. 4c). These results suggest that the downregulation of the
expression of surfactant proteins by hypermethylation of SEs
may be a major epigenetic regulatory mechanism for promoting
tumor progression in lung tissue.

LUSC risk-related SNPs are enriched for DMRs
Previously, we investigated the functional roles of methylation at
promoters and enhancers using their regulatory target genes.
Thereafter, we confirmed the regulatory importance of DMRs in
LUSC tumorigenesis using the orthogonal approach. Over 90% of
disease-associated SNPs are located in non-coding regions, and
the majority are believed to be involved in the regulation of gene
expression. Disease-associated SNPs or risk-related SNPs were
shown to be associated with DNA methylation changes in
diseases, including cancers40–42. Therefore, we hypothesized that
SNPs that increase the risk of LUSC are associated with regulatory
regions that change the methylation level in tumors. We compiled
LUSC risk-related SNPs from eight categories of the GWAS
catalog25 that contain LUSC patients (Supplementary Table 8a).
Among 94 SNPs that could be profiled by the Infinium
Methylation EPIC Array, 49 overlapped with DMRs (Supplementary
Table 8b-e). For example, rs193299119 was found in the pDMR,
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Fig. 4 Functional analysis of super-enhancer differentially methylated region (seDMR) targets and enrichment of lung squamous cell
carcinoma (LUSC) risk-related single nucleotide polymorphisms (SNPs) for DMRs. a Stacked bar plots of the number of seDMRs, functional
(F)-seDMRs, and their target genes with hypo- or hypermethylation. b Enrichment of Reactome pathway gene sets for F-seDMR target genes.
c An example of seDMR and target interactions visualized with Integrative Genomic View (IGV). Methylation levels of seDMR regions and
expression levels of their target genes were compared between tumor (T) and normal tissue (N). d An example of LUSC risk-related SNPs
residing within DMR regions. e Pie chart for the distribution of LUSC risk-related SNPs within DMRs and outside of DMRs. The significance of
SNPs within DMRs was assessed using binomial distribution.
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rs111032090 was found in the eDMRs, and rs1629083 was found
in both the pDMRs and eDMRs (Fig. 4d). We found that LUSC risk-
related SNPs were significantly enriched for DMRs (Fig. 4e, p-value
= 0.002, by binomial distribution). These results confirm the

importance of DNA methylation in epigenetic regulation of LUSC
tumorigenesis. Owing to the limited number of risk-related SNPs,
we did not observe significant enrichment for either pDMRs or
eDMRs alone.
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eDMRs are more important in the control of immune
infiltration than pDMRs
Aberrant methylation may affect cancer cells as well as the tumor
microenvironment43. Although LUSC has a higher tumor mutation
burden than LUAD, LUSC patients did not benefit from targetable
driver mutation treatment. Immune checkpoint inhibitors are thus
more effective in LUSC treatment, and the tumor microenviron-
ment might be a critical factor for LUSC immunotherapy.
Therefore, we investigated the relationship between the level of
DMR methylation and immune cell infiltration. The relative
abundance of infiltrated immune cells was estimated by
deconvolution of bulk transcriptome data using CIBERSORTx26

with a pre-established signature matrix (LM22). We found ten
distinct types of differentially abundant immune cells between
tumor and normal tissues (by q-value < 0.01, Fig. 5a and
Supplementary Table 9a). For these immune cell types, we
identified promoters and enhancers whose methylation level
showed a positive or negative correlation with their infiltration
level (by Spearman correlation q-value < 0.01, Fig. 5b and
Supplementary Table 9b-e). We defined these promoters and
enhancers as infiltration-associated methylation regions (IMRs).
Several pDMRs and eDMRs showed a strong correlation between
methylation and tumor infiltration levels for a particular type of
immune cell. For example, activity changes in oncogenic pathways
often modulate the tumor microenvironment44,45, and we
observed a strong correlation between promoter or enhancer
methylation and target gene expression for the MAPK pathway
(EGFR) and WNT-beta-catenin pathways (CTNNB1, WNT3A and
WNT7B) (Fig. 5c). We found a substantially higher proportion of
DMRs than non-DMRs among IMRs (87.7% vs. 23.6% for promoters
and 94% vs. 11.4% for enhancers) (Fig. 5d and Supplementary
Table 9f). Notably, the odds ratio of DMRs over non-DMRs was
much higher for enhancer regions (Fig. 5e), which suggests that
eDMRs are more important in immune infiltration control than
pDMRs.
We performed functional interpretations for IMRs overlapping

pDMRs (IMR-pDMRs) and eDMRs (IMR-eDMRs). Previous work
demonstrated that CpG hypermethylation of immune genes
located in lamina-associated, late-replicating regions termed
PMDs27 is associated with immune evasion46. We found that only
727 of 4915 IMR-pDMRs (14.8%) and 136 of 6313 IMR-eDMRs
(2.2%) overlapped with the PMDs (Supplementary Table 10a).
Twelve Reactome22 pathway gene sets were significantly enriched
for genes regulated by IMR-pDMRs overlapping with PMDs (by q-
value < 0.01), including those for “GPCR signaling” and “keratiniza-
tion” (Supplementary Table 10b), which were also enriched for
F-pDMR targets (Fig. 3c). However, we found no Reactome
pathway gene sets enriched for genes regulated by IMR-eDMRs
overlapping with PMDs (Supplementary Table 10c) due to their
small proportion of the genome. Therefore, we extended gene set
enrichment analysis to the genes regulated by IMR-DMRs outside
PMDs. We identified a similar number of Reactome pathway gene
sets significantly enriched for genes regulated by IMR-pDMRs
outside PMDs (q-value < 0.01) (Fig. 5f and Supplementary Table
10d). In contrast, we identified 71 Reactome pathway gene sets
significantly enriched for genes regulated by IMR-eDMRs outside

PMDs. Notably, 12 of them were relevant to immunity, whereas
only a single pathway was relevant to the IMR-pDMR targets (Fig.
5g and Supplementary Table 10e). Furthermore, cancer hallmarks
by CancerSEA20 and cancer-associated genes by the CancerMine21

database were more associated (by q-value < 0.05) with genes
regulated by IMR-eDMRs than IMR-pDMRs outside PMDs (Fig. 5h-i
and Supplementary Table 10d-e). These results suggest that some
DMRs regulate immune infiltration of tumors and support that
eDMRs are more important than pDMRs in epigenetic regulation
of tumor immunity in LUSC.

DISCUSSION
The human genome has larger noncoding regulatory DNA regions
for enhancers than promoters. However, epigenetic regulatory roles
have been primarily investigated for promoters, owing to a lack of
cost-effective profiling array platforms and comprehensive maps for
enhancers until recently. Given the positioning at a higher hierarchy
for epigenetic regulation, enhancers may exert more global and
drastic control over cellular identity and disease progression in
cancer47. A stronger influence of eDMRs on cancer-associated gene
expression was suggested previously8. Enrichment of risk-related
SNPs among eDMRs was also reported in breast cancer42. However,
these studies were based on HumanMethylation450 BeadChip
(450 K), which has extremely limited coverage for enhancer regions.
Therefore, there is an increasing demand for the study of enhancer
methylation and its regulatory roles in human cancer with a more
comprehensive landscape for enhancers. To the best of our
knowledge, this is the first study that carried out genome-wide
methylation profiles for LUSC patients using a methylation array,
including >350,000 CpG sites for enhancer regions. These methyla-
tion profiles enabled a comprehensive comparison of the regulatory
impact of methylation between promoters and enhancers in LUSC.
Overall, the results from our functional enrichment analysis

demonstrated that methylation of enhancers rather than promoters
plays major roles in tumorigenesis and immune infiltration. Given a
comparable number of target genes between pDMRs and eDMRs,
the observation of substantially greater regulatory roles of eDMRmay
not be attributable to the size effect. In addition to functional analysis
using the cancer knowledge base, we performed data-driven
functional analysis based on the negative correlation of the
methylation level with the expression of LUSC-specific genes. This
orthogonal approach showed that methylation of enhancers has a
stronger regulatory effect on LUSC-specific genes than that of
promoters. This finding suggests that enhancer methylation plays a
major role in canonical cancer pathways and neoplastic character-
istics specific to LUSC compared with other types of cancer. For
example, perturbation of keratinization and pulmonary surfactant
pathways have been reported to affect clinical outcomes mainly for
LUSC31,35–37, and these factors were found to be associated with
eDMR targets in this study. Furthermore, we found that genes
encoding surfactant proteins are regulated by the methylation of SEs.
This finding implies that perturbation of these pathways might be
mediated by aberrant methylation of enhancers in LUSC.
As we observed a greater regulatory contribution of enhancer

methylation than promoter methylation, genome-wide

Fig. 5 Regulation of immune infiltration by DNA methylation. a Ten immune cell types that showed abundance changes in tumors. b
Schematic overview to define infiltration-associated methylation regions (IMRs) using correlation analysis between methylation and immune
cell infiltration (q-value < 0.01, Spearman’s correlation). c Examples of promoters and enhancers whose methylation level correlates with
immune cell infiltration. d Proportion of IMRs among differentially methylated regions (DMRs) vs. non-DMRs. e Odds ratio of DMRs to non-
DMRs among IMRs. f, g Reactome pathway gene sets significantly enriched for genes regulated by IMR-pDMRs (f) or by IMR-eDMRs (g) outside
partially methylated domains (PMDs) (only those with q-value < 0.001 are presented in the plot). The dashed line indicates the significance
threshold (q-value < 0.001) for the presented bar plots. h Enrichment of cancer hallmark gene sets from the CancerSEA database for the genes
regulated by IMR-eDMRs or IMR-pDMRs outside PMDs. The dashed line indicates the significance threshold (q-value < 0.05). i Enrichment of
each category of cancer-associated genes from the CancerMine database for the genes regulated by IMR-eDMRs outside PMDs. The dashed
line indicates the significance threshold (p-value < 0.05).
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methylation analysis might be necessary with similar enhancer
coverage of several other types of cancers. Such a cancer-wide
investigation will reveal whether epigenetic regulation of tumor-
igenesis and immune infiltration mediated by enhancer methyla-
tion is the core regulatory architecture of cancers. Although we
profiled >350,000 annotated enhancers in this study, many more
enhancers were identified. This limitation may be overcome using
bisulfite sequencing or improving methylation array coverage. The
improved breadth (profiling more cancer types) and depth
(covering more enhancers) of DNA methylation studies for tumor
samples will facilitate our understanding of complex networks of
epigenetic regulation in cancer.
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